

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs804t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

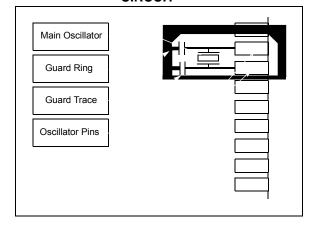
The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, MPLAB ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) (DS51765)
- "Development Tools Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE[™] In-Circuit Emulator" (poster) (DS51749)


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
I2C1 and I2C	2		U1STA	222	000000010010000	SPI1BRGH	252	000000000000000000000000000000000000000
I2C1CONL	200	0001000000000000	U1TXREG	224	0000000xxxxxxxxx	SPI1IMSKL	254	000000000000000000000000000000000000000
I2C1CONH	202	000000000000000000000000000000000000000	U1RXREG	226	000000000000000000000000000000000000000	SPI1IMSKH	256	000000000000000000000000000000000000000
I2C1STAT	204	000000000000000000000000000000000000000	U1BRG	228	000000000000000000000000000000000000000	SPI1URDTL	258	000000000000000000000000000000000000000
I2C1ADD	206	000000000000000000000000000000000000000	U2MODE	230	000000000000000000000000000000000000000	SPI1URDTH	25A	000000000000000000000000000000000000000
I2C1MSK	208	000000000000000000000000000000000000000	U2STA	232	000000010010000	SPI2CON1L	260	000000000000000000000000000000000000000
I2C1BRG	20A	000000000000000000000000000000000000000	U2TXREG	234	0000000xxxxxxxxx	SPI2CON1H	262	000000000000000000000000000000000000000
I2C1TRN	20C	0000000011111111	U2RXREG	236	000000000000000000000000000000000000000	SPI2CON2L	264	000000000000000000000000000000000000000
I2C1RCV	20E	000000000000000000000000000000000000000	U2BRG	238	000000000000000000000000000000000000000	SPI2CON2H	266	000000000000000000000000000000000000000
I2C2CON1	210	0001000000000000	SPI			SPI2STATL	268	0000000000101000
I2C2CON2	212	000000000000000000000000000000000000000	SPI1CON1L	240	000000000000000000000000000000000000000	SPI2STATH	26A	000000000000000000000000000000000000000
I2C2STAT	214	000000000000000000000000000000000000000	SPI1CON1H	242	000000000000000000000000000000000000000	SPI2BUFL	26C	000000000000000000000000000000000000000
I2C2ADD	216	000000000000000000000000000000000000000	SPI1CON2L	244	000000000000000000000000000000000000000	SPI2BUFH	26E	000000000000000000000000000000000000000
I2C2MSK	218	000000000000000000000000000000000000000	SPI1CON2H	246	000000000000000000000000000000000000000	SPI3STAT	270	000xxxxxxxxxxxx
I2C2BRG	21A	000000000000000000000000000000000000000	SPI1STATL	248	000000000101000	SPI2BRGH	272	000000000000000000000000000000000000000
I2C2TRN	21C	0000000011111111	SPI1STATH	24A	000000000000000000000000000000000000000	SPI2IMSKL	274	000000000000000000000000000000000000000
I2C2RCV	21E	000000000000000000000000000000000000000	SPI1BUFL	24C	000000000000000000000000000000000000000	SPI2IMSKH	276	000000000000000000000000000000000000000
UART1 and	UART2		SPI1BUFH	24E	000000000000000000000000000000000000000	SPI2URDTL	278	000000000000000000000000000000000000000
U1MODE	220	000000000000000000000000000000000000000	SPI1BRGL	250	000xxxxxxxxxxx	SPI2URDTH	27A	000000000000000000000000000000000000000

TABLE 4-4: SFR BLOCK 200h

Legend: x = unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.

TABLE 4-5: SFR BLOCK 300h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
ADC			ADCMP0ENH	33A	000000000000000000	ADTRIG4L	390	000000000000000000000000000000000000000
ADCON1L	300	000000000000000000	ADCMP0LO	33C	000000000000000000	ADTRIG4H	392	000000000000000000000000000000000000000
ADCON1H	302	000000001100000	ADCMP0HI	33E	000000000000000000	ADCMP0CON	3A0	000000000000000000000000000000000000000
ADCON2L	304	000000000000000000000000000000000000000	ADCMP1ENL	340	000000000000000000	ADCMP1CON	3A4	000000000000000000000000000000000000000
ADCON2H	306	000000000000000000000000000000000000000	ADCMP1ENH	342	000000000000000000	ADBASE	3C0	000000000000000000000000000000000000000
ADCON3L	308	000000000000000000000000000000000000000	ADCMP1LO	344	000000000000000000	ADLVLTRGL	3D0	000000000000000000000000000000000000000
ADCON3H	30A	000000000000000000000000000000000000000	ADCMP1HI	346	000000000000000000	ADLVLTRGH	3D2	000000000000000000000000000000000000000
ADCON4L	30C	000000000000000000000000000000000000000	ADFL0DAT	368	000000000000000000	ADCORE0L	3D4	000000000000000000000000000000000000000
ADCON4H	30E	000000000000000000000000000000000000000	ADFL0CON	36A	000000000000000000	ADCORE0H	3D6	0000001100000000
ADMOD0L	310	000000000000000000000000000000000000000	ADFL1DAT	36C	000000000000000000	ADCORE1L	3D8	000000000000000000000000000000000000000
ADMOD0H	312	000000000000000000000000000000000000000	ADFL1CON	36E	000000000000000000	ADCORE1H	3DA	0000001100000000
ADMOD1L	314	000000000000000000000000000000000000000	ADTRIG0L	380	000000000000000000	ADCORE2L	3DC	000000000000000000000000000000000000000
ADIEL	320	000000000000000000000000000000000000000	ADTRIG0H	382	000000000000000000	ADCORE2H	3DE	0000001100000000
ADIEH	322	000000000000000000000000000000000000000	ADTRIG1L	384	000000000000000000	ADCORE3L	3E0	000000000000000000000000000000000000000
ADCSS1L	328	000000000000000000000000000000000000000	ADTRIG1H	386	000000000000000000	ADCORE3H	3E2	0000001100000000
ADCSS1H	32A	000000000000000000	ADTRIG2L	388	000000000000000000	ADEIEL	3F0	000000000000000000000000000000000000000
ADSTATL	330	000000000000000000	ADTRIG2H	38A	000000000000000000	ADEIEH	3F2	000000000000000000000000000000000000000
ADSTATH	332	000000000000000000	ADTRIG3L	38C	000000000000000000	ADEISTATL	3F8	000000000000000000000000000000000000000
ADCMP0ENL	338	000000000000000000	ADTRIG3H	38E	000000000000000000	ADEISTATH	3FA	000000000000000000000000000000000000000

Legend: x = unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS7000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGS70X/80X family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGS70X/80X family CPU.

The interrupt controller has the following features:

- Six Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies
- Alternate Interrupt Vector Table (AIVT) for Debug Support

7.1 Interrupt Vector Table

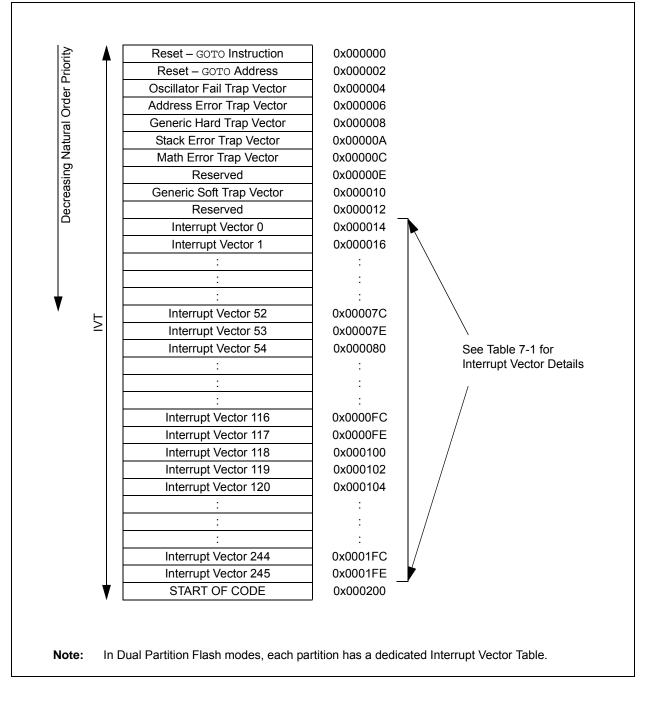
The dsPIC33EPXXXGS70X/80X family Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains six non-maskable trap vectors and up to 246 sources of interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-2, is available only when the Boot Segment is defined and the AIVT has been enabled. To enable the Alternate Interrupt Vector Table, the Configuration bit, AIVTDIS in the FSEC register, must be programmed and the AIVTEN bit must be set (INTCON2<8> = 1). When the AIVT is enabled, all interrupt and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment, defined by BSLIM<12:0>. The second half of the page is no longer usable space. The Boot Segment must be at least 2 pages to enable the AIVT.

Note: Although the Boot Segment must be enabled in order to enable the AIVT, application code does not need to be present inside of the Boot Segment. The AIVT (and IVT) will inherit the Boot Segment code protection.


The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGS70X/80X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 7-1: dsPIC33EPXXXGS70X/80X FAMILY INTERRUPT VECTOR TABLE

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector	IRQ #	IVT Address	Interrupt Bit Location			
Interrupt Source	#		IVI Address	Flag	Enable	Priority	
AN17 Conversion Done	168	160	0x000154	IFS10<0> AN17IF	IEC10<0> AN17IE	IPC40<2:0> AN17IP<2:0>	
AN18 Conversion Done	169	161	0x000156	IFS10<1> AN18IF	IEC10<1> AN18IE	IPC40<6:4> AN18IP<2:0>	
AN19 Conversion Done	170	162	0x000158	IFS10<2> AN19IF	IEC10<2> AN19IE	IPC40<10:8> AN19IP<2:0>	
AN20 Conversion Done	171	163	0x00015A	IFS10<3> AN20IF	IEC10<3> AN20IE	IPC40<14:12> AN20IP<2:0>	
AN21 Conversion Done	172	164	0x00015C	IFS10<4> AN21IF	IEC10<4> AN21IE	IPC41<2:0> AN21IP<2:0>	
Reserved	173-180	165-172	0x00015C-0x00016C	_	—	—	
I2C1 – I2C1 Bus Collision	181	173	0x00016E	IFS10<13> I2C1IF	IEC10<13> I2C1IE	IPC43<6:4> I2C1IP<2:0>	
I2C2 – I2C2 Bus Collision	182	174	0x000170	IFS10<14> I2C2IF	IEC10<14> I2C2IE	IPC43<10:8> I2C2IP<2:0>	
Reserved	183-184	175-176	0x000172-0x000174	—	_	—	
ADCMP0 – ADC Digital Comparator 0	185	177	0x000176	IFS11<1> ADCMP0IF	IEC11<1> ADCMP0IE	IPC44<6:4> ADCMP0IP<2:0>	
ADCMP1 – ADC Digital Comparator 1	186	178	0x000178	IFS11<2> ADCMP1IF	IEC11<2> ADCMP1IE	IPC44<10:8> ADCMP1IP<2:0>	
ADFLTR0 – ADC Filter 0	187	179	0x00017A	IFS11<3> ADFLTR0IF	IEC11<3> ADFLTR0IE	IPC44<14:12> ADFLTR0IP<2:0>	
ADFLTR1 – ADC Filter 1	188	180	0x00017C	IFS11<4> ADFLTR1IF	IEC11<4> ADFLTR1IE	IPC45<2:0> ADFLTR1IP<2:0>	
Reserved	189-253	181-245	0x00017E-0x000192	—	—	_	

8.1 DMA Controller Registers

Each DMA Controller Channel x (where x = 0 through 3) contains the following registers:

- 16-Bit DMA Channel x Control Register (DMAxCON)
- 16-Bit DMA Channel x IRQ Select Register (DMAxREQ)
- 32-Bit DMA Channel x Start Address Register A (DMAxSTAL/H)
- 32-Bit DMA Channel x Start Address Register B (DMAxSTBL/H)
- 16-Bit DMA Channel x Peripheral Address Register (DMAxPAD)
- 14-Bit DMA Channel x Transfer Count Register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADRL/H) are common to all DMA Controller channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	—	AMODE1	AMODE0	—	—	MODE1	MODE0
bit 7							bit 0

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CHEN: DMA Channel Enable bit
	1 = Channel is enabled
	0 = Channel is disabled
bit 14	SIZE: DMA Data Transfer Size bit
	1 = Byte 0 = Word
bit 13	DIR: Transfer Direction bit (source/destination bus select)
	 1 = Reads from RAM address, writes to peripheral address 0 = Reads from peripheral address, writes to RAM address
bit 12	HALF: Block Transfer Interrupt Select bit
	 1 = Initiates interrupt when half of the data has been moved 0 = Initiates interrupt when all of the data has been moved
bit 11	NULLW: Null Data Peripheral Write Mode Select bit
	 1 = Null data write to peripheral in addition to RAM write (DIR bit must also be clear) 0 = Normal operation
bit 10-6	Unimplemented: Read as '0'
bit 5-4	AMODE<1:0>: DMA Channel Addressing Mode Select bits
	11 = Reserved
	10 = Peripheral Indirect mode
	01 = Register Indirect without Post-Increment mode00 = Register Indirect with Post-Increment mode
bit 3-2	Unimplemented: Read as '0'
bit 1-0	MODE<1:0>: DMA Channel Operating Mode Select bits
	11 = One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer)
	10 = Continuous, Ping-Pong modes are enabled 01 = One-Shot, Ping-Pong modes are disabled
	00 = Continuous, Ping-Pong modes are disabled

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
11.0	11.0	11.0	11.0	D٥	DA	D۵	

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	PPST3: Channel 3 Ping-Pong Mode Status Flag bit
	1 = DMA3STB register is selected0 = DMA3STA register is selected
bit 2	PPST2: Channel 2 Ping-Pong Mode Status Flag bit
	1 = DMA2STB register is selected
	0 = DMA2STA register is selected
bit 1	PPST1: Channel 1 Ping-Pong Mode Status Flag bit
	1 = DMA1STB register is selected
	0 = DMA1STA register is selected
bit 0	PPST0: Channel 0 Ping-Pong Mode Status Flag bit
	1 = DMA0STB register is selected
	0 = DMA0STA register is selected

REGISTER	9-0. KEFU	CON. REFER	LENCE USC	ILLATOR CO		ISTER	
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15		•		•	•	•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
 bit 7	_	_		_	_	_	bit (
Legend:							
R = Readabl	le bit	W = Writable I	pit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15 bit 14	1 = Reference 0 = Reference	ence Oscillator e oscillator outp e oscillator outp ted: Read as '0	ut is enabled o ut is disabled		2)		
bit 13	-	ference Oscilla		an hit			
bit 15	1 = Reference	e oscillator outp oscillator outp	ut continues to	run in Sleep			
bit 12	1 = Oscillator	rence Oscillato crystal is used ock is used as	as the referen	ce clock			
bit 11-8	1111 = Refer 1110 = Refer 1101 = Refer 100 = Refer 1011 = Refer 1010 = Refer 1001 = Refer 000 = Refer 0111 = Refer 0110 = Refer 0101 = Refer 0101 = Refer 0101 = Refer 0101 = Refer 0100 = Refer 0100 = Refer	Reference Ose ence clock dividence clock	ded by 32,768 ded by 16,384 ded by 8,192 ded by 4,096 ded by 2,048 ded by 1,024 ded by 512 ded by 512 ded by 256 ded by 128 ded by 64 ded by 32 ded by 16 ded by 8 ded by 4	bits ⁽¹⁾			
bit 7-0	Unimplement	ted: Read as 'o)'				

REGISTER 9-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.6 "Peripheral Pin Select (PPS)" for more information.

TABLE 11-8: PORTC REGISTER MAP⁽¹⁾

	-															
File Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TRISC		TRISC	C<15:12>				TRISC<10:0>									
PORTC		RC<	:15:12>		_		RC<10:0>									
LATC		LATC	<15:12>		_		LATC<10:0>									
ODCC		ODCC	C<15:12>		_		ODCC<10:0>									
CNENC		CNIEC	C<15:12>		_					CI	NIEC<10:0	>				
CNPUC		CNPU	C<15:12>							CN	NPUC<10:0)>				
CNPDC		CNPD	C<15:12>		_	CNPDC<10:0>										
ANSELC	_	_	—	ANSC12	_	ANSC<	<10:9>	_		ŀ	ANSC<6:4	>	_	ANSC	<2:1>	_
Logondu		lomontod	read as 'o'													

Legend: — = unimplemented, read as '0'.

Note 1: Refer to Table 11-3 for bit availability on each pin count variant.

TABLE 11-9: PORTD REGISTER MAP⁽¹⁾

		••••	CCOOLE													
File Name	Bit 15	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0														
TRISD		TRISD<15:0>														
PORTD								RD<	15:0>							
LATD		LATD<15:0>														
ODCD								ODCD)<15:0>							
CNEND								CNIED	0<15:0>							
CNPUD								CNPU	D<15:0>							
CNPDD								CNPD	D<15:0>							
ANSELD	—		ANSD13	_	_	—		ANSE)<8:7>		ANSD5	_	_	ANSD2	—	—

Legend: — = unimplemented, read as '0'.

Note 1: Refer to Table 11-4 for bit availability on each pin count variant.

REGISTER 11-3: LATX: PORTX DATA LATCH REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LATx	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LAT	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown)

bit 15-8 LATx<15:0>: PORTx Data Latch bits

1 = The latch content is '1'

0 = The latch content is '0'

Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

REGISTER 11-4: ODCx: PORTx OPEN-DRAIN CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			ODC	x<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			ODO	Cx<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown					

bit 15-8 **PORTx<15:0>:** PORTx Open-Drain Control bits

1 = The pin acts as an open-drain output pin if TRISx is '0'

0 = The pin acts as a normal pin

Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| T1CKR7 | T1CKR6 | T1CKR5 | T1CKR4 | T1CKR3 | T1CKR2 | T1CKR1 | T1CKR0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| U-0 |

REGISTER 11-11: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

	—	_	_	—	—	—	—
bit 7							bit 0
Legend:							

Logona.							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-8 **T1CKR<7:0>:** Assign Timer1 External Clock (T1CK) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value. bit 7-0 **Unimplemented:** Read as '0'

REGISTER 11-12: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| T3CKR7 | T3CKR6 | T3CKR5 | T3CKR4 | T3CKR3 | T3CKR2 | T3CKR1 | T3CKR0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |

bit 7							bit 0
T2CKR7	T2CKR6	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
R/W-0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8T3CKR<7:0>: Assign Timer3 External Clock (T3CK) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.bit 7-0T2CKR<7:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.

© 2016-2017 Microchip Technology Inc.

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 16-2: PTCON2: PWMx CLOCK DIVIDER SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
	_	_	—	—	F	CLKDIV<2:0>	(1)	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimplem	ented bit, read	as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	= Bit is cleared x = Bit is unknown			

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

- 110 = Divide-by-64, maximum PWM timing resolution
- 101 = Divide-by-32, maximum PWM timing resolution
- 100 = Divide-by-16, maximum PWM timing resolution
- 011 = Divide-by-8, maximum PWM timing resolution
- 010 = Divide-by-4, maximum PWM timing resolution
- 001 = Divide-by-2, maximum PWM timing resolution
- 000 = Divide-by-1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
HRPDIS	HRDDIS			BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSELO			
bit 15	TIRDDIG			DEANICOLLU	DEANICOLLZ	DEANINOLLI	bit 8			
							5110			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—		CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN			
bit 7					•		bit 0			
Lonondi										
Legend: R = Readable	hit	W = Writable b	nit	II – I Inimplem	nented bit, read	as '0'				
-n = Value at		'1' = Bit is set	JIL	$0^{\circ} = \text{Bit is clear}$		x = Bit is unkn	iown			
		1 – Dit 13 3et			area					
bit 15	1 = High-reso	n-Resolution PV lution PWMx pe lution PWMx pe	eriod is disable	d to reduce po	wer consumpti	on				
bit 14	•	h-Resolution P\								
		Iution PWMx du Iution PWMx du			e power consur	nption				
bit 13-12	 0 = High-resolution PWMx duty cycle is enabled Unimplemented: Read as '0' 									
bit 11-8	BLANKSEL<	3:0>: PWMx St	ate Blank Sou	rce Select bits						
	0111 = PWM 0110 = PWM 0101 = PWM 0100 = PWM 0011 = PWM 0011 = PWM	8H is selected a 7H is selected a 6H is selected a 5H is selected a 4H is selected a 3H is selected a 2H is selected a 1H is selected a	as the state bla as the state bla	ank source ank source ank source ank source ank source ank source						
bit 7-6	Unimplemented: Read as '0'									
bit 5-2		:0>: PWMx Cho	•							
	The selected signal will enable and disable (chop) the selected PWMx outputs. 1001 = Reserved 1000 = PWM8H is selected as the chop clock source 0111 = PWM7H is selected as the chop clock source 0110 = PWM6H is selected as the chop clock source 0101 = PWM5H is selected as the chop clock source 0100 = PWM4H is selected as the chop clock source 0011 = PWM3H is selected as the chop clock source 0011 = PWM2H is selected as the chop clock source 0010 = PWM2H is selected as the chop clock source 0010 = PWM1H is selected as the chop clock source 0001 = PWM1H is selected as the chop clock source									
bit 1	CHOPHEN: P	WMxH Output	Chopping Ena	ble bit						
		hopping function hopping function								
	CHOPLEN: PWMxL Output Chopping Enable bit									
bit 0	CHOPLEN: P	WMxL Output	Chopping Enal	ole bit						

REGISTER 16-26: AUXCONx: PWMx AUXILIARY CONTROL REGISTER (x = 1 to 8)

Step Command	OPTION<3:0>	Option Description
PTGCTRL(1)	0000	Reserved
	0001	Reserved
	0010	Disable PTG Step Delay Timer (PTGSD)
	0011	Reserved
	0100	Reserved
	0101	Reserved
	0110	Enable PTG Step Delay Timer (PTGSD)
	0111	Reserved
	1000	Start and wait for the PTG Timer0 to match the PTG Timer0 Limit register
	1001	Start and wait for the PTG Timer1 to match the PTG Timer1 Limit register
	1010	Reserved
	1011	Wait for software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1)
	1100	Copy contents of the PTG Counter 0 register to the CNVCHSEL<5:0> bits (ADCON3L<5:0>)
	1101	Copy contents of the PTG Counter 1 register to the CNVCHSEL<5:0> bits (ADCON3L<5:0>)
	1110	Copy contents of the PTG Literal 0 register to the CNVCHSEL<5:0> bits (ADCON3L<5:0>)
	1111	Generate the triggers indicated in the PTG Broadcast Trigger Enable register (PTGBTE)
PTGADD ⁽¹⁾	0000	Add contents of PTGADJ register to the PTG Counter 0 Limit register (PTGC0LIM
	0001	Add contents of PTGADJ register to the PTG Counter 1 Limit register (PTGC1LIN
	0010	Add contents of PTGADJ register to the PTG Timer0 Limit register (PTGT0LIM)
	0011	Add contents of PTGADJ register to the PTG Timer1 Limit register (PTGT1LIM)
	0100	Add contents of PTGADJ register to the PTG Step Delay Limit register (PTGSDLIM)
	0101	Add contents of PTGADJ register to the PTG Literal 0 register (PTGL0)
	0110	Reserved
	0111	Reserved
PTGCOPY(1)	1000	Copy contents of PTGHOLD register to the PTG Counter 0 Limit register (PTGC0LIM)
	1001	Copy contents of PTGHOLD register to the PTG Counter 1 Limit register (PTGC1LIM)
	1010	Copy contents of PTGHOLD register to the PTG Timer0 Limit register (PTGT0LIM
	1011	Copy contents of PTGHOLD register to the PTG Timer1 Limit register (PTGT1LIM
	1100	Copy contents of PTGHOLD register to the PTG Step Delay Limit register (PTGSDLIM)
	1101	Copy contents of PTGHOLD register to the PTG Literal 0 register (PTGL0)
	1110	Reserved
	1111	Reserved

TABLE 17-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 17-2 for the trigger output descriptions.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	_	—	_		_	_	_				
bit 15							bit 8				
		5 .444.6	54446	5444.6	D # 4 4 0	D 444 A					
U-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0				
	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN				
bit 7							bit 0				
Legend:											
R = Readal	ble bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-7	Unimplemen	ted: Read as 'o	'								
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit (² C Slave mode	only)						
	1 = Enables i	1 = Enables interrupt on detection of Stop condition									
	0 = Stop detection interrupts are disabled										
bit 5	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)										
		1 = Enables interrupt on detection of Start or Restart conditions									
	0 = Start detection interrupts are disabled										
bit 4	BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only)										
		1 = I2CxRCV is updated and ACK is generated for a received address/data byte, ignoring the state of									
	the I2COV only if the RBF bit = 0 0 = I2CxRCV is only updated when I2COV is clear										
L:1 0				IS CIEdi							
bit 3	SDAHT: SDAx Hold Time Selection bit										
	 = Minimum of 300 ns hold time on SDAx after the falling edge of SCLx = Minimum of 100 ns hold time on SDAx after the falling edge of SCLx 										
bit 2				-	-	V)					
	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only) 1 = Enables slave bus collision interrupts										
	0 = Slave bus collision interrupts are disabled										
	If the rising edge of SCLx and SDAx is sampled low when the module is in a high state, the BCL bit is										
	set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit sequences.										
bit 1	AHEN: Address Hold Enable bit (I ² C Slave mode only)										
	1 = Following the 8th falling edge of SCLx for a matching received address byte, the SCLREL										
	(I2CxCONL<12>) bit will be cleared and SCLx will be held low 0 = Address holding is disabled										
bit 0		-		de onlv)							
		DHEN: Data Hold Enable bit (I ² C Slave mode only) 1 = Following the 8th falling edge of SCLx for a received data byte, the slave hardware clears the									
	SCLREL (I2CxCONL<12>) bit and SCLx is held low										
							ine clears the				

REGISTER 19-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

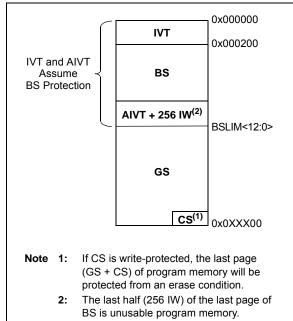
REGISTER 21-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N			
bit 15	•						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N			
bit 7	OIDHN	GIBOI	GIDSN	01021	GIDZIN	OIDII	bit 0			
Legend:										
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
		2.1.0 001		0 2000 000						
bit 15	G2D4T: Gate	2 Data Source	4 True Enable	e bit						
		rce 4 non-inver	0							
		rce 4 non-inver	-		e 2					
bit 14		2 Data Source	•							
		rce 4 inverted s								
bit 13	 0 = Data Source 4 inverted signal is disabled for Gate 2 G2D3T: Gate 2 Data Source 3 True Enable bit 									
		rce 3 non-inver rce 3 non-inver								
bit 12	G2D3N: Gate 2 Data Source 3 Negated Enable bit									
		rce 3 inverted s rce 3 inverted s	•							
bit 11	G2D2T: Gate 2 Data Source 2 True Enable bit									
		rce 2 non-inver rce 2 non-inver								
bit 10	G2D2N: Gate	2 Data Source	2 Negated Er	nable bit						
		rce 2 inverted s rce 2 inverted s								
bit 9	G2D1T: Gate 2 Data Source 1 True Enable bit									
		rce 1 non-inver rce 1 non-inver	•							
bit 8	G2D1N: Gate	2 Data Source	1 Negated Er	nable bit						
		rce 1 inverted s rce 1 inverted s								
bit 7	G1D4T: Gate 1 Data Source 4 True Enable bit									
	 1 = Data Source 4 non-inverted signal is enabled for Gate 1 0 = Data Source 4 non-inverted signal is disabled for Gate 1 									
bit 6	G1D4N: Gate 1 Data Source 4 Negated Enable bit									
	 1 = Data Source 4 inverted signal is enabled for Gate 1 0 = Data Source 4 inverted signal is disabled for Gate 1 									
bit 5	G1D3T: Gate 1 Data Source 3 True Enable bit									
		rce 3 non-inver rce 3 non-inver								
bit 4	G1D3N: Gate	1 Data Source	3 Negated Er	nable bit						
		rce 3 inverted s rce 3 inverted s								

REGISTER 22-8: ADCON4H: ADC CONTROL REGISTER 4 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	_	_	_	—	—	_	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
C3CHS1	C3CHS0	C2CHS1	C2CHS0	C1CHS1	C1CHS0	C0CHS1	C0CHS0	
bit 7							bit (
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown	
	1x = Reserve 01 = AN15 (c 00 = AN3		tive input wher	n DIFF3 (ADMC	DOL<7>) = 1)			
bit 5-4	00 = AN3 C2CHS<1:0>: Dedicated ADC Core 2 Input Channel Selection bits 11 = Reserved 10 = VREF band gap 01 = AN11 (differential negative input when DIFF2 (ADMOD0L<5>) = 1) 00 = AN2							
bit 3-2	C1CHS<1:0>: Dedicated ADC Core 1 Input Channel Selection bits 11 = AN1ALT 10 = PGA2 01 = AN18 (differential negative input when DIFF1 (ADMOD0L<3>) = 1) 00 = AN1							
bit 1-0	COCHS<1:0>: Dedicated ADC Core 0 Input Channel Selection bits							

11 = ANOALT

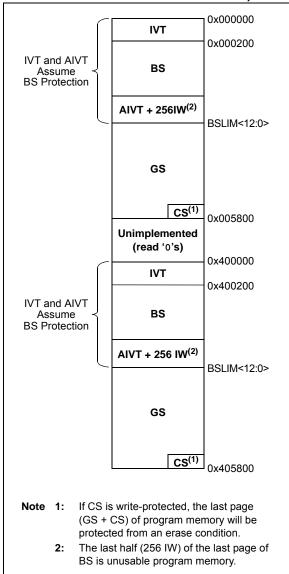

10 **= PGA1**

01 = AN7 (differential negative input when DIFF0 (ADMOD0L<1>) = 1)

00 **= AN0**

The different device security segments are shown in Figure 27-3. Here, all three segments are shown but are not required. If only basic code protection is required, then GS can be enabled independently or combined with CS, if desired.

FIGURE 27-3: SECURITY SEGMENTS EXAMPLE FOR dsPIC33EPXXXGS70X/80X DEVICES


dsPIC33EPXXXGS70X/80X family devices can be operated in Dual Partition mode, where security is required for each partition. When operating in Dual Partition mode, the Active and Inactive Partitions both contain unique copies of the Reset vector, Interrupt Vector Tables (IVT and AIVT, if enabled) and the Flash Configuration Words. Both partitions have the three security segments described previously. Code may not be executed from the Inactive Partition, but it may be programmed by, and read from, the Active Partition, subject to defined code protection. Figure 27-4 and Figure 27-5 show the different security segments for devices operating in Dual Partition mode.

The device may also operate in a Protected Dual Partition mode or in Privileged Dual Partition mode. In Protected Dual Partition mode, Partition 1 is permanently erase/write-protected. This implementation allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1. For example, a fail-safe bootloader can be placed in Partition 1, along with a fail-safe backup code image, which can be used or rewritten into Partition 2.

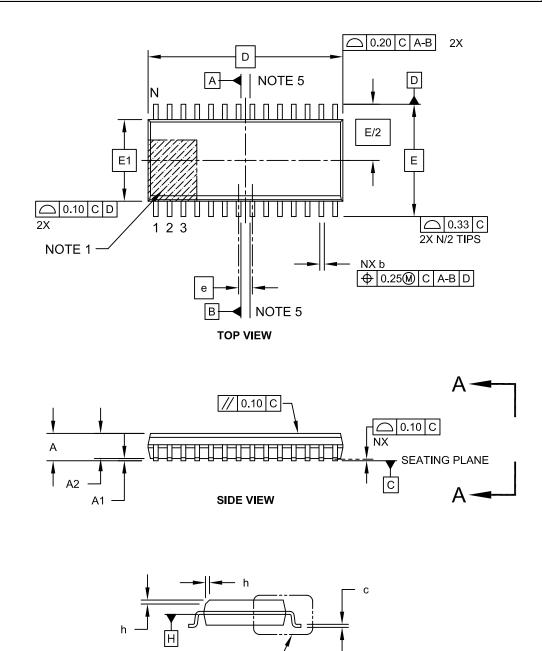
Privileged Dual Partition mode performs the same function as Protected Dual Partition mode, except additional constraints are applied in an effort to prevent code in the Boot Segment and General Segment from being used against each other.

FIGURE 27-4:

SECURITY SEGMENTS EXAMPLE FOR dsPIC33EP64GS70X/80X DEVICES (DUAL PARTITION MODES)

TABLE 30-23: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SY00	Tpu	Power-up Period	_	400	600	μS			
SY10	Тоѕт	Oscillator Start-up Time	—	1024 Tosc	_	—	Tosc = OSC1 period		
SY12 TWDT		Watchdog Timer Time-out Period	0.81	_	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-21) at +85°C		
			3.25	_	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-21) at +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS			
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μS			
SY30	TBOR	BOR Pulse Width (low)	1			μS			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS	-40°C to +85°C		
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	—	_	30	μS			
SY37	Toscdfrc	FRC Oscillator Start-up Delay	_	48	_	μS			
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	_	—	70	μS			


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

32.2 Package Details

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SEE VIEW C

Microchip Technology Drawing C04-052C Sheet 1 of 2