

Welcome to E-XFL.COM

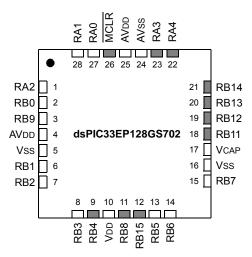
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs804t-i-pt

Email: info@E-XFL.COM

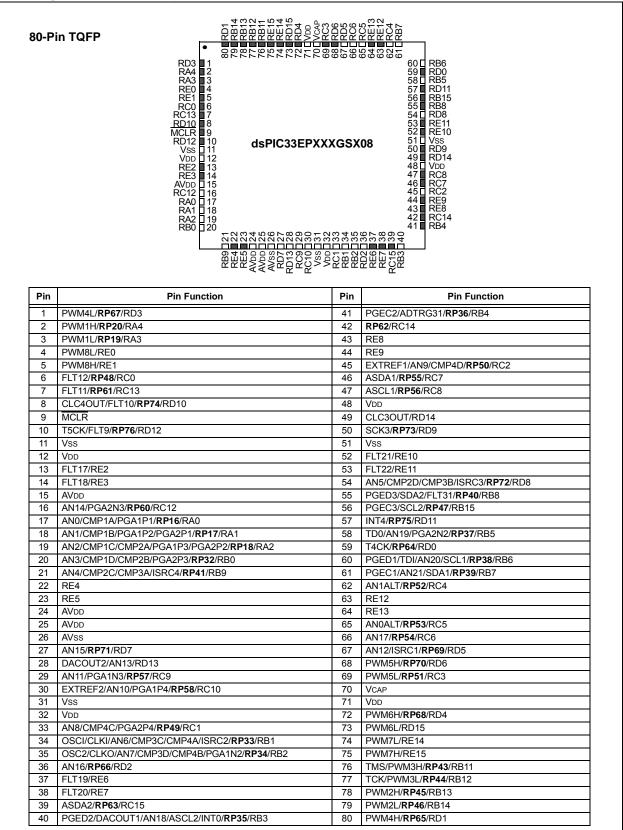
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

28-Pin QFN-S, UQFN

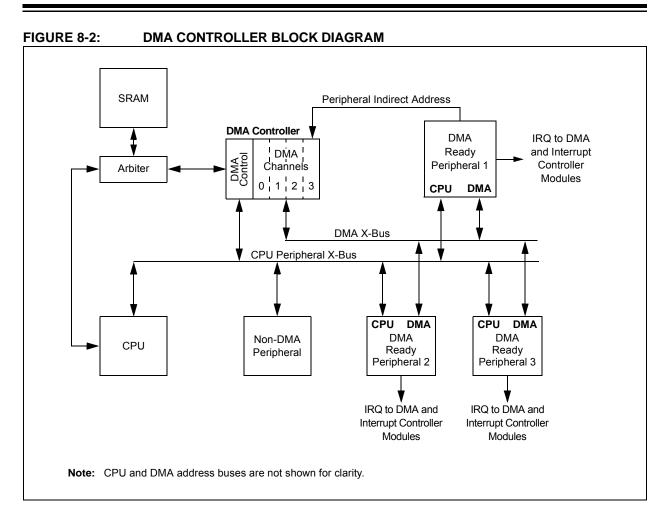
Pin	Pin Function	Pin	Pin Function
1	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2	15	PGEC1/AN21/SDA1/RP39/RB7
2	AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0	16	Vss
3	AN4/CMP2C/CMP3A/ISRC4/RP41/RB9	17	VCAP
4	AVDD	18	TMS/PWM3H/ RP46 /RB11
5	Vss	19	TCK/PWM3L/ RP44 /RB12
6	OSCI/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1	20	PWM2H/ RP45 /RB13
7	OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2	21	PWM2L/ RP46 /RB14
8	PGED2/DACOUT1/AN18/INT0/RP35/RB3	22	PWM1H/ RP20 /RA4
9	PGEC2/ADTRG31/EXTREF1/ RP36 /RB4	23	PWM1L/ RP19 /RA3
10	VDD	24	AVss
11	PGED3/SDA2/FLT31/ RP40 /RB8	25	AVDD
12	PGEC3/SCL2/RP47/RB15	26	MCLR
13	TDO/AN19/PGA2N2/ RP37 /RB5	27	AN0/CMP1A/PGA1P1/RP16/RA0
14	PGED1/TDI/AN20/SCL1/RP38/RB6	28	AN1/CMP1B/PGA1P2/PGA2P1/ RP17 /RA1

Legend: Shaded pins are up to 5 VDC tolerant.


RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.

Pin Diagrams (Continued)

	RB6 RB5 R815	KB8 VDD VSS	RC7 RC7 RB4 RB3
		4 4 %	
	RB7 1		33 RB2
	RC4 2		32 RB1
	RC5 3		31 🛛 RC1
	RC6 4		³⁰ Vss
	RC3		29 VDD
		IC33EPX	XXGSX04 28 RC10
			27 🛛 RC9
	RB11 8		
	RB12 9		25 RB9
	RB13 10		24 RB0
	RB14 11		²³ RA2
	4 0 C	RC13 AVss AVbb	AVDD RC12 RA0 RA1
Pin	Pin Function	Pin	Pin Function
1	PGEC1/AN21/SDA1/ RP39 /RB7	23	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/ RP18 /RA2
1 2	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4	23 24	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/ RP18 /RA2 AN3/CMP1D/CMP2B/PGA2P3/ RP32 /RB0
1	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4 AN0ALT/ RP53 /RC5	23 24 25	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/ RP18 /RA2
1 2 3	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4	23 24	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/ RP18 /RA2 AN3/CMP1D/CMP2B/PGA2P3/ RP32 /RB0 AN4/CMP2C/CMP3A/ISRC4/ RP41 /RB9
1 2 3 4	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4 AN0ALT/ RP53 /RC5 AN17/ RP54 /RC6	23 24 25 26	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/ RP18 /RA2 AN3/CMP1D/CMP2B/PGA2P3/ RP32 /RB0 AN4/CMP2C/CMP3A/ISRC4/ RP41 /RB9 AVDD
1 2 3 4 5	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4 AN0ALT/ RP53 /RC5 AN17/ RP54 /RC6 RP51 /RC3	23 24 25 26 27	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/ RP18 /RA2 AN3/CMP1D/CMP2B/PGA2P3/ RP32 /RB0 AN4/CMP2C/CMP3A/ISRC4/ RP41 /RB9 AVDD AN11/PGA1N3/ RP57 /RC9
1 2 3 4 5 6	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4 AN0ALT/ RP53 /RC5 AN17/ RP54 /RC6 RP51 /RC3 Vss	23 24 25 26 27 28	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/ RP18 /RA2 AN3/CMP1D/CMP2B/PGA2P3/ RP32 /RB0 AN4/CMP2C/CMP3A/ISRC4/ RP41 /RB9 AVDD AN11/PGA1N3/ RP57 /RC9 EXTREF2/AN10/PGA1P4/ RP58 /RC10
1 2 3 4 5 6 7	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4 AN0ALT/ RP53 /RC5 AN17/ RP54 /RC6 RP51 /RC3 Vss VcaP	23 24 25 26 27 28 28 29	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/ RP18 /RA2 AN3/CMP1D/CMP2B/PGA2P3/ RP32 /RB0 AN4/CMP2C/CMP3A/ISRC4/ RP41 /RB9 AVDD AN11/PGA1N3/ RP57 /RC9 EXTREF2/AN10/PGA1P4/ RP58 /RC10 VDD
1 2 3 4 5 6 7 8	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4 AN0ALT/ RP53 /RC5 AN17/ RP54 /RC6 RP51 /RC3 Vss VcAP TMS/PWM3H/ RP43 /RB11	23 24 25 26 27 28 29 30	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9 AVDD AN11/PGA1N3/RP57/RC9 EXTREF2/AN10/PGA1P4/RP58/RC10 VDD VSS
1 2 3 4 5 6 7 8 9	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4 AN0ALT/ RP53 /RC5 AN17/ RP54 /RC6 RP51 /RC3 Vss VcAP TMS/PWM3H/ RP43 /RB11 TCK/PWM3L/ RP44 /RB12	23 24 25 26 27 28 29 30 31	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9 AVDD AN11/PGA1N3/RP57/RC9 EXTREF2/AN10/PGA1P4/RP58/RC10 VDD VSS AN8/CMP4C/PGA2P4/RP49/RC1
1 2 3 4 5 6 7 8 9 10 11 12	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4 AN0ALT/ RP53 /RC5 AN17/ RP54 /RC6 RP51 /RC3 Vss VcAP TMS/PWM3H/ RP43 /RB11 TCK/PWM3L/ RP44 /RB12 PWM2H/ RP45 /RB13 PWM2L/ RP46 /RB14 PWM1H/ RP20 /RA4	23 24 25 26 27 28 29 30 31 31 32 33 33	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9 AVDD AN11/PGA1N3/RP57/RC9 EXTREF2/AN10/PGA1P4/RP58/RC10 VDD VSS AN8/CMP4C/PGA2P4/RP49/RC1 OSC2/CLK0/AN7/CMP3D/CMP4A/ISRC2/RP33/RB1 OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2 PGED2/DACOUT1/AN18/INT0/RP35/RB3
1 2 3 4 5 6 7 8 9 10 11 12 13	PGEC1/AN21/SDA1/RP39/RB7 AN1ALT/RP52/RC4 AN0ALT/RP53/RC5 AN17/RP54/RC6 RP51/RC3 Vss Vcap TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2L/RP46/RB13 PWM1L/RP46/RB14 PWM1L/RP19/RA3	23 24 25 26 27 28 29 30 31 31 32 33 34 35	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9 AVD AN11/PGA1N3/RP57/RC9 EXTREF2/AN10/PGA1P4/RP58/RC10 VDD VSS AN8/CMP4C/PGA2P4/RP49/RC1 OSCI/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1 OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2 PGED2/DACOUT1/AN18/INT0/RP35/RB3 PGEC2/ADTRG31/RP36/RB4
1 2 3 4 5 6 7 8 9 10 11 12 13 14	PGEC1/AN21/SDA1/RP39/RB7 AN1ALT/RP52/RC4 AN0ALT/RP53/RC5 AN17/RP54/RC6 RP51/RC3 Vcap TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2L/RP46/RB13 PWM1L/RP46/RB14 PWM1L/RP19/RA3 FLT12/RP48/RC0	23 24 25 26 27 28 29 30 31 31 32 33 34 35 36	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9 AVD AN1/PGA1N3/RP57/RC9 EXTREF2/AN10/PGA1P4/RP58/RC10 VDD VSS AN8/CMP4C/PGA2P4/RP49/RC1 OSCI/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1 OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2 PGED2/DACOUT1/AN18/INT0/RP35/RB3 PGEC2/ADTRG31/RP36/RB4 EXTREF1/AN9/CMP4D/RP50/RC2
1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4 AN0ALT/ RP53 /RC5 AN17/ RP54 /RC6 RP51 /RC3 Vss Vcap TMS/PWM3H/ RP43 /RB11 TCK/PWM3L/ RP44 /RB12 PWM2H/ RP45 /RB13 PWM2L/ RP46 /RB14 PWM1H/ RP20 /RA4 PWM1L/ RP19 /RA3 FLT12/ RP48 /RC0 FLT11/ RP61 /RC13	23 24 25 26 27 28 29 30 31 31 32 33 33 34 35 36 37	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9 AVD AN1/PGA1N3/RP57/RC9 EXTREF2/AN10/PGA1P4/RP58/RC10 VDD VSS AN8/CMP4C/PGA2P4/RP49/RC1 OSCI/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1 OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2 PGED2/DACOUT1/AN18/INT0/RP35/RB3 PGEC2/ADTRG31/RP36/RB4 EXTREF1/AN9/CMP4D/RP50/RC2 ASDA1/RP55/RC7
1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16	PGEC1/AN21/SDA1/RP39/RB7 AN1ALT/RP52/RC4 AN0ALT/RP53/RC5 AN17/RP54/RC6 RP51/RC3 Vss Vcap TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13 PWM2L/RP46/RB14 PWM1L/RP19/RA3 FLT12/RP48/RC0 FLT11/RP61/RC13 AVss	23 24 25 26 27 28 29 30 31 31 32 33 33 34 35 36 36 37 38	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9 AVD AVDD AN11/PGA1N3/RP57/RC9 EXTREF2/AN10/PGA1P4/RP58/RC10 VDD VSS AN8/CMP4C/PGA2P4/RP49/RC1 OSCI/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1 OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2 PGED2/DACOUT1/AN18/INT0/RP35/RB3 PGEC2/ADTRG31/RP36/RB4 EXTREF1/AN9/CMP4D/RP50/RC2 ASDA1/RP55/RC7 ASCL1/RP56/RC8
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17	PGEC1/AN21/SDA1/ RP39 /RB7 AN1ALT/ RP52 /RC4 AN0ALT/ RP53 /RC5 AN17/ RP54 /RC6 RP51 /RC3 Vss VcAP TMS/PWM3H/ RP43 /RB11 TCK/PWM3L/ RP44 /RB12 PWM2H/ RP45 /RB13 PWM2L/ RP46 /RB14 PWM1L/ RP46 /RB14 PWM1L/ RP19 /RA3 FLT12/ RP48 /RC0 FLT11/ RP61 /RC13 AVss AVDD	23 24 25 26 27 28 29 30 31 31 32 33 33 34 35 36 36 37 38 39	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9 AVD AN1/PGA1N3/RP57/RC9 EXTREF2/AN10/PGA1P4/RP58/RC10 VDD VSS AN8/CMP4C/PGA2P4/RP49/RC1 OSC2/CLK0/AN7/CMP3D/CMP4A/ISRC2/RP33/RB1 OSC2/CLK0/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2 PGED2/DACOUT1/AN18/INT0/RP35/RB3 PGEC2/ADTRG31/RP36/RB4 EXTREF1/AN9/CMP4D/RP50/RC2 ASDA1/RP55/RC7 ASCL1/RP56/RC8 Vss
1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18	PGEC1/AN21/SDA1/RP39/RB7 AN1ALT/RP52/RC4 AN0ALT/RP53/RC5 AN17/RP54/RC6 RP51/RC3 Vss VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13 PWM2L/RP46/RB14 PWM1L/RP19/RA3 FLT12/RP48/RC0 FLT11/RP61/RC13 AVss AVod MCLR	23 24 25 26 27 28 29 30 31 31 32 33 33 34 35 36 37 38 39 40	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9 AVD AN1/PGA1N3/RP57/RC9 EXTREF2/AN10/PGA1P4/RP58/RC10 VD VSS AN8/CMP4C/PGA2P4/RP49/RC1 OSC2/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1 OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2 PGED2/DACOUT1/AN18/INT0/RP35/RB3 PGEC2/ADTRG31/RP36/RB4 EXTREF1/AN9/CMP4D/RP50/RC2 ASDA1/RP55/RC7 ASSCL1/RP56/RC8 VbD
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	PGEC1/AN21/SDA1/RP39/RB7 AN1ALT/RP52/RC4 AN0ALT/RP53/RC5 AN17/RP54/RC6 RP51/RC3 Vss VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13 PWM2L/RP46/RB14 PWM1L/RP19/RA3 FLT12/RP48/RC0 FLT11/RP61/RC13 AVbd MCLR AVdd	23 24 25 26 27 28 29 30 31 31 32 33 33 34 35 36 37 38 39 40 41	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9 AVD AN1/PGA1N3/RP57/RC9 EXTREF2/AN10/PGA1P4/RP58/RC10 Vbb VSS AN8/CMP4C/PGA2P4/RP49/RC1 OSC2/CLK0/AN7/CMP3D/CMP4A/ISRC2/RP33/RB1 OSC2/CLK0/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2 PGED2/DACOUT1/AN18/INT0/RP35/RB3 PGEC2/ADTRG31/RP36/RB4 EXTREF1/AN9/CMP4D/RP50/RC2 ASDA1/RP55/RC7 ASSL1/RP56/RC8 VbD PGED3/SDA2/FLT31/RP40/RB8
1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18	PGEC1/AN21/SDA1/RP39/RB7 AN1ALT/RP52/RC4 AN0ALT/RP53/RC5 AN17/RP54/RC6 RP51/RC3 Vss VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13 PWM2L/RP46/RB14 PWM1L/RP19/RA3 FLT12/RP48/RC0 FLT11/RP61/RC13 AVss AVod MCLR	23 24 25 26 27 28 29 30 31 31 32 33 33 34 35 36 37 38 39 40	AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9 AVD AN1/PGA1N3/RP57/RC9 EXTREF2/AN10/PGA1P4/RP58/RC10 VDD VSS AN8/CMP4C/PGA2P4/RP49/RC1 OSC2/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1 OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2 PGED2/DACOUT1/AN18/INT0/RP35/RB3 PGEC2/ADTRG31/RP36/RB4 EXTREF1/AN9/CMP4D/RP50/RC2 ASDA1/RP55/RC7 ASSCL1/RP56/RC8 VbD


Legend: Shaded pins are up to 5 VDC tolerant. RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.

Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-n (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default Oscillator mode for an unprogrammed (erased) device.

9.2 Auxiliary Clock Generation

The auxiliary clock generation is used for peripherals that need to operate at a frequency unrelated to the system clock, such as PWM or ADC.

The primary oscillator and internal FRC oscillator sources can be used with an Auxiliary PLL (APLL) to obtain the auxiliary clock. The Auxiliary PLL has a fixed 16x multiplication factor.

The auxiliary clock has the following configuration restrictions:

- For proper PWM operation, auxiliary clock generation must be configured for 120 MHz (see Parameter OS56 in Section 30.0 "Electrical Characteristics"). If a slower frequency is desired, the PWM Input Clock Prescaler (Divider) Select bits (PCLKDIV<2:0>) should be used.
- To achieve 1.04 ns PWM resolution, the auxiliary clock must use the 16x Auxiliary PLL (APLL). All other clock sources will have a minimum PWM resolution of 8 ns.
- If the primary PLL is used as a source for the auxiliary clock, the primary PLL should be configured up to a maximum operation of 30 MIPS or less.

9.3 Reference Clock Generation

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin. The user application can specify a wide range of clock scaling prior to outputting the reference clock.

9.4 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

9.4.1 KEY RESOURCES

- "Oscillator Module" (DS70005131) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER	9-0. KEFU	CON. REFER	LENCE USC	ILLATOR CO		ISTER	
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15		•		•	•	•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
 bit 7	_	_		_	_	_	bit (
Legend:							
R = Readabl	le bit	W = Writable I	pit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15 bit 14	1 = Reference 0 = Reference	ence Oscillator e oscillator outp e oscillator outp ted: Read as '0	ut is enabled o ut is disabled		2)		
bit 13	-	ference Oscilla		an hit			
bit 15	1 = Reference	e oscillator outp oscillator outp	ut continues to	run in Sleep			
bit 12	1 = Oscillator	rence Oscillato crystal is used ock is used as	as the referen	ce clock			
bit 11-8	1111 = Refer 1110 = Refer 1101 = Refer 100 = Refer 1011 = Refer 1010 = Refer 1001 = Refer 000 = Refer 0111 = Refer 0110 = Refer 0101 = Refer 0101 = Refer 0101 = Refer 0101 = Refer 0100 = Refer 0100 = Refer	Reference Ose ence clock dividence clock	ded by 32,768 ded by 16,384 ded by 8,192 ded by 4,096 ded by 2,048 ded by 1,024 ded by 512 ded by 512 ded by 256 ded by 128 ded by 64 ded by 32 ded by 16 ded by 8 ded by 4	bits ⁽¹⁾			
bit 7-0	Unimplement	ted: Read as 'o)'				

REGISTER 9-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.6 "Peripheral Pin Select (PPS)" for more information.

REGISTER 9-7: LFSR: LINEAR FEEDBACK SHIFT REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				LFSR<14:8>	,		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LFS	R<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15 Unimplemented: Read as '0'

bit 14-0 LFSR<14:0>: Pseudorandom Data bits

REGISTER 11-7: CNPDx: INPUT CHANGE NOTIFICATION PULL-DOWN ENABLE x REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPD>	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPD	x<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **CNPDx<15:0>:** Input Change Notification Pull-Down Enable x bits 1 = Enables pull-down on PORTx pin 0 = Disables pull-down on PORTx pin

Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

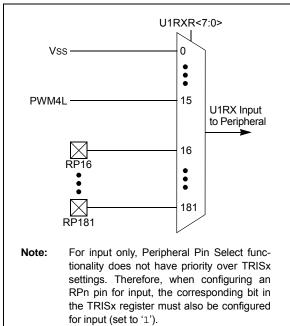
REGISTER 11-8: ANSELX: ANALOG SELECT CONTROL x REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			ANS	<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			ANS	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	= Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow				nown		

bit 15-8 ANSx<15:0>: Analog PORTx Enable bits

1 = Enables analog PORTx pin

0 = Disables digital PORTx pin


Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

11.6.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-9 through Register 11-32). Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit index value maps the RPn pin with the corresponding value, or internal signal, to that peripheral. See Table 11-11 for a list of available inputs.

For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

11.6.4.1 Virtual Connections

The dsPIC33EPXXXGS70X/80X devices support six virtual RPn pins (RP176-RP181), which are identical in functionality to all other RPn pins, with the exception of pinouts. These six pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP176 and the PWM Fault input can be configured for RP176 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

Remap Index	Output Function				
0	Vss				
1	CMP1				
2	CMP2				
3	CMP3				
4	CMP4				
5	PWM4H				
6	PTGO30				
7	PTGO31				
8-11	Reserved				
12	REFO				
13	SYNCO1				
14	SYNCO2				
15	PWM4L				
16-20	RP16-RP20				
21-31	Reserved				
32-41	RP32-RP41				
42	Reserved				
43-58	RP43-RP58				
59	Reserved				
60-76	RP60-RP76				
77-175	Reserved				
176-181	RP176-RP181				

TABLE 11-11: REMAPPABLE SOURCES

11.7 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 30-11 under "Injection Current", have internal protection diodes to VDD and VSs. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the VSs and VDD supplies. Note that when the user application forward biases either of the high or low-side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and VSs power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins, by default, after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers (i.e., ANSELx) in the I/O ports module by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1; this indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristics specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the Absolute Maximum Ratings in Section 30.0 "Electrical Characteristics" of this data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in **Section 31.0 "DC and AC Device Characteristics Graphs"** for additional information.

REGISTER 11-21: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	-	—
bit 15				•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SS1R7	SS1R6	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7			·		·		bit 0

Legend:					
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **SS1R<7:0>:** Assign SPI1 Slave Select (SS1) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

REGISTER 11-22: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

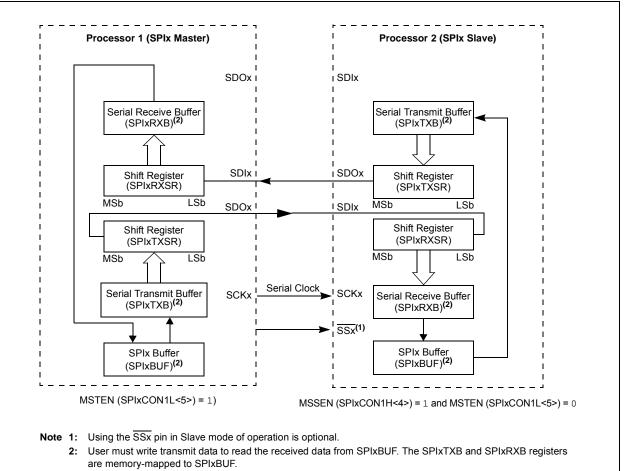
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						

bit 15-8SCK2INR<7:0>: Assign SPI2 Clock Input (SCK2) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.bit 7-0SDI2R<7:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits

See Table 11-11 which contains a list of remappable inputs for the index value.

17.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Peripheral Trigger Generator (PTG)" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.


17.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex, high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "Steps", that the user writes to the PTG Queue register (PTGQUE0-PTQUE15) which performs operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple Clock Sources
- Two 16-Bit General Purpose Timers
- Two 16-Bit General Limit Counters
- Configurable for Rising or Falling Edge Triggering
- Generates Processor Interrupts to include:
 - Four configurable processor interrupts
 - Interrupt on a Step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to Receive Trigger Signals from these Peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Comparator
 - INT2
- Able to Trigger or Synchronize to these Peripherals:
- Watchdog Timer
- Output Compare
- Input Capture
- ADC
- PWM
- Comparator

REGISTER 22-26: ADTRIGXL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW

(x = 0 to 5)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—		TRO	GSRC(4x+1)<4:0)>	
bit 15							bit 8
r							
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	—		TR	GSRC(4x)<4:0	>	
bit 7							bit 0
Leaend:							

Leaend:

bit

bit

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

12-8	TRGSRC(4x+1)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits
	11111 = ADTRG31
	11110 = PTG Trigger Output 12
	11101 = PWM Generator 6 current-limit trigger
	11100 = PWM Generator 5 current-limit trigger
	11011 = PWM Generator 4 current-limit trigger
	11010 = PWM Generator 3 current-limit trigger
	11001 = PWM Generator 2 current-limit trigger
	11000 = PWM Generator 1 current-limit trigger
	10111 = Output Compare 2 trigger
	10110 = Output Compare 1 trigger
	10101 = CLC2 output
	10100 = PWM Generator 6 secondary trigger
	10011 = PWM Generator 5 secondary trigger
	10010 = PWM Generator 4 secondary trigger
	10001 = PWM Generator 3 secondary trigger
	10000 = PWM Generator 2 secondary trigger
	01111 = PWM Generator 1 secondary trigger
	01110 = PWM secondary Special Event Trigger
	01101 = Timer2 period match
	01100 = Timer1 period match
	01011 = CLC1 output
	01010 = PWM Generator 6 primary trigger
	01001 = PWM Generator 5 primary trigger
	01000 = PWM Generator 4 primary trigger
	00111 = PWM Generator 3 primary trigger
	00110 = PWM Generator 2 primary trigger
	00101 = PWM Generator 1 primary trigger
	00100 = PWM Special Event Trigger
	00011 = Reserved
	00010 = Level software trigger
	00001 = Common software trigger
	00000 = No trigger is enabled
7-5	Unimplemented: Read as '0'

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
74	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
75	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
76	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
78	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG - f - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
79	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
80	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
81	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
82	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
83	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
84	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
85	XOR	XOR	f	f = f.XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
86	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

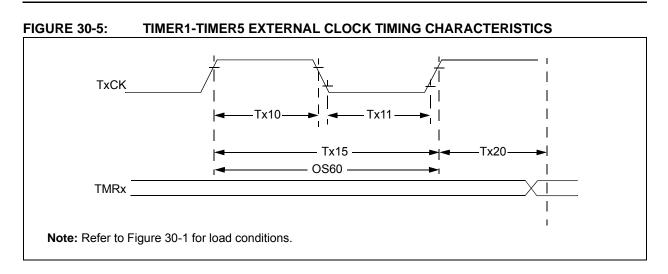
TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions						
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	0.8 — 8.0 MHz E			ECPLL, XTPLL modes		
OS51	Fvco	On-Chip VCO System Frequency	120	—	340	MHz			
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9 1.5 3.1 ms						
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%			

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$


For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS Standard Operating				herwise	stated) ure -40°	C ≤ TA ≤ +	+85°C fo	r Industrial or Extended
Param No.	Symbol	Characteris	tic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS56	Fhpout	On-Chip 16x PLL CC Frequency	^O	112	118	120	MHz	
OS57	Fhpin	On-Chip 16x PLL Phase Detector Input Frequency		7.0	7.37	7.5	MHz	
OS58	Tsu	Frequency Generator Lock Time		_	—	10	μs	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charao	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions	
TA10	T⊤xH	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = Prescale Value (1, 8, 64, 256)	
			Asynchronous mode	35	_	—	ns		
TA11	ТтхL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = Prescale Value (1, 8, 64, 256)	
			Asynchronous mode	10		—	ns		
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = Prescale Value (1, 8, 64, 256)	
OS60	Ft1		ange (oscillator etting bit, TCS	DC		50	kHz		
TA20	TCKEXTMRL	· · · · · · · · · · · · · · · · · · ·		0.75 Tcy + 40		1.75 Tcy + 40	ns		

TABLE 30-24: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A timer.

2: These parameters are characterized but not tested in manufacturing.

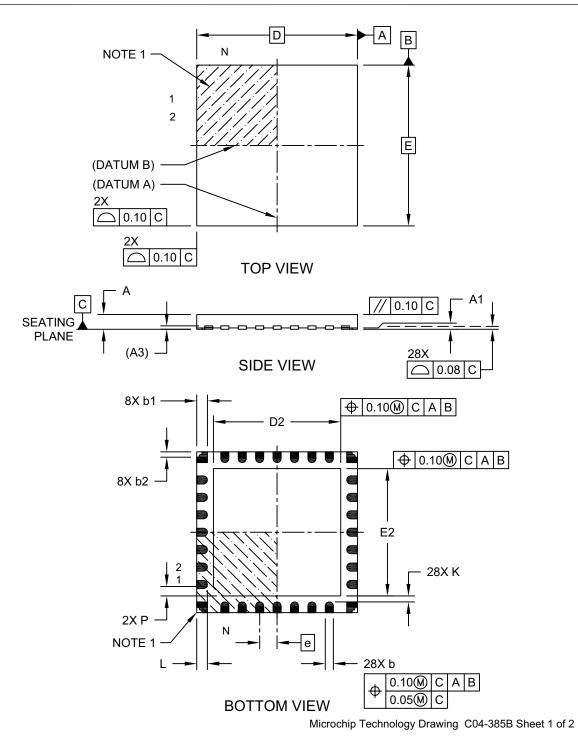
AC CH	ARACTE	RISTICS	$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(2)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array} $					
Param No.	Symbol	Characteristics	Min. Typ. ⁽¹⁾ Max. Units Conditions					
				Clo	ck Para	meters		
AD50	Tad	ADC Clock Period	14.28	_	_	ns		
				Thr	oughpu	ut Rate		
AD51	Ftp	SH0-SH3	_	_	3.25		70 MHz ADC clock, 12 bits, no pending	
		SH4	_	—	3.25	Msps	conversion at time of trigger	

TABLE 30-53: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

TABLE 30-54: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS


AC/DC	CHARACT	TERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(2)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max. Units			Comments	
CM10	VIOFF	Input Offset Voltage	-35	±5	35	mV		
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	0	—	AVDD	V		
CM13	CMRR	Common-Mode Rejection Ratio	60	—	—	dB		
CM14	TRESP	Large Signal Response		15	_	ns	V+ input step of 100 mV while V- input is held at AVDD/2. Delay measured from analog input pin to PWMx output pin.	
CM15	VHYST	Input Hysteresis	5	10	20	mV	Depends on HYSSEL<1:0>	
CM16	TON	Comparator Enabled to Valid Output	_	—	1	μs		

Note 1: These parameters are for design guidance only and are not tested in manufacturing.

2: The comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

		Examples: dsPIC33EP64GS804-I/PT: dsPIC33, Enhanced Performance, 64-Kbyte Program Memory, SMPS, 44-Pin, Industrial Temperature, TQFP Package.
	(if applicable)	
Package		
Pattern		
Architecture:	33 = 16-Bit Digital Signal Controller	
Flash Memory Family:	EP = Enhanced Performance	
Product Group:	GS = SMPS Family	
Pin Count:	02 = 28-pin 04 = 44-pin 05 = 48-pin 06 = 64-pin 08 = 80-pin	
Temperature Range:	$ \begin{array}{rcl} I &=& -40^\circ C \text{ to } +85^\circ C \text{ (Industrial)} \\ E &=& -40^\circ C \text{ to } +125^\circ C \text{ (Extended)} \end{array} $	
Package:	ML = Plastic Quad, No Lead Package – (44-pin) 8x8 mm body (QFN) MM = Plastic Quad, No Lead Package – (28-pin) 6x6 mm body (QFN-S) 2N = Plastic Quad Flat, No Lead Package – (28-pin) 6x6 mm body (UQFN) PT = Plastic Thin Quad Flatpack – (44-pin) 10x10 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (48-pin) 7x7 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (80-pin) 12x12 mm body (TQFP) SO = Plastic Small Outline, Wide – (28-pin) 7.50 mm body (SOIC)	