

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs805-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	
9.0	Oscillator Configuration	103
10.0	Power-Saving Features	115
11.0	I/O Ports	125
12.0	Timer1	
13.0	Timer2/3 and Timer4/5	173
14.0	Input Capture	177
15.0	Output Compare	
16.0	High-Speed PWM	
17.0	Peripheral Trigger Generator (PTG) Module	
18.0	Serial Peripheral Interface (SPI)	
19.0	Inter-Integrated Circuit (I ² C)	
20.0	Universal Asynchronous Receiver Transmitter (UART)	
21.0	Configurable Logic Cell (CLC)	
22.0	High-Speed, 12-Bit Analog-to-Digital Converter (ADC)	
23.0	Controller Area Network (CAN) Module (dsPIC33EPXXXGS80X Devices Only)	
24.0	High-Speed Analog Comparator	
25.0	Programmable Gain Amplifier (PGA)	
26.0	Constant-Current Source	
27.0	Special Features	
28.0	Instruction Set Summary	
29.0	Development Support	
30.0	Electrical Characteristics	
31.0	DC and AC Device Characteristics Graphs	435
32.0	Packaging Information	
Appe	endix A: Revision History	
Index	Χ	
The I	Microchip Web Site	
Custo	omer Change Notification Service	
Custo	omer Support	
Prod	uct Identification System	

3.7 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

_						_	
R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽²	²⁾ R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽¹⁾	IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	RA	N	OV	Z	С
bit 7							bit 0
Legend:		C = Clearable	e bit				
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value	at POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	OA: Accumul	ator A Overflov	v Status bit				
	1 = Accumula	tor A has over	flowed				
bit 1/		ator B Overflov	v Status bit				
511 14	1 = Accumula	ator B has over					
	0 = Accumula	tor B has not c	verflowed				
bit 13	SA: Accumula	ator A Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾			
	1 = Accumula	ator A is saturat	ted or has bee	en saturated at	some time		
	0 = Accumula	tor A is not sat	urated				
bit 12	SB: Accumula	ator B Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾			
	1 = Accumula	tor B is satural	ted or has bee	en saturated at	some time		
		ator B is not sat	urated				
bit 11		B Combined A	ccumulator O	verflow Status	bit		
	1 = Accumula 0 = Neither A	itor A or B has	overflowed	owed			
hit 10		B Combined A	cumulator 'Si	ticky' Status bit			
	1 = Accumula	ator A or B is se	aturated or ha	s been saturat	ed at some time		
	0 = Neither A	ccumulator A o	or B is saturate	ed			
bit 9	DA: DO Loop	Active bit					
	1 = DO loop is	in progress					
	0 = DO loop is	not in progres	S				
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit				
	1 = A carry-o	ut from the 4th	low-order bit (for byte-sized of	data) or 8th low-	order bit (for wo	ord-sized data)
	0 = No carry	out from the 4	th low-order l	nit (for hyte-siz	red data) or 8th	low-order bit (f	for word-sized
	data) of t	he result occur	red				
Note 4-		010 000)			orrupt Duiouit -
NOTE 1:	l evel. The value in	are concatenal parentheses i	ndicates the I	PL if IPI <3> =	= 1. User interru	nt the CPU INto	d when
	IPL<3> = 1.			,0/	eeer monu		
2:	The IPL<2:0> State	us bits are read	d-only when th	ne NSTDIS bit	(INTCON1<15>) = 1.	

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PORTA			ANSELB	E1E	0000001011101111	CNPDD	E3C	000000000000000000
TRISA	E00	000000000011111	PORTC			ANSELD	E3E	0110000110100000
PORTA	E02	00000000000000000	TRISC	E20	0111011111111111	PORTE		
LATA	E04	00000000000000000	PORTC	E22	000000000000000000	TRISE	E40	111111111111111111
ODCA	E06	00000000000000000	LATC	E24	000000000000000000	PORTE	E42	0000000000000000000
CNENA	E08	00000000000000000	ODCC	E26	000000000000000000	LATE	E44	0000000000000000000
CNPUA	E0A	00000000000000000	CNENC	E28	000000000000000000	ODCE	E46	0000000000000000000
CNPDA	E0C	000000000000000000	CNPUC	E2A	000000000000000000	CNENE	E48	0000000000000000000
ANSELA	E0E	000000000000111	CNPDC	E2C	000000000000000000000000000000000000000	CNPUE	E4A	000000000000000000000000000000000000000
PORTB			ANSELC	E2E	0001011001110111	CNPDE	E4C	000000000000000000
TRISB	E10	011110111111111	PORTD			ANSELE	E4E	1100000100000000
PORTB	E12	000000000000000000	TRISD	E30	111111111111111111	CPU		
LATB	E14	000000000000000000	PORTD	E32	000000000000000000	VISI	F88	000000000000000000
ODCB	E16	000000000000000000	LATD	TD E34 00000000000000000		JTAG		
CNENB	E18	000000000000000000	ODCD	E36	000000000000000000	JDATAH	FF0	000000000000000000
CNPUB	E1A	000000000000000000000000000000000000000	CNEND	E38	000000000000000000000000000000000000000	JDATAL	FF2	000000000000000000000000000000000000000
CNPDB	E1C	000000000000000000	CNPUD	E3A	000000000000000000			

TABLE 4-15: SFR BLOCK E00h-F00h

Legend: x = unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.

TABLE 7-1: INTERRUPT VECTOR DETAILS

Internet Ocurre	Vector	IRQ		In	terrupt Bit Lo	ocation
	#	#	IVI Address	Flag	Enable	Priority
		Highest N	latural Order Priority			
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0> INT0IF	IEC0<0> INT0IE	IPC0<2:0> INT0IP<2:0>
IC1 – Input Capture 1	9	1	0x000016	IFS0<1> IC1IF	IEC0<1> IC1IE	IPC0<6:4> IC1IP<2:0>
OC1 – Output Compare 1	10	2	0x000018	IFS0<2> OC1IF	IEC0<2> OC1IE	IPC0<10:8> OC1IP<2:0>
T1 – Timer1	11	3	0x00001A	IFS0<3> T1IF	IEC0<3> T1IE	IPC0<14:12> T1IP<2:0>
DMA0 – DMA Channel 0	12	4	0x00001C	IFS0<4> DMA0IF	IEC0<4> DMA0IE	IPC1<2:0> DMA0IP<2:0>
IC2 – Input Capture 2	13	5	0x00001E	IFS0<5> IC2IF	IEC0<5> IC2IE	IPC1<6:4> IC2IP<2:0>
OC2 – Output Compare 2	14	6	0x000020	IFS0<6> OC2IF	IEC0<6> OC2IE	IPC1<10:8> OC2IP<2:0>
T2 – Timer2	15	7	0x000022	IFS0<7> T2IF	IEC0<7> T2IE	IPC1<14:12> T2IP<2:0>
T3 – Timer3	16	8	0x000024	IFS0<8> T3IF	IEC0<8> T3IE	IPC2<2:0> T3IP<2:0>
SPI1TX – SPI1 Transfer Done	17	9	0x000026	IFS0<9> SPI1TXIF	IEC0<9> SPI1TXIE	IPC2<6:4> SPI1TXIP<2:0>
SPI1RX – SPI1 Receive Done	18	10	0x000028	IFS0<10> SPI1RXIF	IEC0<10> SPI1RXIE	IPC2<10:8> SPI1RXIP<2:0>
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11> U1RXIF	IEC0<11> U1RXIE	IPC2<14:12> U1RXIP<2:0>
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12> U1TXIF	IEC0<12> U1TXIE	IPC3<2:0> U1TXIP<2:0>
ADC – ADC Global Convert Done	21	13	0x00002E	IFS0<13> ADCIF	IEC0<13> ADCIE	IPC3<6:4> ADCIP<2:0>
DMA1 – DMA Channel 1	22	14	0x000030	IFS0<14> DMA1IF	IEC0<14> DMA1IE	IPC3<10:8> DMA1IP<2:0>
NVM – NVM Write Complete	23	15	0x000032	IFS0<15> NVMIF	IEC0<15> NVMIE	IPC3<14:12> NVMIP<2:0>
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0> SI2C1IF	IEC1<0> SI2C1IE	IPC4<2:0> SI2C1IP<2:0>
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1> MI2C1IF	IEC1<1> MI2C1IE	IPC4<6:4> MI2C1IP<2:0>
AC1 – Analog Comparator 1 Interrupt	26	18	0x000038	IFS1<2> AC1IF	IEC1<2> AC1IE	IPC4<10:8> AC1IP<2:0>
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3> CNIF	IEC1<3> CNIE	IPC4<14:12> CNIP<2:0>
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4> INT1IF	IEC1<4> INT1IE	IPC5<2:0> INT1IP<2:0>
Reserved	29-31	21-23	0x00003E-0x000043	_	—	—
DMA2 – DMA Channel 2	32	24	0x00044	IFS1<8> DMA2IF	IEC1<8> DMA2IE	IPC6<2:0> DMA2IP<2:0>
OC3 – Output Compare 3	33	25	0x000046	IFS1<9> OC3IF	IEC1<9> OC3IE	IPC6<6:4> OC3IP<2:0>
OC4 – Output Compare 4	34	26	0x000048	IFS1<10> OC4IF	IEC1<10> OC4IE	IPC6<10:8> OC4IP<2:0>

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
	_	—	—	—	_	_	NAE	
bit 15		•					bit 8	
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	
—	—	—	DOOVR	_	—	_	APLL	
bit 7		•	•				bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-9	Unimplemer	ted: Read as	0'					
bit 8	NAE: NVM A	ddress Error S	oft Trap Status	s bit				
	1 = NVM add	ress error soft	trap has occur	red				
	0 = NVM add	ress error soft	trap has not o	ccurred				
bit 7-5	Unimplemer	ted: Read as '	0'					
bit 4	DOOVR: DO Stack Overflow Soft Trap Status bit							
	1 = DO stack	overflow soft tr	ap has occurre	ed				
	0 = DO stack overflow soft trap has not occurred							

- bit 3-1 Unimplemented: Read as '0'
- bit 0 APLL: Auxiliary PLL Loss of Lock Soft Trap Status bit
 - 1 = APLL lock soft trap has occurred
 - 0 = APLL lock soft trap has not occurred

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15	bit 15 bit								
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
—	—	—	—	—	—	—	SGHT		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown				

bit 15-1 Unimplemented: Read as '0'

SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

bit 0

9.1 CPU Clocking System

The dsPIC33EPXXXGS70X/80X family of devices provides six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (FRCPLL)
- FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL (XTPLL, HSPLL, ECPLL)
- Low-Power RC (LPRC) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.

EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Figure 9-2 is a block diagram of the PLL module. Equation 9-2 provides the relationship between Input Frequency (FIN) and Output Frequency (FPLLO). Equation 9-3 provides the relationship between Input Frequency (FIN) and VCO Frequency (FVCO).

EQUATION 9-2: FPLLO CALCULATION

$$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{PLLDIV < 8:0 > + 2}{(PLLPRE < 4:0 > + 2) \times 2(PLLPOST < 1:0 > + 1)}\right)$$

Where:

N1 = PLLPRE < 4:0 > +2

N2 = 2 x (PLLPOST < 1:0 > +1)

M = PLLDIV < 8:0 > +2

EQUATION 9-3: Fvco CALCULATION

$$F_{VCO} = F_{IN} \times \left(\frac{M}{N1}\right) = F_{IN} \times \left(\frac{PLLDIV < 8:0 > +2}{(PLLPRE < 4:0 > +2)}\right)$$

9.5 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSC0 ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
CLKLOCK	IOLOCK	LOCK	—	CF ⁽³⁾	—	—	OSWEN
bit 7							bit 0

Legend:	y = Value set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits (read-only) 111 = Fast RC Oscillator (FRC) with Divide-by-n 110 = Fast RC Oscillator (FRC) with Divide-by-16 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved 011 = Primary Oscillator (XT, HS, EC) with PLL 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾
	<pre>111 = Fast RC Oscillator (FRC) with Divide-by-n 110 = Fast RC Oscillator (FRC) with Divide-by-16 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved</pre>
	011 = Primary Oscillator (XT, HS, EC) with PLL 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)
bit 7	CLKLOCK: Clock Lock Enable bit
	 1 = If (FCKSM0 = 1), then clock and PLL configurations are locked; if (FCKSM0 = 0), then clock and PLL configurations may be modified 0 = Clock and PLL selections are not locked, configurations may be modified
bit 6	IOLOCK: I/O Lock Enable bit
Site	1 = I/O lock is active 0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit (read-only)
	 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
Note 1:	Writes to this register require an unlock sequence.
2:	Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
2.	This hit should only be cleared in software. Setting the hit in software $(= 1)$ will have the same effect as an

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0		
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0		
bit 15							bit 8		
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PLLPOST	1 PLLPOST0		PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0		
bit 7							bit 0		
Legend:									
R = Reada	ble bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	ROI: Recover 1 = Interrupts 0 = Interrupts	on Interrupt bi will clear the Deshave no effect	t OZEN bit and t on the DOZE	he processor clo N bit	ock, and the pe	ripheral clock ra	atio is set to 1:1		
DIL 14-12	111 = FCY div 110 = FCY div 101 = FCY div 100 = FCY div 011 = FCY div 010 = FCY div 010 = FCY div 001 = FCY div 000 = FCY div	DOZE<2:0>: Processor Clock Reduction Select bits ⁽¹⁾ 111 = Fcy divided by 128 110 = Fcy divided by 64 101 = Fcy divided by 32 100 = Fcy divided by 16 011 = Fcy divided by 8 (default) 010 = Fcy divided by 4 001 = Fcy divided by 2							
bit 11	DOZEN: Doz 1 = DOZE<2: 0 = Processo	e Mode Enable 0> field specifie r clock and peri	bit ^(2,3) s the ratio bet pheral clock ra	ween the peripl atio is forced to	heral clocks an 1:1	d the processo	r clocks		
bit 10-8	FRCDIV<2:0: 111 = FRC di 110 = FRC di 101 = FRC di 100 = FRC di 011 = FRC di 010 = FRC di 001 = FRC di 001 = FRC di	 0 = Processor clock and peripheral clock ratio is forced to 1:1 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 2 							
bit 7-6	PLLPOST<1: 11 = Output of 10 = Reserve 01 = Output of 00 = Output of	0>: PLL VCO (livided by 8 d livided by 4 (de livided by 2	Dutput Divider fault)	Select bits (also	o denoted as 'I	N2', PLL postso	caler)		
bit 5	Unimplemen	ted: Read as ')'						
Note 1:	The DOZE<2:0> DOZE<2:0> are in	bits can only be gnored.	written to whe	en the DOZEN	bit is clear. If D	OZEN = 1, any	/ writes to		
2:		when the ROI			uis. 2.0 - 000 cm	(attempt by us	or ooffware to		

3: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

11.5 I/O Port Control Registers

REGISTER 11-1: TRISX: PORTX DATA DIRECTION CONTROL REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRISx	<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRIS	x<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 TRISx<15:0>: PORTx Data Direction Control bits

1 = The pin is an input

0 = The pin is an output

Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

REGISTER 11-2: PORTx: I/O PORTx REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PORTX	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PORT	x<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 **PORTx<15:0>:** I/O PORTx bits

1 = The pin data is '1'

0 = The pin data is '0'

Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U2CTSR7 | U2CTSR6 | U2CTSR5 | U2CTSR4 | U2CTSR3 | U2CTSR2 | U2CTSR1 | U2CTSR0 |
| bit 15 | | | | | | | bit 8 |

REGISTER 11-19: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| U2RXR7 | U2RXR6 | U2RXR5 | U2RXR4 | U2RXR3 | U2RXR2 | U2RXR1 | U2RXR0 |
| bit 7 | • | | | | | • | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **U2CTSR<7:0>:** Assign UART2 Clear-to-Send (U2CTS) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

bit 7-0 **U2RXR<7:0>:** Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

REGISTER 11-20: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SCK1INR7 | SCK1INR6 | SCK1INR5 | SCK1INR4 | SCK1INR3 | SCK1INR2 | SCK1INR1 | SCK1INR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SDI1R7 | SDI1R6 | SDI1R5 | SDI1R4 | SDI1R3 | SDI1R2 | SDI1R1 | SDI1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **SCK1INR<7:0>:** Assign SPI1 Clock Input (SCK1) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

bit 7-0 **SDI1R<7:0>:** Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be Operated in Asynchronous Counter mode from an External Clock Source
- The External Clock Input (T1CK) can Optionally be Synchronized to the Internal Device Clock and the Clock Synchronization is Performed after the prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

• Timer mode

TABI F 12-1

- Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer1 Clock Source Select bit (TCS): T1CON<1>
- Timer1 External Clock Input Synchronization Select bit (TSYNC): T1CON<2>
- Timer1 Gated Time Accumulation Enable bit (TGATE): T1CON<6>

Timer control bit settings for different operating modes are provided in Table 12-1.

TIMER1 MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	х
Synchronous Counter	1	x	1
Asynchronous Counter	1	x	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

12.2 **Timer1 Control Register**

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON⁽¹⁾ _____ TSIDL ____ ____ bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 U-0 TSYNC⁽¹⁾ TCS⁽¹⁾ TGATE TCKPS1 TCKPS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TON: Timer1 On bit⁽¹⁾ 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as '0' bit 13 TSIDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-7 Unimplemented: Read as '0' bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:6401 = 1:800 = 1:1bit 3 Unimplemented: Read as '0' TSYNC: Timer1 External Clock Input Synchronization Select bit⁽¹⁾ bit 2 When TCS = 1: 1 = Synchronizes external clock input 0 = Does not synchronize external clock input When TCS = 0: This bit is ignored. bit 1 **TCS:** Timer1 Clock Source Select bit⁽¹⁾ 1 = External clock is from pin, T1CK (on the rising edge) 0 = Internal clock (FP) bit 0 Unimplemented: Read as '0' Note 1: When Timer1 is enabled in External Synchronous Counter mode (TCS = 1, TSYNC = 1, TON = 1), any

attempts by user software to write to the TMR1 register are ignored.

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - a) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 6. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

REGISTER 18-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPIEN		SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	CKP	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF
bit 7							bit 0
Legend:							
D - Doodoble	hit	M = M/ritoblo	hit	II – Unimplon	opted bit read	oo 'O'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 SPIEN: SPIx On bit

- 1 = Enables module
- 0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications

bit 14 Unimplemented: Read as '0'

- bit 13 SPISIDL: SPIx Stop in Idle Mode bit
 - 1 = Halts in CPU Idle mode
 - 0 = Continues to operate in CPU Idle mode

bit 12 **DISSDO:** Disable SDOx Output Port bit

1 = SDOx pin is not used by the module; pin is controlled by port function

0 = SDOx pin is controlled by the module

bit 11-10 MODE32 and MODE16: Serial Word Length Select bits^(1,4)

MODE32	MODE16	AUDEN	Communication
1	x		32-Bit
0	1	0	16-Bit
0	0		8-Bit
1	1		24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
1	0	1	32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	1	T	16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	0		16-Bit FIFO, 16-Bit Channel/32-Bit Frame

Note 1: When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.

- 2: When FRMEN = 1, SSEN is not used.
- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 23-6:	CXINTF: CANX INTERRUPT FLAG REGISTER
----------------	---

11-0	11-0	R-0	R-U	R-U	R-0	R-0	R-0
		TXBO	TXRP	RXRP	TXWAR	RXWAR	FWARN
bit 15		TABO	IADI	TOUDI	17007.00		bit 8
Sit TO							
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
bit 7		•		•			bit 0
Legend:		C = Writable b	oit, but only '0	' can be Writte	en to Clear bit		
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as ')')				
bit 13	TXBO: Transi	mitter in Error S	State Bus Off	bit			
	1 = Transmitter	er is in Bus Oπ er is not in Bus	State				
hit 12	TXRP. Transr	mitter in Error S	State Bus Pas	sive hit			
SR 12	1 = Transmitte	er is in Bus Pa	ssive state				
	0 = Transmitte	er is not in Bus	Passive state	9			
bit 11	RXBP: Receiv	ver in Error Sta	te Bus Passiv	/e bit			
	1 = Receiver	is in Bus Passi	ve state				
	0 = Receiver	is not in Bus Pa	assive state				
bit 10	TXWAR: Tran	nsmitter in Erro	r State Warnir	ng bit			
	1 = Transmitte	er is in Error W	arning state	4.0			
hit 0		er is not in Error S	r waming sta State Warning	hit			
bit 9	1 = Receiver is in Error Warning state						
	0 = Receiver	is not in Error V	Varning state				
bit 8	EWARN: Trar	nsmitter or Rec	eiver in Error	State Warning	ı bit		
	1 = Transmitte	er or receiver is	s in Error War	ning state			
	0 = Transmitte	er or receiver is	not in Error	Warning state			
bit 7	IVRIF: Invalid	Message Inter	rupt Flag bit				
	1 = Interrupt r	equest has occ	curred				
hit C		equest has not		aa hit			
DILO	1 = Interrupt r	wake-up Activi	ly interrupt Fi	ag bit			
	0 = Interrupt r	equest has occ	occurred				
bit 5	ERRIF: Error	Interrupt Flag I	pit (multiple so	ources in CxIN	ITF<13:8> reaist	ter)	
	1 = Interrupt r	equest has occ	curred			,	
	0 = Interrupt r	equest has not	occurred				
bit 4	Unimplemen	ted: Read as '	כי				
bit 3	FIFOIF: FIFO	Almost Full In	errupt Flag bi	it			
	1 = Interrupt r	equest has occ	curred				
hit 0		equest has not		a hit			
			v interrupt Fla	ig bit			
	1 = 11100000000000000000000000000000000	equest has occ	occurred				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	
bit 15-12	F7BP<3:0>: I 1111 = Filter 1110 = Filter • • • 0001 = Filter 0000 = Filter	RX Buffer Mash hits received ir hits received ir hits received ir hits received ir	c for Filter 7 b n RX FIFO but n RX Buffer 14 n RX Buffer 1 n RX Buffer 1 n RX Buffer 0	its fer l			

REGISTER 23-13: CxBUFPNT2: CANx FILTERS 4-7 BUFFER POINTER REGISTER 2

bit 11-8	F6BP<3:0>: RX Buffer Mask for Filter 6 bits ((same values as bits 15-12)

bit 7-4	F5BP<3:0>: RX Buffer Mask for Filter 5 bits ((same values as bits 15-12)
		· · · · · · · · · · · · · · · · · · ·

REGISTER 23-14: CxBUFPNT3: CANx FILTERS 8-11 BUFFER POINTER REGISTER 3

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| F11BP3 | F11BP2 | F11BP1 | F11BP0 | F10BP3 | F10BP2 | F10BP1 | F10BP0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	F11BP<3:0>: RX Buffer Mask for Filter 11 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14
	0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
bit 11-8	F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bits 15-12)
bit 7-4	F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bits 15-12)
bit 3-0	F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bits 15-12)

© 2016-2017 Microchip Technology Inc.

Bit Field	Description
FNOSC<2:0>	Oscillator Selection bits
	111 = Fast RC Oscillator with Divide-by-N (FRCDIVN)
	110 = Fast RC Oscillator with Divide-by-16
	101 = Low-Power RC Oscillator (LPRC)
	100 = Reserved; do not use
	011 = Primary Oscillator Will PLL Module (XT+PLL, HS+PLL, EC+PLL)
	001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL)
	000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits
	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
	00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit
	1 = Allows only one reconfiguration
OSCIOENC	OSC2 Pin Function bit (except in XT and HS modes)
	1 = OSC2 is the clock output
DODOMD 14 0	
POSCMD<1:0>	Primary Oscillator Mode Select bits
	11 = Primary Oscillator is disabled
	10 = 113 Crystal Oscillator mode
	00 = EC (External Clock) mode
WDTEN<1:0>	Watchdog Timer Enable bits
	11 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the
	SWDTEN bit in the RCON register will have no effect)
	10 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by
	01 = Watchdog Timer is enabled only while device is active and is disabled while in Sleep
	mode: software control is disabled in this mode
	00 = Watchdog Timer and SWDTEN bit are disabled
WINDIS	Watchdog Timer Window Enable bit
	1 = Watchdog Timer is in Non-Window mode
	0 = Watchdog Timer is in Window mode
PLLKEN	PLL Lock Enable bit
	1 = PLL lock is enabled
	0 = PLL lock is disabled
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1:32,768
	1110 = 1:10,384
	•
	•
	0001 = 1:2
	0000 = 1:1

TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
9	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
10	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
11	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
12	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
13	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
İ		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
14	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
15	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
16	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
17	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
18	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
19	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
20	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
21	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
22	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
23	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
24	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
25	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if \neq	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if \neq	1	1 (5)	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
48	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
49	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
50	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None
51	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
52	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
53	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
54	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

32.0 PACKAGING INFORMATION

32.1 Package Marking Information

28-Lead SOIC (7.50 mm)

28-Lead UQFN (6x6x0.55 mm)

28-Lead QFN-S (6x6x0.9 mm)

44-Lead TQFP (10x10x1 mm)

Example

Example

Example

Example

Legend	d: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	