

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs806-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Communication Interfaces

- Two UART modules (15 Mbps):
 - Supports LIN/J2602 protocols and IrDA®
- Three Variable Width SPI modules with Operating modes:
 - 3-wire SPI
 - 8x16 or 8x8 FIFO mode
 - I²S mode
- Two I²C modules (up to 1 Mbaud) with SMBus Support
- Up to Two CAN modules
- Four-Channel DMA

Input/Output

- Constant-Current Source (10 µA nominal)
- Sink/Source up to 12 mA/15 mA, respectively; Pin-Specific for Standard VOH/VOL
- 5V Tolerant Pins
- · Selectable, Open-Drain Pull-ups and Pull-Downs
- External Interrupts on all I/O Pins
- Peripheral Pin Select (PPS) to allow Function Remap with Six Virtual I/Os

Qualification and Class B Support

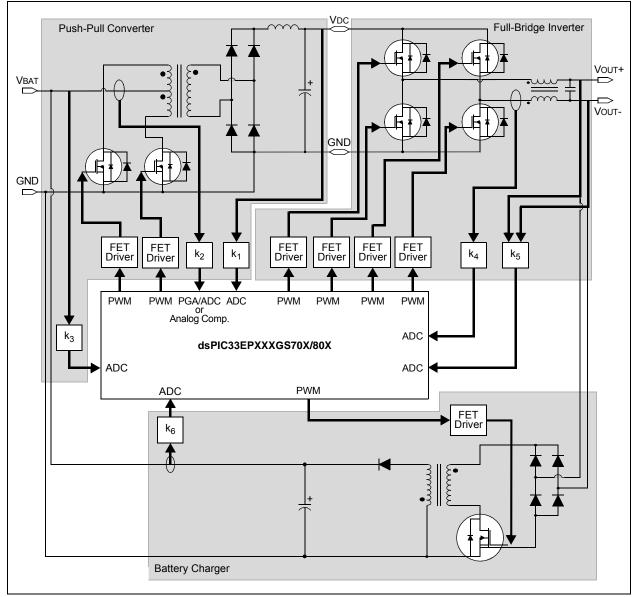
- AEC-Q100 REVG (Grade 1, -40°C to +125°C)
- Class B Safety Library, IEC 60730
- The 6x6x0.55 mm UQFN Package is Designed and Optimized to ease IPC9592B 2nd Level Temperature Cycle Qualification

Debugger Development Support

- In-Circuit and In-Application Programming
- Five Program and Three Complex Data Breakpoints
- IEEE 1149.2 Compatible (JTAG) Boundary Scan
- Trace and Run-Time Watch

Digital Peripherals

- Four Configurable Logic Cells
- Peripheral Trigger Generator


		rtes		(GPIO)		Re	ma	ppal	ole F	Perip	hera	als					12- A[-			r		Source	
Device	Pins	Program Memory Bytes	RAM (Bytes)	General Purpose I/O (Timers ⁽¹⁾	Input Capture	Output Compare	UART	IdS	PWM ⁽²⁾	External Interrupts ⁽³⁾	CAN	Reference Clock	1 ² C	CLC	ÐLd	Analog Inputs	S&H Circuits	V9d	AMA	Analog Comparator	DAC Output	Constant-Current Sou	Packages
dsPIC33EP128GS702	28	128K	8K	20	5	4	4	2	3	8x2	4	0	1	2	4	1	11	5	2	0	4	1	1	SOIC, QFN-S, UQFN
dsPIC33EP64GS804	44	64K	8K	33	5	4	4	2	3	8x2	4	2	1	2	4	1	17	5	2	4	4	1	1	
dsPIC33EP128GS704	44	128K	8K	33	5	4	4	2	3	8x2	4	0	1	2	4	1	17	5	2	0	4	1	1	QFN, TQFP
dsPIC33EP128GS804	44	128K	8K	33	5	4	4	2	3	8x2	4	2	1	2	4	1	17	5	2	4	4	1	1	i Qi i
dsPIC33EP64GS805	48	64K	8K	33	5	4	4	2	3	8x2	4	2	1	2	4	1	17	5	2	4	4	1	1	
dsPIC33EP128GS705	48	128K	8K	33	5	4	4	2	3	8x2	4	0	1	2	4	1	17	5	2	0	4	1	1	TQFP
dsPIC33EP128GS805	48	128K	8K	33	5	4	4	2	3	8x2	4	2	1	2	4	1	17	5	2	4	4	1	1	
dsPIC33EP64GS806	64	64K	8K	51	5	4	4	2	3	8x2	4	2	1	2	4	1	22	5	2	4	4	2	1	
dsPIC33EP128GS706	64	128K	8K	51	5	4	4	2	3	8x2	4	0	1	2	4	1	22	5	2	0	4	2	1	TQFP
dsPIC33EP128GS806	64	128K	8K	51	5	4	4	2	3	8x2	4	2	1	2	4	1	22	5	2	4	4	2	1	
dsPIC33EP64GS708	80	64K	8K	67	5	4	4	2	3	8x2	4	0	1	2	4	1	22	5	2	0	4	2	1	
dsPIC33EP64GS808	80	64K	8K	67	5	4	4	2	3	8x2	4	2	1	2	4	1	22	5	2	4	4	2	1	TQFP
dsPIC33EP128GS708	80	128K	8K	67	5	4	4	2	3	8x2	4	0	1	2	4	1	22	5	2	0	4	2		IQFP
dsPIC33EP128GS808	80	128K	8K	67	5	4	4	2	3	8x2	4	2	1	2	4	1	22	5	2	4	4	2	1	

Note 1: The external clock for Timer1, Timer2 and Timer3 is remappable.

2: PWM4 through PWM8 are remappable on 28/44/48-pin devices; on 64-pin devices, only PWM7/PWM8 are remappable.

3: External interrupts, INT0 and INT4, are not remappable.

FIGURE 2-6: OFF-LINE UPS

4.6.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions, and the DSP accumulator class of instructions, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal
 - **Note:** Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.6.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the MAC class of instructions:

- Register Indirect
- · Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.6.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

4.7 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.7.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-2).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.7.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W (XWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-2). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W (YWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit (MODCON<14>) is set.

FIGURE 4-10: MODULO ADDRESSING OPERATION EXAMPLE

Byte Address 0x1100		MOV MOV MOV	#0x1100, W0 W0, XMODSRT #0x1163, W0	;set modulo start address
0x1100		MOV	W0, MODEND #0x8001, W0	;set modulo end address
		MOV	W0, MODCON	;enable W1, X AGU for modulo
	♥ ()	MOV		
0x1163	\square	MOV	#0x1110, W1	;point W1 to buffer
		DO MOV	AGAIN, #0x31 W0, [W1++]	;fill the 50 buffer locations ;fill the next location
	Start Addr = 0x1100 End Addr = 0x1163 Length = 0x0032 words	AGAIN:	INC WO, WO	;increment the fill value

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER (CONTINUED)

- bit 3-0 NVMOP<3:0>: NVM Operation Select bits^(1,3,4)
 - 1111 = Reserved
 - .
- 0101 = Reserved
- 0100 = Inactive Partition memory erase operation
- 0011 = Memory page erase operation
- 0010 = Memory row program operation
- 0001 = Memory double-word program operation⁽⁵⁾
- 0000 = Reserved
- Note 1: These bits can only be reset on a POR.
 - 2: If this bit is set, power consumption will be further reduced (IIDLE) and upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes operational.
 - **3:** All other combinations of NVMOP<3:0> are unimplemented.
 - 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
 - 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.
 - 6: Only applicable when operating in Dual Partition mode.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS7000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGS70X/80X family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGS70X/80X family CPU.

The interrupt controller has the following features:

- Six Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies
- Alternate Interrupt Vector Table (AIVT) for Debug Support

7.1 Interrupt Vector Table

The dsPIC33EPXXXGS70X/80X family Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains six non-maskable trap vectors and up to 246 sources of interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-2, is available only when the Boot Segment is defined and the AIVT has been enabled. To enable the Alternate Interrupt Vector Table, the Configuration bit, AIVTDIS in the FSEC register, must be programmed and the AIVTEN bit must be set (INTCON2<8> = 1). When the AIVT is enabled, all interrupt and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment, defined by BSLIM<12:0>. The second half of the page is no longer usable space. The Boot Segment must be at least 2 pages to enable the AIVT.

Note: Although the Boot Segment must be enabled in order to enable the AIVT, application code does not need to be present inside of the Boot Segment. The AIVT (and IVT) will inherit the Boot Segment code protection.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGS70X/80X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

10.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

10.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

TABLE 11-1: PORTA PIN AND ANSELA AVAILABILITY

Device							PORT	a i/o	Pins							
Device	RA15	RA14	RA13	RA12	RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
dsPIC33EPXXXGSX08	_	—	—	—	_	_	_		—	_		Х	Х	Х	Х	Х
dsPIC33EPXXXGSX06				_	_	_	_	_	_	_	_	Х	Х	Х	Х	Х
dsPIC33EPXXXGSX05				_	_	_	_	_	_	_	_	Х	Х	Х	Х	Х
dsPIC33EPXXXGSX04					_	_	_	_		_	_	Х	Х	Х	Х	Х
dsPIC33EPXXXGS702					_	_	_	_		_	_	Х	Х	Х	Х	Х
ANSELA Bit Present				_										Х	Х	Х

TABLE 11-2: PORTB PIN AND ANSELB AVAILABILITY

Davias		PORTB I/O Pins														
Device	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
dsPIC33EPXXXGSX08	Х	Х	Х	Х	Х	_	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33EPXXXGSX06	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33EPXXXGSX05	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33EPXXXGSX04	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33EPXXXGS702	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ANSELB Bit Present	_	_			_		Х		Х	Х	Х		Х	Х	Х	Х

TABLE 11-3: PORTC PIN AND ANSELC AVAILABILITY

Deviee							PORT	C I/O	Pins							
Device	RC15	RC14	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
dsPIC33EPXXXGSX08	Х	Х	Х	Х	—	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33EPXXXGSX06	Х	Х	Х	Х	_	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33EPXXXGSX05	—	_	Х	Х	_	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33EPXXXGSX04	_	_	Х	Х	_	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33EPXXXGS702	—	_			_	_	_	_	_	—	_	_	_	—	—	
ANSELC Bit Present	—	_		Х	_	Х	Х			Х	Х	Х		Х	Х	—

TABLE 11-4: PORTD PIN AND ANSELD AVAILABILITY

Davias							PORT	D I/O	Pins							
Device	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
dsPIC33EPXXXGSX08	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33EPXXXGSX06	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33EPXXXGSX05	—	Х	_	_	_	Х	_	_	_	_	_	Х	_	_	_	_
dsPIC33EPXXXGSX04	_	Х				Х	_	_	_		_	Х	_	_	_	_
dsPIC33EPXXXGS702	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_
ANSELD Bit Present	—		Х			_	_	Х	Х		Х	_		Х	—	—

TABLE 11-5: PORTE PIN AND ANSELE AVAILABILITY

Device							PORT	E I/O I	Pins							
Device	RE15	RE14	RE13	RE12	RE11	RE10	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0
dsPIC33EPXXXGSX08	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33EPXXXGSX06	—	_	_	—	—	—	_	_	_	_	_	_	_	_	_	_
dsPIC33EPXXXGSX05	_	_	_	_		—		_	_	_		-	_	-	-	_
dsPIC33EPXXXGSX04	_							_		-						-
dsPIC33EPXXXGS702	_	_	_	_		_	_	_		_	_	_	_	_	_	_
ANSELE Bit Present	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_

11.6 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.6.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions.

11.6.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I^2C modules. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.6.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP53R6	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP52R6	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0	
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		

REGISTER 11-45: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

bit 15	Unimplemented: Read as '0'
bit 14-8	RP53R<6:0>: Peripheral Output Function is Assigned to RP53 Output Pin bits (see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'
bit 6-0	RP52R<6:0>: Peripheral Output Function is Assigned to RP52 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-46: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP55R6	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	RP54R6	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8		: Peripheral Ou -13 for periphe	•	•	RP55 Output F	Pin bits	

- bit 7 **Unimplemented:** Read as '0'
- RP54R<6:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits bit 6-0 (see Table 11-13 for peripheral function numbers)

REGISTER 17-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
Note 1:	This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and

2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

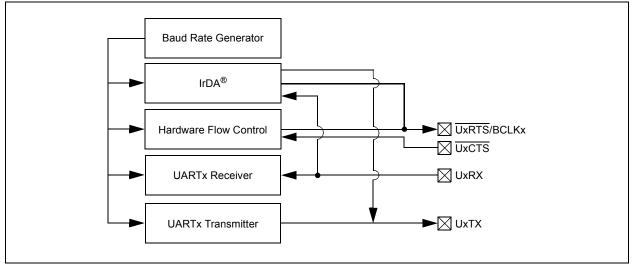
PTGSTRT = 1).

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGS70X/80X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGS70X/80X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.


The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps in 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps in 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 20-1. The UARTx module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UARTX SIMPLIFIED BLOCK DIAGRAM

	22-6: ADCC	NUSII. ADC C		GISTER 3 H	IGH				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CLKSEL1	CLKSEL0	CLKDIV5	CLKDIV4	CLKDIV3 CLKDIV2		CLKDIV1	CLKDIV0		
bit 15							bit 8		
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
SHREN	—	—	—	C3EN	C2EN	C1EN	C0EN		
bit 7							bit 0		
Legend:									
R = Readable		W = Writable	oit	•	nented bit, read				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN		
bit 15-14	11 = APLL 10 = FRC	>: ADC Module ystem Clock x 2 ystem Clock)		Selection bits					
bit 13-8	CLKDIV<5:0>: ADC Module Clock Source Divider bits The divider forms a TCORESRC clock used by all ADC cores (shared and dedicated) from the TSRC ADC module clock source selected by the CLKSEL<1:0> bits. Then, each ADC core individually divides the TCORESRC clock to get a core-specific TADCORE clock using the ADCS<6:0> bits in the ADCORExH register or the SHRADCS<6:0> bits in the ADCON2L register. 111111 = 64 Source Clock Periods								
	000010 = 3 S 000001 = 2 S	Source Clock Po Source Clock Po Source Clock Po Source Clock Po	eriods eriods						
bit 7	SHREN: Shared ADC Core Enable bit 1 = Shared ADC core is enabled 0 = Shared ADC core is disabled								
bit 6-4	Unimplement	ted: Read as 'd)'						
bit 3	C3EN: Dedicated ADC Core 3 Enable bits 1 = Dedicated ADC Core 3 is enabled 0 = Dedicated ADC Core 3 is disabled								
bit 2	C2EN: Dedicated ADC Core 2 Enable bits 1 = Dedicated ADC Core 2 is enabled 0 = Dedicated ADC Core 2 is disabled								
bit 1	C1EN: Dedicated ADC Core 1 Enable bits 1 = Dedicated ADC Core 1 is enabled 0 = Dedicated ADC Core 1 is disabled								
bit 0	1 = Dedicated	ated ADC Core I ADC Core 0 is I ADC Core 0 is	senabled						

REGISTER 22-6: ADCON3H: ADC CONTROL REGISTER 3 HIGH

U-0	U-0		R-0	R-0	R-0	R-0	R-0
	<u> </u>		FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
oit 15							bit 8
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
—	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0
oit 7							bit 0
egend:							
R = Readabl		W = Writable		-	mented bit, read		
n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN
oit 15-13	Unimplemen	ted: Read as '	٥'				
bit 12-8	-	Filter Hit Num					
Dit 12-0	10000-11111						
	01111 = Filte						
	•						
	•						
	00001 = Filte	r 1					
	00000 = Filte	r 0					
oit 7	Unimplemen	ted: Read as '	0'				
oit 6-0	ICODE<6:0>:	Interrupt Flag	Code bits				
		11111 = Resei					
		IFO almost full eceiver overflo					
		/ake-up interru					
	1000001 = E						
	1000000 = N	o interrupt					
	•						
	•	_					
		L1111 = Reser B15 buffer inte					
	•		παρι				
	•						
	•	B9 buffer inter	runt				
		B8 buffer inter	•				
		RB7 buffer inte					
		RB6 buffer inte					
		RB5 buffer inte RB4 buffer inte					
		RB3 buffer inte					
	0000010 = T	RB2 buffer inte	errupt				
		RB1 buffer inte RB0 buffer inte					
	0000000 = 11		inupt				

REGISTER 23-3: CxVEC: CANx INTERRUPT CODE REGISTER

DC CHARACTERISTICS		Standard Operating Co (unless otherwise state Operating temperature						
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	3.0	—	3.6	V		
D132b	VPEW	VDD for Self-Timed Write	3.0	—	3.6	V		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current during Programming ⁽²⁾	_	10	—	mA		
D136	IPEAK	Instantaneous Peak Current During Start-up	_	—	150	mA		
D137a	TPE	Page Erase Time	19.7	—	20.1	ms	TPE = 146893 FRC cycles, TA = +85°C (Note 3)	
D137b	TPE	Page Erase Time	19.5	—	20.3	ms	TPE = 146893 FRC cycles, Ta = +125°C (Note 3)	
D138a	Tww	Word Write Cycle Time	46.5	—	47.3	μs	Tww = 346 FRC cycles, Ta = +85°C (Note 3)	
D138b	Tww	Word Write Cycle Time	46.0	—	47.9	μs	Tww = 346 FRC cycles, Ta = +125°C (Note 3)	
D139a	Trw	Row Write Time	667	-	679	μs	Trw = 4965 FRC cycles, Ta = +85°C (Note 3)	
D139b	Trw	Row Write Time	660	-	687	μs	Trw = 4965 FRC cycles, Ta = +125°C (Note 3)	

TABLE 30-14: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Parameter characterized but not tested in manufacturing.

3: Other conditions: FRC = 7.37 MHz, TUN<5:0> = 011111 (for Minimum), TUN<5:0> = 100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 30-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

TABLE 30-23: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SY00	Tpu	Power-up Period	_	400	600	μS		
SY10	Тоѕт	Oscillator Start-up Time	—	1024 Tosc	_	—	Tosc = OSC1 period	
SY12	Twdt	Watchdog Timer Time-out Period	0.81	_	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-21) at +85°C	
			3.25	_	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-21) at +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS		
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μS		
SY30	TBOR	BOR Pulse Width (low)	1			μS		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C	
SY36	Tvreg	Voltage Regulator Standby-to-Active mode Transition Time	—	_	30	μS		
SY37	Toscdfrc	FRC Oscillator Start-up Delay	_	48	_	μS		
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	—	—	70	μS		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

TABLE 30-46:SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK3 Input Frequency	—	—	25	MHz	(Note 3)
SP72	TscF	SCK3 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK3 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO3 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO3 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO3 Data Output Valid after SCK3 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO3 Data Output Setup to First SCK3 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI3 Data Input to SCK3 Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI3 Data Input to SCK3 Edge	15	_	_	ns	
SP50	TssL2scH, TssL2scL	SS3 ↓ to SCK3 ↑ or SCK3 ↓ Input	120	-		ns	
SP51	TssH2doZ	SS3 ↑ to SDO3 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS3	1.5 TCY + 40	—		ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK3 is 91 ns. Therefore, the SCK3 clock generated by the master must not violate this specification.

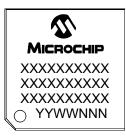
4: Assumes 50 pF load on all SPI3 pins.

5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.

32.0 PACKAGING INFORMATION

32.1 Package Marking Information

28-Lead SOIC (7.50 mm)


28-Lead UQFN (6x6x0.55 mm)

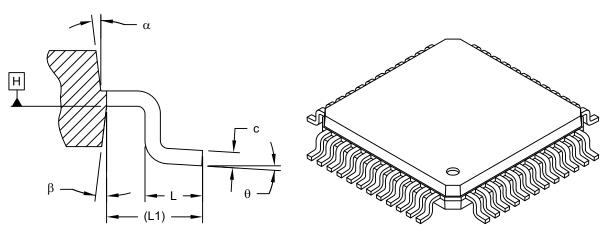
28-Lead QFN-S (6x6x0.9 mm)

44-Lead TQFP (10x10x1 mm)

Example

Example

Example


Example

Legei	nd: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Leads	N		48			
Lead Pitch	е		0.50 BSC			
Overall Height	Α	-	-	1.20		
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	¢	0° 3.5° 7°				
Overall Width	E	9.00 BSC				
Overall Length	D	9.00 BSC				
Molded Package Width	E1	7.00 BSC				
Molded Package Length	D1	7.00 BSC				
Lead Thickness	С	0.09	-	0.16		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11° 12° 13°				
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A-B and D to be determined at center line between leads where leads exit plastic body at datum plane

Microchip Technology Drawing C04-300-PT Rev A Sheet 2 of 2

INDEX

Α
Absolute Maximum Ratings
AC Characteristics
ADC Specifications
Analog Current Specifications
Analog-to-Digital Conversion Requirements
Auxiliary PLL Clock 389
CANx I/O Requirements 426
Capacitive Loading Requirements on
Output Pins
DMA Module Requirements 433
External Clock Requirements
High-Speed PWMx Requirements
I/O Requirements
I2Cx Bus Data Requirements (Master Mode)
I2Cx Bus Data Requirements (Slave Mode)
Input Capture x Requirements
Internal FRC Accuracy
Internal LPRC Accuracy
Load Conditions
OCx/PWMx Module Requirements
PLL Clock
Reset, WDT, OST, PWRT Requirements
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,
CKE = 0, CKP = x, SMP = 1) Requirements401
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,
CKE = 1, CKP = x, SMP = 1) Requirements400
SPI1, SPI2 and SPI3 Master Mode (Half-Duplex,
Transmit Only) Requirements
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,
CKE = 0, $CKP = 0$, $SMP = 0$) Requirements 409
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,
CKE = 0, CKP = 1, SMP = 0) Requirements 407
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,
CKE = 1, CKP = 0, SMP = 0) Requirements 403
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,
CKE = 1, CKP = 1, SMP = 0) Requirements 405
SPI3 Master Mode (Full-Duplex, CKE = 0,
CKP = x, SMP = 1) Requirements
SPI3 Master Mode (Full-Duplex, CKE = 1,
CKP = x, SMP = 1) Requirements
SPI3 Master Mode (Half-Duplex,
Transmit Only) Requirements
SPI3 Slave Mode (Full-Duplex, CKE = 0,
CKP = 0, SMP = 0) Requirements
SPI3 Slave Mode (Full-Duplex, CKE = 0,
CKP = 1, SMP = 0) Requirements
SPI3 Slave Mode (Full-Duplex, CKE = 1, $CKE = 0$, $CKE = 0$) Deputiements
CKP = 0, SMP = 0) Requirements
SPI3 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements
Temperature and Voltage Specifications
Timer1 External Clock Requirements
Timer2/Timer4 External Clock Requirements
Timer3/Timer5 External Clock Requirements
UARTx I/O Requirements
AC/DC Characteristics
DACx Specifications
High-Speed Analog Comparator Specifications
PGAx Specifications
Analog-to-Digital Converter. See ADC.
Arithmetic Logic Unit (ALU)

Assembler	
MPASM Assembler 372	
MPLAB Assembler, Linker, Librarian	
B	
B	
Bit-Reversed Addressing 56	
Example57	
Implementation	
Sequence Table (16-Entry) 57	
Block Diagrams	
16-Bit Timer1 Module 169	
ADC Module 274	
Addressing for Table Registers	
CALL Stack Frame	
CANx Module	
CLCx Input Source Selection	
CLCx Logic Function Combinatorial Options	
CLCx Module	
Connections for On-Chip Voltage Regulator	
Constant-Current Source	
CPU Core	
Data Access from Program Space	
Address Generation	
Dedicated ADC Cores 0-3 275	
DMA Controller 91	
dsPIC33EPXXGS70X/80X Family 11	
High-Speed Analog Comparator x 334	
High-Speed PWM Architecture 189	
Hysteresis Control 336	
I2Cx Module	
Input Capture x 177	
Interleaved PFC	
MCLR Pin Connections 16	
Multiplexing Remappable Outputs for RPn	
Off-Line UPS	
Oscillator System	
Output Compare x Module	
Peripheral to DMA Controller	
PGAx Functions	
PGAx Module	
Phase-Shifted Full-Bridge Converter	
PLL Module	
Programmer's Model	
PSV Read Address Generation	
PTG Module 214	
Recommended Minimum Connection 16	
Remappable Input for U1RX 136	
Reset System 69	
Security Segments for dsPIC33EP128GS70X/80X	
(Dual Partition Modes) 359	
Security Segments for dsPIC33EP64GS70X/80X	
(Dual Partition Modes) 358	
Security Segments for	
dsPIC33EPXXXGS70X/80X	
Shared ADC Core	
Shared Port Structure 125	
Simplified Conceptual of High-Speed PWM	
SPIx Master, Frame Master Connection	
SPIx Master, Frame Slave Connection	
SPlx Master/Slave Connection	
(Enhanced Buffer Modes)	
SPIx Master/Slave Connection (Standard Mode) 242	
SPIX Module (Enhanced Mode)	
SPIX Module (Enhanced Mode)	