

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

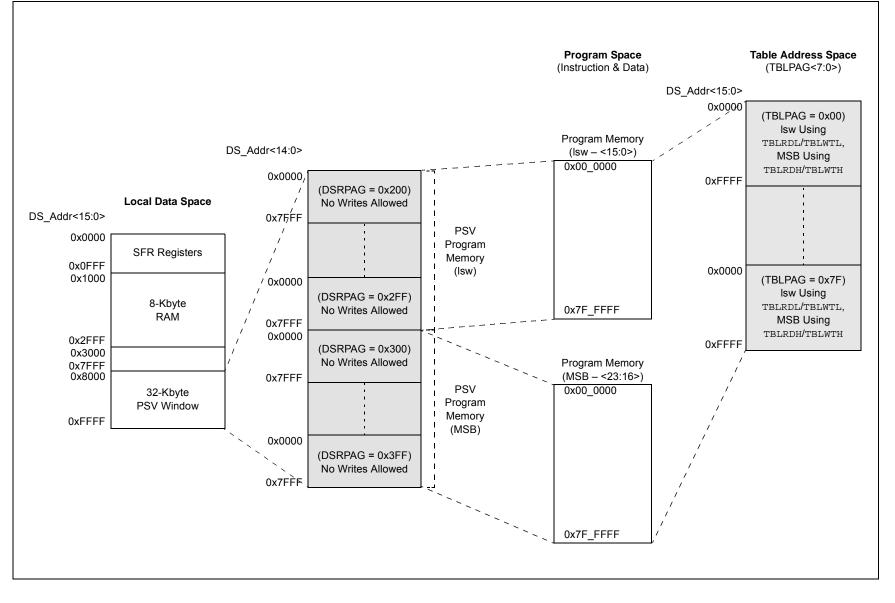
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2000.00	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	67
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs808-e-pt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

h:+ 7 C	$ \mathbf{p} \sim 2 \cdot \mathbf{p} \sim C \mathbf{p} $ Interment Driver in Level Contraction hits (1.2)
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress
	0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative
	0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that
	causes the sign bit to change state.
	1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
	0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	1 = An operation that affects the Z bit has set it at some time in the past
	0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority

- Iote 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
	_	—	_	_	_	—	NAE		
bit 15			•	•	•		bit 8		
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0		
_	_	—	DOOVR	—	_	—	APLL		
bit 7	•		•		•		bit (
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'			
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is cle	eared	x = Bit is unkr	x = Bit is unknown		
bit 15-9	Unimpleme	nted: Read as	'0'						
bit 8	NAE: NVM /	Address Error S	oft Trap Status	s bit					
	1 = NVM ad	dress error soft	trap has occur	rred					
	0 = NVM ad	dress error soft	trap has not o	ccurred					
bit 7-5	Unimpleme	nted: Read as	'0'						
bit 4	DOOVR: DO	Stack Overflow	/ Soft Trap Sta	tus bit					
	1 = DO stack	overflow soft tr	ap has occurr	ed					
	0 = DO stack	overflow soft tr	ap has not oc	curred					

- bit 3-1 Unimplemented: Read as '0'
- bit 0 APLL: Auxiliary PLL Loss of Lock Soft Trap Status bit
 - 1 = APLL lock soft trap has occurred
 - 0 = APLL lock soft trap has not occurred

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—		—		—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	SGHT
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-1 Unimplemented: Read as '0'

SGHT: Software Generated Hard Trap Status bit

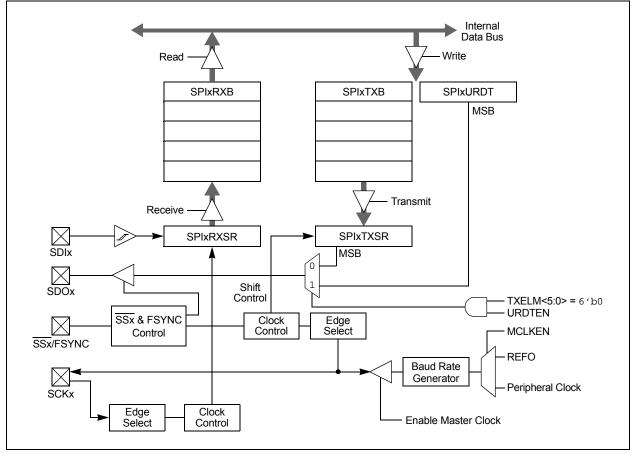
1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

bit 0

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0				
—	_		—		PGA2MD	_	_				
bit 15	•				•		bit				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
—	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	CCSMD	—				
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	oit	U = Unimpler	nented bit, read	d as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkno	own				
bit 15-11	Unimplemen	ted: Read as ')'								
bit 10	PGA2MD: PO	ID: PGA2 Module Disable bit									
	1 = PGA2 module is disabled										
		dule is enabled									
bit 9-6	•	ted: Read as '0									
bit 5		C4 Module Dis									
		dule is disabled									
	0 = CLC4 module is enabled										
bit 4	CLC3MD: CLC3 Module Disable bit										
	1 = CLC3 module is disabled 0 = CLC3 module is enabled										
bit 3		C2 Module Dis									
bit 0		dule is disabled									
		dule is enabled									
bit 2	CLC1MD: CL	C1 Module Dis	able bit								
	1 = CLC1 module is disabled										
	0 = CLC1 mo	dule is enabled									
bit 1	CCSMD: Con	stant-Current S	Source Module	Disable bit							
		current source									
		current source		bled							
bit 0	Unimplemen	ted: Read as '0)'								

REGISTER 10-7: PMD8: PERIPHERAL MODULE DISABLE CONTROL REGISTER 8


To set up the SPIx module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with MSTEN (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- 5. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- 7. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- 8. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

REGISTER 21-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

- bit 2-0 MODE<2:0>: CLCx Mode bits
 - 111 = Single Input Transparent Latch with S and R
 - 110 = JK Flip-Flop with R
 - 101 = Two-Input D Flip-Flop with R
 - 100 = Single Input D Flip-Flop with S and R
 - 011 = SR Latch
 - 010 = Four-Input AND
 - 001 = Four-Input OR-XOR
 - 000 = Four-Input AND-OR

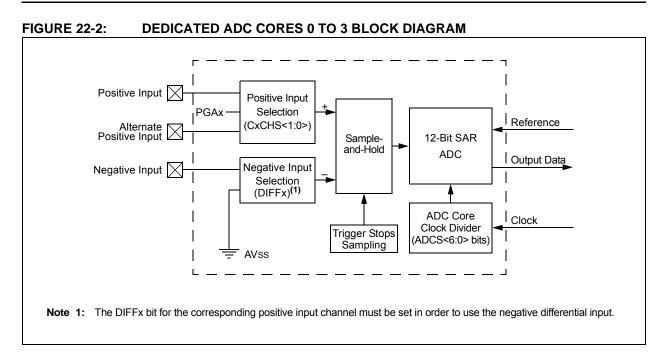
REGISTER 21-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—			—
bit 15							bit 8

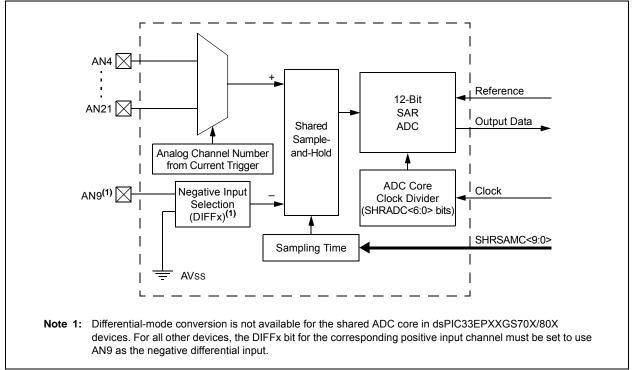
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7							bit 0

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	


bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	1 = Channel 4 logic output is inverted when applied to the logic cell0 = Channel 4 logic output is not inverted
bit 2	G3POL: Gate 3 Polarity Control bit
	1 = Channel 3 logic output is inverted when applied to the logic cell0 = Channel 3 logic output is not inverted
bit 1	G2POL: Gate 2 Polarity Control bit
	1 = Channel 2 logic output is inverted when applied to the logic cell0 = Channel 2 logic output is not inverted
bit 0	G1POL: Gate 1 Polarity Control bit
	1 = Channel 1 logic output is inverted when applied to the logic cell0 = Channel 1 logic output is not inverted

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
bit 15							bit 8


| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| G3D4T | G3D4N | G3D3T | G3D3N | G3D2T | G3D2N | G3D1T | G3D1N |
| bit 7 | | | | | | | bit 0 |

Legend:							
R = Readable	e bit	W = Writable bit	U = Unimplemented bit	, read as '0'			
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15	G4D4T: (Gate 4 Data Source 4 True E	nable bit				
 1 = Data Source 4 non-inverted signal is enabled for Gate 4 0 = Data Source 4 non-inverted signal is disabled for Gate 4 							
bit 14		Gate 4 Data Source 4 Negat Source 4 inverted signal is e					
	0 = Data	Source 4 inverted signal is c	lisabled for Gate 4				
bit 13		Gate 4 Data Source 3 True E					
		Source 3 non-inverted signal Source 3 non-inverted signal					
bit 12	G4D3N:	Gate 4 Data Source 3 Negat	ed Enable bit				
		Source 3 inverted signal is a Source 3 inverted signal is a					
bit 11	G4D2T: (G4D2T: Gate 4 Data Source 2 True Enable bit					
		Source 2 non-inverted signal Source 2 non-inverted signal					
bit 10	G4D2N:	Gate 4 Data Source 2 Negat	ed Enable bit				
		Source 2 inverted signal is a Source 2 inverted signal is a					
bit 9	G4D1T: (Gate 4 Data Source 1 True E	nable bit				
		Source 1 non-inverted signal Source 1 non-inverted signal					
bit 8	G4D1N:	Gate 4 Data Source 1 Negat	ed Enable bit				
		Source 1 inverted signal is a Source 1 inverted signal is a					
bit 7	G3D4T: (Gate 3 Data Source 4 True E	nable bit				
		Source 4 non-inverted signal Source 4 non-inverted signal					
bit 6	G3D4N:	Gate 3 Data Source 4 Negat	ed Enable bit				
		Source 4 inverted signal is e Source 4 inverted signal is o					
bit 5	G3D3T: (Gate 3 Data Source 3 True E	nable bit				
		Source 3 non-inverted signa Source 3 non-inverted signa					
bit 4	G3D3N:	Gate 3 Data Source 3 Negat	ed Enable bit				
	1 = Data	Source 3 inverted signal is e	enabled for Gate 3				

0 = Data Source 3 inverted signal is disabled for Gate 3

FIGURE 22-3: SHARED ADC CORE BLOCK DIAGRAM

REGISTER 22-26: ADTRIGxL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW (x = 0 to 5) (CONTINUED)

bit 4-0 TRGSRC(4x)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits 11111 = ADTRG31 11110 = PTG Trigger Output 30 11101 = PWM Generator 6 current-limit trigger 11100 = PWM Generator 5 current-limit trigger 11011 = PWM Generator 4 current-limit trigger 11010 = PWM Generator 3 current-limit trigger 11001 = PWM Generator 2 current-limit trigger 11000 = PWM Generator 1 current-limit trigger 10111 = Output Compare 2 trigger 10110 = Output Compare 1 trigger 10101 = CLC2 output 10100 = PWM Generator 6 secondary trigger 10011 = PWM Generator 5 secondary trigger 10010 = PWM Generator 4 secondary trigger 10001 = PWM Generator 3 secondary trigger 10000 = PWM Generator 2 secondary trigger 01111 = PWM Generator 1 secondary trigger 01110 = PWM secondary Special Event Trigger 01101 = Timer2 period match 01100 = Timer1 period match 01011 = CLC1 output 01010 = PWM Generator 6 primary trigger 01001 = PWM Generator 5 primary trigger 01000 = PWM Generator 4 primary trigger 00111 = PWM Generator 3 primary trigger 00110 = PWM Generator 2 primary trigger 00101 = PWM Generator 1 primary trigger 00100 = PWM Special Event Trigger 00011 = Reserved 00010 = Level software trigger 00001 = Common software trigger

00000 = No trigger is enabled

REGISTER 22-34: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER

FLEN MODE1 MODE0 OVRSAM2 OVRSAM1 OVRSAM0 IE RI bit 15	REGISTER	22-34: ADFL (x = 0	_xCON: ADC) or 1)	DIGITAL FIL	TER x CONT	ROL REGIS	FER			
FLEN MODE1 MODE0 OVRSAM2 OVRSAM1 OVRSAM0 IE RI bit 15 Image: State	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HSC		
U-0 U-0 R/W-0 R/W R/W R/W R/W R/W	FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	IE	RDY		
- - FLCHSEL4 FLCHSEL3 FLCHSEL2 FLCHSEL1 FLCHSEL1 bit 7 Legend: U = Unimplemented bit, read as '0' R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLEN: Filter Enable bit - - - 0 = Filter is disabled and the RDY bit is cleared - - - - bit 14-13 MODE<1:0>: Filter Mode bits - - - - 1 = Averaging mode -	bit 15							bit 8		
bit 7 Legend: U = Unimplemented bit, read as '0' R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLEN: Filter Enable bit 1 = Filter is enabled 0 = Filter is disabled and the RDY bit is cleared bit 14-13 MODE<1:0:: Filter Mode bits 11 = Averaging mode 10 = Reserved 00 = Oversampling mode 10 = Reserved 00 = Oversampling mode 11 = 128 (16-bit result in the ADFLxDAT register is in 12.4 format) 110 = 32x (16-bit result in the ADFLxDAT register is in 12.4 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.4 format) 101 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 010 = 64x (13-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 011 = 126x 110 = 128. 110 = 128. 110 = 128. 111 = 128 100 = 32. 111 = 128 100 = 32. 111 = 128 100 = 32. 111 = 128 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 101 = 4X 100 = 32. 111 = 16X 101 = 4X	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
Legend: U = Unimplemented bit, read as '0' R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit .n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLEN: Filter Enable bit 1 = Filter is disabled and the RDY bit is cleared x = Bit is unknown bit 14.13 MODE<1:0>: Filter Mode bits 1 = Averaging mode 10 = Reserved 00 = Oversampling mode 00 = Oversampling mode 10 = Reserved 11 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 110 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.4 format) 101 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 010 = 0 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format) 010 = 0 = 32x (15-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 011 = 128x (13-bit result in the ADFLxDAT register is in 12.4 format) 010 = 64x (13-bit result in the ADFLxDAT register is in 12.1 format) 011 = 128x 101 = 128x 101 = 128x 100 = 128x 101 = 128x 101 = 128x 101 = 128x 101 = 128x 101 = 128x 101 = 128x 101 = 128x	—	—	—	FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSEL0		
R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit .n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLEN: Filter Enable bit 1 = Filter is enabled 0 0 = Filter is disabled and the RDY bit is cleared 0 = Filter is disabled and the RDY bit is cleared 0 bit 14-13 MODE-1:0>: Filter Mode bits 1 = Reserved 0 0 = Reserved 00 = Oversampling mode 0 = Coresampling mode 0 = Reserved 00 = Oversampling mode 0 = Norsampling mode bit 12-10 OVRSAM = Site result in the ADFLxDAT register is in 12.4 format) 110 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 101 = 32x (14-bit result in the ADFLxDAT register is in 12.1 format) 100 = 2x (13-bit result in the ADFLxDAT register is in 12.2 format) 001 = 4x (14-bit result in the ADFLxDAT register is in 12.2 format) 001 = 4x (14-bit result in the ADFLxDAT register is in 12.2 format) 001 = 4x (14-bit result in the ADFLxDAT register is in 12.1 format) 001 = 16x (14-bit result in the ADFLxDAT register is in 12.1 format) 111 = 256x 111 = 256x 111 = 256x 111 = 256x 111 = 256x 111 = 256x 111 = 256x 111 = 256	bit 7							bit (
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLEN: Filter Enable bit 1 = Filter is enabled 0 = Filter is disabled and the RDY bit is cleared bit 14-13 MODE<1:0>: Filter Mode bits 1 = Averaging mode 0 = Reserved 01 = Reserved 00 = Oversampling mode 0 = Reserved 0 = Oversampling mode bit 12-10 OVRSAM 2:0>: Filter Averaging/Oversampling Ratio bits If MODE I11 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 10 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 100 = 2x (15-bit result in the ADFLxDAT register is in 12.4 format) 100 = 2x (14-bit result in the ADFLxDAT register is in 12.4 format) 101 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) 010 = 64x (15-bit result in the ADFLxDAT register is in 12.1 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) 011 = 128x 10 = 128x 10 = 64x 100 = 32x 11 = 16x 10 = 8x 010 = 42x 10 = 64x 10 = 2x 101 = 16x 10 = 8x 10 = 8x 010 = 8x 10 = 16x 10 = 16x 010 = 8x 10	Legend:		U = Unimpler	mented bit, read	as '0'					
bit 15 FLEN: Filter Enabled 0 = Filter is enabled 0 = Filter is disabled and the RDY bit is cleared bit 14-13 MODE<1:0>: Filter Mode bits 11 = Averaging mode 10 = Reserved 01 = Reserved 00 = Oversampling mode bit 12-10 OVRSAM<2:0>: Filter Averaging/Oversampling Ratio bits If MODE<1:0> = 00; 111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 100 = 32x (15-bit result in the ADFLxDAT register is in 12.4 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.4 format) 101 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format) 101 = 2x (14-bit result in the ADFLxDAT register is in 12.4 format) 101 = 25x (16-bit result in the ADFLxDAT register is in 12.4 format) 010 = 64x (15-bit result in the ADFLxDAT register is in 12.1 format) 001 = 64x (15-bit result in the ADFLxDAT register is in 12.1 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) 011 = 128x 101 = 128x 101 = 64x 100 = 4x 001 = 4x 000 = 2x bit 9 IE: Filte	R = Readab	le bit	W = Writable	bit	HSC = Hardw	/are Settable/C	learable bit			
 i = Filter is enabled i = Filter is disabled and the RDY bit is cleared bit 14-13 MODE i = Averaging mode 10 = Reserved 01 = Reserved 00 = Oversampling mode bit 12-10 OVRSAM i = Averaging mode i = Reserved 00 = Oversampling mode bit 12-10 OVRSAM i = Reserved i = Reserved i = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) i = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) i = 8x (14-bit result in the ADFLxDAT register is in 12.4 format) i = 8x (14-bit result in the ADFLxDAT register is in 12.4 format) i = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) i = 26x (16-bit result in the ADFLxDAT register is in 12.4 format) i = 64x (14-bit result in the ADFLxDAT register is in 12.4 format) i = 26x (16-bit result in the ADFLxDAT register is in 12.4 format) i = 128x in the ADFLxDAT register is in 12.4 format) i = 128x in the ADFLxDAT register is in 12.1 format) i = 128x in the ADFLxDAT register is in 12.1 format) i = 128x in the ADFLxDAT register is in 12.1 format) i = 10 = 11 (12-bit result in the ADFLxDAT register is in 12.4 format) i = 26x in the ADFLxDAT register is in 12.4 format) i = 28x in the ADFLxDAT register is in 12.4 format) i = 28x in the ADFLxDAT register is in 12.4 format) i = 20mon ADC Interrupt Will be generated when the filter result will be ready in = 8x in the ADFLxDA	-n = Value a	= Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown								
bit 14-13 MODE<1:0:: Filter Mode bits 11 = Averaging mode 10 = Reserved 01 = Reserved 00 = Oversampling mode bit 12-10 OVRSAM<2:0:: Filter Averaging/Oversampling Ratio bits <u>If MODE<1:0> = 00</u> : 111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 110 = 32x (15-bit result in the ADFLxDAT register is in 12.2 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.2 format) 102 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format) 103 = 64x (15-bit result in the ADFLxDAT register is in 12.4 format) 104 = 45x (16-bit result in the ADFLxDAT register is in 12.4 format) 105 = 64x (15-bit result in the ADFLxDAT register is in 12.2 format) 106 = 4x (13-bit result in the ADFLxDAT register is in 12.2 format) 107 = 16x (14-bit result in the ADFLxDAT register is in 12.1 format) 111 = 256x 111 = 256x 110 = 128x 101 = 64x 100 = 32x 011 = 16x 000 = 2x bit 9 IE: Filter Common ADC Interrupt Enable bit 1 = Common ADC interrupt Will be generated when the filter result will be ready 0 = Common ADC interrupt will be generated for the filter bit 8 RDY: Oversampling Filter Data Ready Flag bit This bit is cleared by hardware when the result is read from the ADFLxDAT register. 1 = Data in the ADFLxDAT register is read from the ADFLxDAT register. 1 = Data in the ADFLxDAT register is read from the ADFLxDAT register. 1 = Data in the ADFLxDAT register is read from the ADFLxDAT register.	bit 15	1 = Filter is e	nabled							
 11 = Averaging mode 10 = Reserved 01 = Reserved 00 = Oversampling mode bit 12-10 OVRSAM<2:0>: Filter Averaging/Oversampling Ratio bits <u>If MODE<1:0> = 00:</u> 111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 101 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.1 format) 101 = 256x (16-bit result in the ADFLxDAT register is in 12.1 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.1 format) 010 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format) 001 = 16x (14-bit result in the ADFLxDAT register is in 12.3 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.3 format) 001 = 16x (14-bit result in the ADFLxDAT register is in 12.1 format) 111 = 256x 110 = 128x 100 = 32x 111 = 26ax 100 = 32x 111 = 26ax 100 = 32x 111 = 18x 100 = 32x 111 = 16x 110 = 128x 111 = 100 = 100000000000000000000000000		0 = Filter is d	isabled and the	e RDY bit is clea	ared					
If MODE<1:0> = 00: 111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 100 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.2 format) 100 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.3 format) 001 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format) 001 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format) 001 = 16x (14-bit result in the ADFLxDAT register is in 12.3 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) If MODE 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) If MODE 110 = 128x 110 = 128x 111 = 256ax 111 = 16x 100 = 32x 011 = 16x 010 = 8x 001 = 4x 000 = 2x bit 9 IE: Filter Common ADC Interrupt Enable bit 1 = Common ADC interrupt will be generated when the filter result will be ready 00 = 2x bit 8 RDY: Oversampling Filter Data Ready Flag bit <	bit 1 4 -10	11 = Averagi 10 = Reserve 01 = Reserve	ng mode ed ed							
1 = Common ADC interrupt will be generated when the filter result will be ready 0 = Common ADC interrupt will not be generated for the filter bit 8 RDY: Oversampling Filter Data Ready Flag bit This bit is cleared by hardware when the result is read from the ADFLxDAT register. 1 = Data in the ADFLxDAT register is ready	bit 12-10	If MODE<1:0 111 = 128x (110 = 32x (1 101 = 8x (14 100 = 2x (13 011 = 256x (010 = 64x (13 001 = 16x (14 000 = 4x (13 If MODE<1:0 111 = 256x 110 = 128x 101 = 64x 100 = 32x 011 = 16x 010 = 8x 001 = 4x	\geq = 00: 16-bit result in 5-bit result in the -bit result in the -bit result in the 16-bit result in the 5-bit result in the -bit result in the	the ADFLxDAT the ADFLxDAT re- e ADFLxDAT re- e ADFLxDAT re- the ADFLxDAT re- the ADFLxDAT re- the ADFLxDAT re- e ADFLxDAT re-	register is in 1 egister is in 12.2 gister is in 12.1 register is in 12.1 register is in 1 egister is in 12 egister is in 12.1	2.4 format) .3 format) 2 format) 1 format) 2.4 format) .3 format) .2 format) 1 format)	<u>es):</u>			
bit 8 RDY: Oversampling Filter Data Ready Flag bitThis bit is cleared by hardware when the result is read from the ADFLxDAT register.1 = Data in the ADFLxDAT register is ready	bit 9	1 = Common	1 = Common ADC interrupt will be generated when the filter result will be ready							
0 = The ADFLxDAT register has been read and new data in the ADFLxDAT register is not read	bit 8	RDY: Oversa This bit is cle 1 = Data in th	mpling Filter D ared by hardwa ne ADFLxDAT i	ata Ready Flag are when the re- register is ready	bit sult is read from	m the ADFLxD	-	not readv		
bit 7-5 Unimplemented: Read as '0'	bit 7-5		-				3.000. 101	, J		

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
—	—	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
	<u> </u>	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0
bit 7							bit C
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 13-8 bit 7-6 bit 5-0	011111 = RB31 buffer 011110 = RB30 buffer • • • 000001 = TRB1 buffer 000000 = TRB0 buffer Unimplemented: Read as '0'						

REGISTER 23-5: CxFIFO: CANx FIFO STATUS REGISTER

REGISTER 23-20: CxRXMnSID: CANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER REGISTER (n = 0-2)

		``	,				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	0-0	MIDE	0-0	EID17	EID16
-							
bit 7							bit 0
Legend:							
R = Readabl	o hit	W = Writable	hit	LI – Unimplo	mented bit, read	1 22 (0)	
				•			
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	lown
bit 15-5 bit 4 bit 3	 SID<10:0>: Standard Identifier bits 1 = Includes bit, SIDx, in filter comparison 0 = Bit, SIDx, is a don't care in filter comparison Unimplemented: Read as '0' MIDE: Identifier Receive Mode bit 1 = Matches only message types (standard or extended address) that correspond to the EXIDE bit in the filter 0 = Matches either standard or extended address message if filters match 						
bit 2	Unimplemen	ted: Read as '	0'				
bit 1-0	EID<17:16>: Extended Identifier bits						
	 1 = Includes bit, EIDx, in filter comparison 0 = Bit, EIDx, is a don't care in filter comparison 						

REGISTER 23-21: CxRXMnEID: CANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			EID	<15:8>					
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			EID	<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' =			'0' = Bit is cle	ared	x = Bit is unkr	nown			

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison

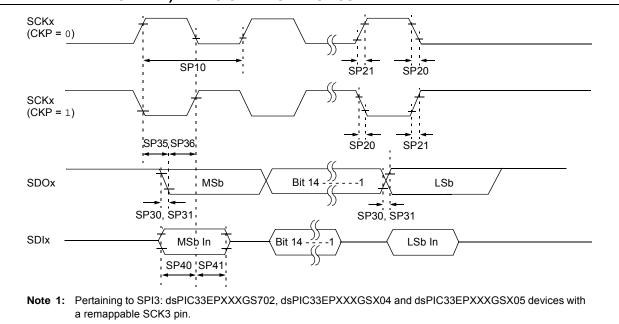
0 = Bit, EIDx, is a don't care in filter comparison

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
55	NEG	NEG	Acc Negate Accumulator		1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
56	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
57	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
58	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
59	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
60	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
61	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
62	RESET	RESET		Software device Reset	1	1	None
63	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
64	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
65	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
66	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
67	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
68	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
69	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
70	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
71	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
72	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
70		SETM	Ws	Ws = 0xFFFF	1	1	None
73	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTER	(unless ot	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Parameter No. Typ. Max.			Doze Ratio	Units		Con	ditions
Doze Current (IDOZE) ⁽¹⁾							
DC73a ⁽²⁾	20	40	1:2	mA	-40°C	3.3V	Fosc = 140 MHz
DC73g	10	22	1:128	mA	-40 C	3.3V	FUSC = 140 MITZ
DC70a ⁽²⁾	20	40	1:2	mA	+25°C	3.3V	Fosc = 140 MHz
DC70g	10	22	1:128	mA	+25 C	3.3V	FUSC = 140 MITZ
DC71a ⁽²⁾	20	40	1:2	mA	105%0	2.21/	Food - 140 Mile
DC71g	10	22	1:128	mA	+85°C	3.3V	Fosc = 140 MHz
DC72a ⁽²⁾	20	40	1:2	mA	112500	2 2)/	Food - 120 MHz
DC72g	10	22	1:128	mA	+125°C	3.3V	Fosc = 120 MHz


TABLE 30-10: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

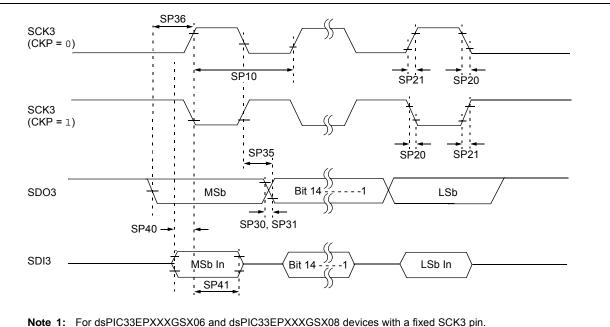
Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- CPU is executing while(1) statement
- · JTAG is disabled
- 2: These parameter are characterized but not tested in manufacturing.

2: Refer to Figure 30-1 for load conditions.

TABLE 30-34:SPI1, SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS⁽⁵⁾


AC CHARACTERISTICS				ard Oper s otherw ing temp	vise stat	-		
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max.		Units	Conditions		
SP10	FscP	Maximum SCKx Frequency	_	_	9	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.
- 5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with a remappable SCK3 pin.

2: Refer to Figure 30-1 for load conditions.

TABLE 30-41:SPI3 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions				Conditions		
SP10	FscP	Maximum SCK3 Frequency	_	_	25	MHz	(Note 3)		
SP20	TscF	SCK3 Output Fall Time	_		_	ns	See Parameter DO32 (Note 4)		
SP21	TscR	SCK3 Output Rise Time	_		_	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDO3 Data Output Fall Time	_		_	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDO3 Data Output Rise Time	—		—	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDO3 Data Output Valid after SCK3 Edge	_	6	20	ns			
SP36	TdoV2sc, TdoV2scL	SDO3 Data Output Setup to First SCK3 Edge	20	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI3 Data Input to SCK3 Edge	20	_	—	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI3 Data Input to SCK3 Edge	15	—	_	ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.

- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The minimum clock period for SCK3 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI3 pins.
- 5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.

TABLE 30-55: DACx MODULE SPECIFICATIONS

AC/DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(2)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Comments			Comments		
DA01	EXTREF	External Voltage Reference ⁽¹⁾	1	_	AVdd	V		
DA02	CVRES	Resolution		12		bits		
DA03	INL	Integral Nonlinearity Error	-16	-12	0	LSB		
DA04	DNL	Differential Nonlinearity Error	-1.8	±1	1.8	LSB		
DA05	EOFF	Offset Error	-8	3	15	LSB		
DA06	EG	Gain Error	-1.2	-0.5	0	%		
DA07	TSET	Settling Time ⁽¹⁾	—	700	_	ns	Output with 2% of desired output voltage with a 10-90% or 90-10% step	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

DC CH	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min. Typ. M		Max.	Units	Comments		
DA11	RLOAD	Resistive Output Load Impedance	10K		—	Ohm			
DA11a	CLOAD	Output Load Capacitance	_		35	pF	Including output pin capacitance		
DA12	Ιουτ	Output Current Drive Strength	_	300	—	μA	Sink and source		
DA13	VRANGE	Output Drive Voltage Range at Current Drive of 300 µA	AVss + 250 mV		AVDD – 900 mV	V			
DA14	VLRANGE	Output Drive Voltage Range at Reduced Current Drive of 50 μA	AVss + 50 mV	_	AVDD – 500 mV	V			
DA15	IDD	Current Consumed when Module is Enabled		_	1.3 x IOUT	μA	Module will always consume this current, even if no load is connected to the output		
DA30	VOFFSET	Input Offset Voltage		±5		mV			

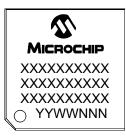
TABLE 30-56: DACX OUTPUT (DACOUTX PIN) SPECIFICATIONS

Note 1: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

32.0 PACKAGING INFORMATION

32.1 Package Marking Information

28-Lead SOIC (7.50 mm)


28-Lead UQFN (6x6x0.55 mm)

28-Lead QFN-S (6x6x0.9 mm)

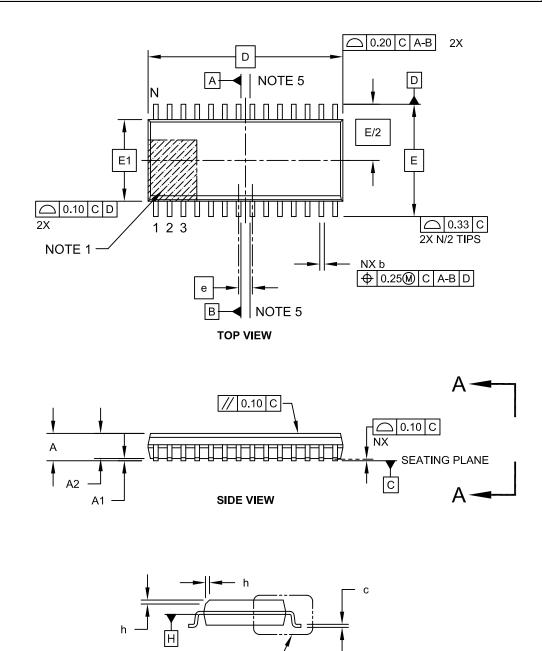
44-Lead TQFP (10x10x1 mm)

Example

Example

Example

Example

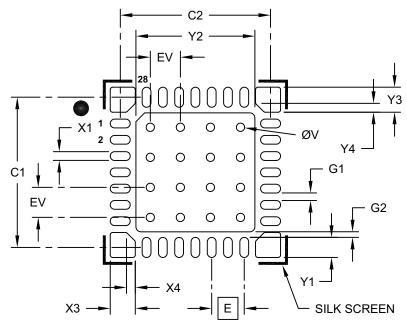


Legei	nd: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

32.2 Package Details

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



SEE VIEW C

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	X2			4.75
Optional Center Pad Length	Y2			4.75
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.35
Contact Pad Length (X28)	Y1			0.80
Corner Anchor (X4)	X3			1.00
Corner Anchor (X4)	Y3			1.00
Corner Anchor Chamfer (X4)	X4			0.35
Corner Anchor Chamfer (X4)	Y4			0.35
Contact Pad to Pad (X28)	G1	0.20		
Contact Pad to Center Pad (X28)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2385B

Note: Corner anchor pads are not connected internally and are designed as mechanical features when the package is soldered to the PCB.