

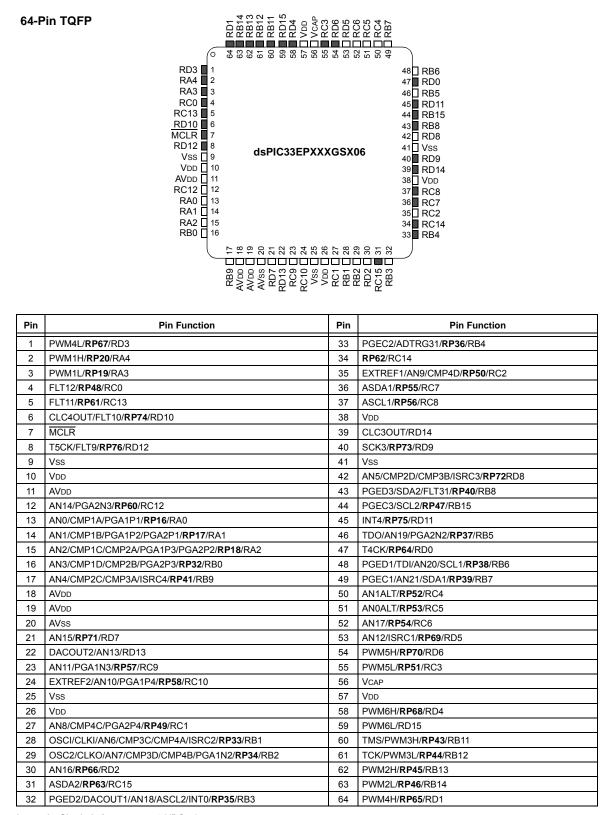
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFl

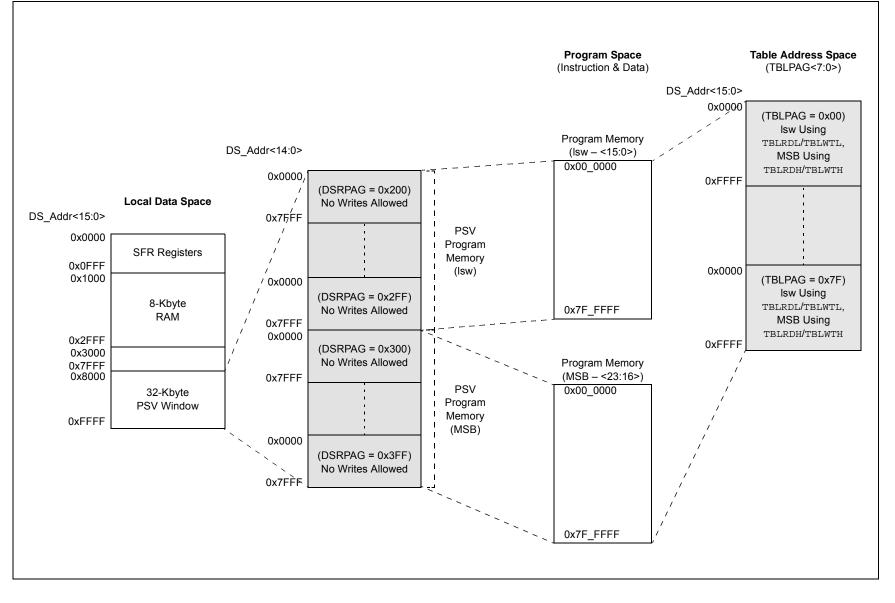
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	67
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs808-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.


RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.

RW-0 RW-1 RW-0 R/C-0 R-0 R/W-0 R/W-0 SATA SATB SATDW ACCSAT IPL3 ⁽²⁾ SFA RND IF bit C = Clearable bit C = Clearable bit U = Unimplemented bit, read as '0' bit R Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR 1' = Bit is set 0' = Bit is cleared x = Bit is unknown bit 15 VAR: Variable Exception Processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = DSP engine multiplies are signed 00 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 0 = No effect 00 = D Do loop sare active 00 = D D loop sare active 00 = D D loops are active 00 = D D loops are active 00 = Accumulator A saturation is enabled 0 = Dat Space write saturation is disabled 0	REGISTER	3-2: CORC	ON: CORE (SONTROL RI	EGISTER				
RW-0 RW-0 R/W-1 RW-0 R/C-0 R-0 R/W-0 R/W-0 SATA SATB SATDW ACCSAT IPL3 ⁽²⁾ SFA RND IF bit 7 SFA RND IF bit U Unimplemented bit, read as '0' enderstand W= Writable bit U = Unimplemented bit, read as '0' in v w of 15 VAR: Variable Exception Processing is enabled 0 = Fixed exception processing is enabled is cleared x = Bit is unknown bit 15 VAR: Variable Exception Processing is enabled 0 = DSP engine multiplies are insigned 0 = DSP engine multiplies are insigned 0 = DSP engine multiplies are signed 0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0	
RW-0 RW-1 RW-0 R/C-0 R-0 R/W-0 R/W-0 SATA SATB SATDW ACCSAT IPL3 ⁽²⁾ SFA RND IF bit C = Clearable bit W = Writable bit U = Unimplemented bit, read as '0' bit n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing is enabled 0' = Bit is cleared x = Bit is unknown bit 15 VAR: Variable Exception processing is enabled 0' = Bit is cleared x = Bit is unknown bit 15 VAR: Variable exception processing is enabled 0 = BSP engine multiplies are unsigned 0' = Bit is cleared x = Bit is unknown bit 13-12 US US DSP engine multiplies are signed 0' = DSP engine multiplies are unsigned 0' = DSP engine multiplies are signed 0' = DSP engine active 0' = Tor loop Nesting Level Status bits 1' = Terminates executing DO loop at the end of current loop iteration 0 = Accumulator A saturation is en	VAR		US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0	
SATA SATB SATDW ACCSAT IPL3 ⁽²⁾ SFA RND IF bit 7 bit bit C = Clearable bit bit U = Unimplemented bit, read as '0' cn = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing is enabled x = Bit is unknown bit 13 VAR: Variable Exception processing is enabled 0 = Fixed exception processing is enabled 0 = DSP engine multiplies are unsigned bit 13 US-10s: DSP Multiply Unsigned/Signed Control bits 11 = Reserved 10 = DSP engine multiplies are unsigned 10 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 00 = DSP engine multiplies are unsigned 01 = DSP engine multiplies are signed 10 = DSP engine multiplies are signed 11 = Terminates executing Do loop at the end of current loop iteration 0 = DSP engine multiplies are signed 11 = Terminates executing Do loop statuse bits 111 = 7 DO loop is active 001 = 1 DO loop is active 000 = 0 DD loops are active	bit 15	·		·				bit	
SATA SATB SATDW ACCSAT IPL3 ⁽²⁾ SFA RND IF bit 7 bit bit C = Clearable bit bit U = Unimplemented bit, read as '0' cn = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing is enabled x = Bit is unknown bit 13 VAR: Variable Exception processing is enabled 0 = Fixed exception processing is enabled 0 = DSP engine multiplies are unsigned bit 13 US-10s: DSP Multiply Unsigned/Signed Control bits 11 = Reserved 10 = DSP engine multiplies are unsigned 10 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 00 = DSP engine multiplies are unsigned 01 = DSP engine multiplies are signed 10 = DSP engine multiplies are signed 11 = Terminates executing Do loop at the end of current loop iteration 0 = DSP engine multiplies are signed 11 = Terminates executing Do loop statuse bits 111 = 7 DO loop is active 001 = 1 DO loop is active 000 = 0 DD loops are active	R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0	
bit 7 bit C = Clearable bit C = Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set 0' = Bit is cleared x = Bit is unknown bit 15 VAR: Variable Exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = DSP engine multiples are mixed-sign 01 = DSP engine multiples are mixed-sign 0 = DSP engine multiples are unsigned 0 = DSP engine multiples are unsigned 00 = DSP engine multiples are unsigned 0 = No effect 0 = No effect 01 = 1 Do loop is active 00 = 0 loop are active 00 = 0 cloops are active 00 = 0 Do loops are active 00 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator B saturation is enabled 0 = Data Space write saturation is enabled 0 = Data Space write saturation is enabled 0 = Data Space write saturation is enabled 0 = Data Space write saturation is enabled 0 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled 0 = Data Space write saturation is disabled	-			1					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = DSP engine multiplies are mixed-sign 0 = DSP engine multiplies are mixed-sign 0 = DSP engine multiplies are signed 0 = DSP engine multiplies are signed 0 = DSP engine multiplies are signed 0 = DSP engine fire 0 = DSP engine multiplies are signed 0 = No effect 0 = No effect 0 = 1 Do loop is active 0 = 0 boo pas are active 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Data Space Write saturation is disabled 0 = Data Space Write saturation is disabled bit 5 SATDW: Data Space Write saturation is disabled 0 = Data Space write saturation is dis	bit 7	0/110	0,11211	//000///	11 20	GIA	TUD	bit	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = DSP engine multiplies are mixed-sign 0 = DSP engine multiplies are mixed-sign 0 = DSP engine multiplies are signed 0 = DSP engine multiplies are signed 0 = DSP engine multiplies are signed 0 = DSP engine fire 0 = DSP engine multiplies are signed 0 = No effect 0 = No effect 0 = 1 Do loop is active 0 = 0 boo pas are active 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Data Space Write saturation is disabled 0 = Data Space Write saturation is disabled bit 5 SATDW: Data Space Write saturation is disabled 0 = Data Space write saturation is dis	Logondu		C = Clearabl	o bit					
In = Value at POR '1' = Bit is set 0' = Bit is cleared x = Bit is unknown poit 15 VAR: Variable Exception Processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Fixed exception processing is enabled 0 = Difference bit 14 Unimplemented: Read as '0' 00 = DSP engine multiplies are unsigned 0 = DSP engine multiplies are unsigned 0 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are unsigned 0 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are unsigned 0 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are unsigned 0 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are unsigned 0 = No effect 0 = No effect 00 = No opps are active 00 = No effect 0 = No effect 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled 0 = Accumulator B saturation is disabled 0 = Accumulator B saturation is disabled 0 = Data Space write saturation is disabled 0 = Data	-	, hit				onted hit read	d ac 'O'		
 VAR: Variable Exception Processing Latency Control bit VAR: Variable exception processing is enabled Fixed exception processing is enabled bit 14 Unimplemented: Read as '0' bit 13-12 US-1:0-: DSP Multiply Unsigned/Signed Control bits Reserved DSP engine multiplies are mixed-sign DSP engine multiplies are unsigned DSP engine multiplies are signed DSP engine are active and the end of current loop iteration No effect 11 = Tominates executing Do loop at the end of current loop iteration No effect NO elfect DL-2:0-: Do loops are active OO1 = 1 DO loop is active OO1 = 1 DO loop is active OO1 = 1 DO loops are active ACCUMULATOR A saturation is enabled Accumulator A saturation is enabled Accumulator A saturation is enabled Accumulator B saturation is enabled Accumulator B saturation is enabled D = Accumulator Saturation is enabled D = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 0:31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) 0 = 1.31 saturation (normal saturation) 0 = CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interr					•	-		0000	
1 = Variable exception processing is enabled 0 = Fixed exception processing is enabled bit 14 Unimplemented: Read as '0' bit 13-12 US-1:0:: DSP Multiply Unsigned/Signed Control bits 11 = Reserved 10 = DSP engine multiplies are mixed-sign 01 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 02 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 03 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 04 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 05 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 05 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 05 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 05 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 05 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 05 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 05 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 05 = DL-22:0s: Do Loop Nesting Level Status bits 111 = 7 DO loops are active 05 = Accumulator A saturation is enabled 0 = A	-n = value at	PUR	I = Bit is se	l		ared	x = Bit is unkn	IOWN	
 b = Fixed exception processing is enabled bit 13 Uis Dit 13-12 Uis Cite Composition (Composition of the structure) DSP engine multiplies are mixed-sign D = DSP engine multiplies are mixed-sign D = DSP engine multiplies are unsigned DSP engine multiplies are signed DSP engine multiplies are unsigned DSP engine multiplies are signed DSP engine multiplies are unsigned DSP engine multiplies are signed DSP engine multiplies are signed DSP engine endition (Control bit⁽¹⁾) T = Terminates executing Do loop at the end of current loop iteration D = No effect D = Do loops are active Int = 7 Do loops are active Int = 7 Do loops are active Int = 7 Do loops are active Int = Accumulator A saturation is enabled Accumulator A saturation is disabled SATDW: Data Space Write from DSP Engine Saturation Enable bit I = Data Space write saturation is disabled O = Data Space write saturation is disabled I = Data Space write saturation is disabled I = Data Space write saturation is disabled I = Data Space write saturation (Composition Strutton) I = 0 ata Space write saturation I = 0 at	bit 15	VAR: Variable	e Exception Pr	ocessing Later	ncy Control bit				
bit 13-12 US<1:0-: DSP Multiply Unsigned/Signed Control bits									
<pre>11 = Reserved 10 = DSP engine multiplies are mixed-sign 01 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are signed bit 11 EDT: Early Do Loop Termination Control bit⁽¹⁾ 1 = Terminates executing Do loop at the end of current loop iteration 0 = No effect bit 10-8 DL-2:0-: Do Loop Nesting Level Status bits 111 = 7 Do loops are active 001 = 1 Do loop is active 000 = 0 Do loops are active 001 = 1 Do loop is active 000 = 0 Do loops are active bit 7 SATA: ACCA Saturation Enable bit 1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator B saturation is enabled 0 = Accumulator B saturation is disabled bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less</pre>	bit 14		• •	•					
 10 = DSP engine multiplies are mixed-sign 01 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 01 = DT: Early Do Loop Termination Control bit⁽¹⁾ 1 = Terminates executing Do loop at the end of current loop iteration 0 = No effect 01 = 1 Do loop Nesting Level Status bits 111 = 7 Do loops are active 000 = 0 Do loops are active 001 = 1 Do loop is active 000 = 0 Do loops are active 11 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled 0 = Accumulator B saturation is disabled 0 = Accumulator B saturation is disabled 0 = Accumulator B saturation is enabled 0 = Accumulator B saturation is enabled 0 = Data Space Write from DSP Engine Saturation Enable bit 1 = Data Space write saturation is disabled 0 = Data Space write saturation is disabled 0 = Data Space write saturation is disabled 0 = 1.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) 0 = 1.31 saturation (normal saturation) 0 = 1.31 saturation (super saturation) 0 = 0.131 saturation (super saturation) 0 = 0.131 saturation (normal saturation) 0 = CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less 	bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed	Control bits				
01 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are signed 00 = DSP engine multiplies are signed 01 = Terminates executing Do loop at the end of current loop iteration 0 = No effect bit 10-8 DL<2:0>: Do Loop Nesting Level Status bits 111 = 7 Do loops are active • • 001 = 1 Do loop is active 000 = 0 Do loops are active •									
bit 11 EDT: Early po Loop Termination Control bit ⁽¹⁾ 1 = Terminates executing po loop at the end of current loop iteration 0 = No effect DL<2:0:: Do Loop Nesting Level Status bits		01 = DSP en	gine multiplies	are unsigned	ו				
1 = Terminates executing D0 loop at the end of current loop iteration 0 = No effect bit 10-8 DL<2:D>: D0 Loop Nesting Level Status bits 111 = 7 D0 loops are active . 001 = 1 D0 loop is active 000 = 0 D0 loops are active .	bit 11								
bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits 111 = 7 DO loops are active 001 = 1 DO loop is active 000 = 0 DO loops are active bit 7 SATA: ACCA Saturation Enable bit 1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator B saturation is enabled 0 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) 0 = 1.31 saturation (normal saturation) 0 = CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less		1 = Terminate	es executing D			op iteration			
 111 = 7 Do loops are active 001 = 1 Do loop is active 000 = 0 Do loops are active bit 7 SATA: ACCA Saturation Enable bit 1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled bit 6 SATB: ACCB Saturation Enable bit 1 = Accumulator B saturation is enabled 0 = Accumulator B saturation is disabled bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is 7 or less 	hit 10 9			l aval Statua bi	to				
001 = 1 D0 loop is active 000 = 0 D0 loops are active bit 7 SATA: ACCA Saturation Enable bit 1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator A saturation is enabled 0 = Accumulator B saturation is enabled 0 = Data Space write from DSP Engine Saturation Enable bit 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) 0 = TL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less	DIL 10-0		-		lS				
000 = 0 D0 loops are active bit 7 SATA: ACCA Saturation Enable bit 1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled bit 6 SATB: ACCB Saturation Enable bit 1 = Accumulator B saturation is enabled 0 = Accumulator B saturation is enabled 0 = Accumulator B saturation is disabled bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) 0 = 1.31 saturation (normal saturation) bit 3 IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less		•							
000 = 0 D0 loops are active bit 7 SATA: ACCA Saturation Enable bit 1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled bit 6 SATB: ACCB Saturation Enable bit 1 = Accumulator B saturation is enabled 0 = Accumulator B saturation is enabled 0 = Accumulator B saturation is disabled bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) 0 = 1.31 saturation (normal saturation) bit 3 IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less		•							
000 = 0 D0 loops are active bit 7 SATA: ACCA Saturation Enable bit 1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled bit 6 SATB: ACCB Saturation Enable bit 1 = Accumulator B saturation is enabled 0 = Accumulator B saturation is enabled 0 = Accumulator B saturation is disabled bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) 0 = 1.31 saturation (normal saturation) bit 3 IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less		•	on is activo						
1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled bit 6 SATB: ACCB Saturation Enable bit 1 = Accumulator B saturation is enabled 0 = Accumulator B saturation is enabled 0 = Accumulator B saturation is disabled bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) bit 3 IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less									
0 = Accumulator A saturation is disabledbit 6SATB: ACCB Saturation Enable bit 1 = Accumulator B saturation is enabled 0 = Accumulator B saturation is disabledbit 5SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabledbit 4ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation)bit 3IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less	bit 7	SATA: ACCA	Saturation En	able bit					
 1 = Accumulator B saturation is enabled 0 = Accumulator B saturation is disabled bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) 0 = 1.31 cPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less 									
 a Accumulator B saturation is disabled bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) 0 = 1.31 crupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less 	bit 6	SATB: ACCB	3 Saturation Er	able bit					
 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) 0 = 1.31 cPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less 									
 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) 0 = 1.31 cPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less 	bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit			
bit 4 ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) bit 3 IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less									
 0 = 1.31 saturation (normal saturation) bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less 	bit 4	-							
bit 3 IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less									
 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less 	bit 3		-	-	oit 3 (2)				
		1 = CPU Inter	rrupt Priority L	evel is greater	than 7				
· · · · · · · · · · · · · · · · · · ·	Note 1: Th								

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS7000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGS70X/80X family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGS70X/80X family CPU.

The interrupt controller has the following features:

- Six Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies
- Alternate Interrupt Vector Table (AIVT) for Debug Support

7.1 Interrupt Vector Table

The dsPIC33EPXXXGS70X/80X family Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains six non-maskable trap vectors and up to 246 sources of interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-2, is available only when the Boot Segment is defined and the AIVT has been enabled. To enable the Alternate Interrupt Vector Table, the Configuration bit, AIVTDIS in the FSEC register, must be programmed and the AIVTEN bit must be set (INTCON2<8> = 1). When the AIVT is enabled, all interrupt and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment, defined by BSLIM<12:0>. The second half of the page is no longer usable space. The Boot Segment must be at least 2 pages to enable the AIVT.

Note: Although the Boot Segment must be enabled in order to enable the AIVT, application code does not need to be present inside of the Boot Segment. The AIVT (and IVT) will inherit the Boot Segment code protection.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGS70X/80X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Interrupt Source	Vector	IRQ	IVT Address	In	terrupt Bit Lo	ocation
interrupt Source	#	#	IVI Address	Flag	Enable	Priority
PSES – PWM Secondary Special Event Match	81	73	0x0000A6	IFS4<9> PSESIF	IEC4<9> PSESIE	IPC18<6:4> PSESIP<2:0>
Reserved	82-97	74-89	0x0000A8-0x0000C6	_	_	—
SPI3TX – SPI3 Transfer Done	98	90	0x0000C8	IFS5<10> SPI3TXIF	IEC5<10> SPI3TXIE	IPC22<10:8> SPI3TXIP<2:0>
SPI3RX – SPI3 Receive Done	99	91	0x0000CA	IFS5<10> SPI3RXIF	IEC5<11> SPI3RXIE	IPC22<14:12> SPI3RXIP<2:0>
Reserved	100-101	92-93	0x0000CC-0x0000CE		_	_
PWM1 – PWM1 Interrupt	102	94	0x0000D0	IFS5<14> PWM1IF	IEC5<14> PWM1IE	IPC23<10:8> PWM1IP<2:0>
PWM2 – PWM2 Interrupt	103	95	0x0000D2	IFS5<15> PWM2IF	IEC5<15> PWM2IE	IPC23<14:12> PWM2IP<2:0>
PWM3 – PWM3 Interrupt	104	96	0x0000D4	IFS6<0> PWM3IF	IEC6<0> PWM3IE	IPC24<2:0> PWM3IP<2:0>
PWM4 – PWM4 Interrupt	105	97	0x0000D6	IFS6<1> PWM4IF	IEC6<1> PWM4IE	IPC24<6:4> PWM4IP<2:0>
PWM5 – PWM5 Interrupt	106	98	0x0000D8	IFS6<2> PWM5IF	IEC6<2> PWM5IE	IPC24<10:8> PWM5IP<2:0>
PWM6 – PWM6 Interrupt	107	99	0x0000DA	IFS6<3> PWM6IF	IEC6<3> PWM6IE	IPC24<14:12> PWM6IP<2:0>
PWM7 – PWM7 Interrupt	108	100	0x0000DC	IFS6<4> PWM7IF	IEC6<4> PWM7IE	IPC25<2:0> PWM7IP<2:0>
PWM8 – PWM8 Interrupt	109	101	0x0000DE	IFS6<5> PWM8IF	IEC6<5> PWM8IE	IPC25<6:4> PWM8IP<2:0>
Reserved	110	102	0x0000E0	_	_	_
AC2 – Analog Comparator 2 Interrupt	111	103	0x0000E2	IFS6<7> AC2IF	IEC6<7> AC2IE	IPC25<14:12> AC2IP<2:0>
AC3 – Analog Comparator 3 Interrupt	112	104	0x0000E4	IFS6<8> AC3IF	IEC6<8> AC3IE	IPC26<2:0> AC3IP<2:0>
AC4 – Analog Comparator 4 Interrupt	113	105	0x0000E6	IFS6<9> AC4IF	IEC6<9> AC4IE	IPC26<6:4> AC4IP<2:0>
Reserved	114-117	106-109	0x0000E8-0x0000EE	_	—	
AN0 Conversion Done	118	110	0x0000F0	IFS6<14> AN0IF	IEC6<14> AN0IE	IPC27<10:8> AN0IP<2:0>
AN1 Conversion Done	119	111	0x0000F2	IFS6<15> AN1IF	IEC6<15> AN1IE	IPC27<14:12> AN1IP<2:0>
AN2 Conversion Done	120	112	0x0000F4	IFS7<0> AN2IF	IEC7<0> AN2IE	IPC28<2:0> AN2IP<2:0>
AN3 Conversion Done	121	113	0x0000F6	IFS7<1> AN3IF	IEC7<1> AN3IE	IPC28<6:4> AN3IP<2:0>
AN4 Conversion Done	122	114	0x0000F8	IFS7<2> AN4IF	IEC7<2> AN4IE	IPC28<10:8> AN4IP<2:0>
AN5 Conversion Done	123	115	0x0000FA	IFS7<3> AN5IF	IEC7<3> AN5IE	IPC28<14:12> AN5IP<2:0>
AN6 Conversion Done	124	116	0x0000FC	IFS7<4> AN6IF	IEC7<4> AN6IE	IPC29<2:0> AN6IP<2:0>
AN7 Conversion Done	125	117	0x0000FE	IFS7<5> AN7IF	IEC7<5> AN7IE	IPC29<6:4> AN7IP<2:0>
Reserved	126-131	118-123	0x000100-0x00010A			

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

bit 4-0

PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33

•

00001 = Input divided by 3

00000 = Input divided by 2 (default)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - **2:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	PLLDIV8
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLDI	V<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

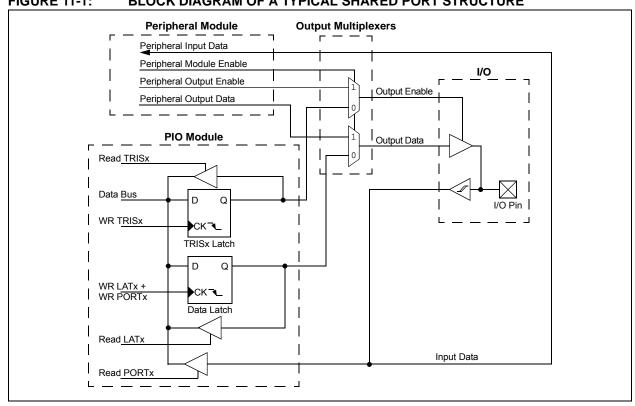
bit 15-9 Unimplemented: Read as '0'

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS7000598) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports


Generally, a Parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros. Table 11-1 through Table 11-5 show ANSELx bits' availability for device variants.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

REGISTER 11-27: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SYNCI1R7 | SYNCI1R6 | SYNCI1R5 | SYNCI1R4 | SYNCI1R3 | SYNCI1R2 | SYNCI1R1 | SYNCI1R0 |
| bit 15 | | | | | | | bit 8 |

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 SYNCI1R<7:0>: Assign PWM Synchronization Input 1 (SYNCI1) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-28: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SYNCI2R7 | SYNCI2R6 | SYNCI2R5 | SYNCI2R4 | SYNCI2R3 | SYNCI2R2 | SYNCI2R1 | SYNCI2R0 |
| bit 7 | • | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **SYNCI2R<7:0>:** Assign PWM Synchronization Input 2 (SYNCI2) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

NOTES:

REGISTER 16-8: SSEVTCMP: PWMx SECONDARY SPECIAL EVENT COMPARE REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVTC	MP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	S	SEVTCMP<4:0)>		—	—	—
bit 7							bit 0
Legend:							

_ogona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 SSEVTCMP<12:0>: Special Event Compare Count Value bits

bit 2-0 Unimplemented: Read as '0'

Note 1: One LSB = 1.04 ns (at fastest auxiliary clock rate); therefore, the minimum SSEVTCMP resolution is 8.32 ns.

REGISTER 16-9: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER⁽¹⁾

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	_	—	—	—	—	CHOPCLK6	CHOPCLK5
bit 15			•				bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15
 CHPCLKEN: Enable Chop Clock Generator bit

 1 = Chop clock generator is enabled
 0 = Chop clock generator is disabled

 bit 14-10
 Unimplemented: Read as '0'

 bit 9-3
 CHOPCLK<6:0>: Chop Clock Divider bits

 Value is in 8.32 ns increments. The frequency of the chop clock signal is given by:

 Chop Frequency = 1/(16.64 * (CHOP<7:3> + 1) * Primary Master PWM Input Clock Period)

bit 2-0 Unimplemented: Read as '0'

Note 1: The chop clock generator operates with the primary PWMx clock prescaler (PCLKDIV<2:0>) in the PTCON2 register (Register 16-2).

REGISTER 18-4: SPIxS	TATL: SPIX STATUS REGISTER LOW
----------------------	--------------------------------

U-0	U-0	U-0	R/C-0, HS	R-0, HSC	U-0	U-0	R-0, HSC
_	_	—	FRMERR	SPIBUSY		—	SPITUR ⁽¹⁾
bit 15						·	bit 8
R-0, HSC	R/C-0, HS	R-1, HSC	U-0	R-1, HSC	U-0	R-0, HSC	R-0, HSC
SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF
bit 7							bit
Legend:		C = Clearable	hit	= Inimplem	ented read as	: 'O'	
R = Readabl							
-n = Value at		'1' = Bit is set	it.	'0' = Bit is clea		HS = Hardwar	e Settable bit
		1 Dicio Cot		Bit lo biod			
bit 15-13	Unimplemen	ted: Read as '0)'				
bit 12	FRMERR: SF	Plx Frame Error	Status bit				
	1 = Frame er	ror is detected					
	0 = No frame	error is detecte	d				
bit 11		Plx Activity State					
		currently busy					
bit 10-9	•	ng transactions i ted: Read as '0		a)			
	•	x Transmit Und		(1)			
bit 8		buffer has enco			condition		
		buffer does not					
bit 7	SRMT: Shift F	Register Empty	Status bit				
				, neither SPIxT	XB or SPIxT>	(SR contains da	ta to transmit)
		r pending trans					
bit 6		x Receive Over					
	1 = A new by 0 = No overflo		rd has been co	ompletely recei	ved when the	SPIxRXB was f	ull
bit 5	SPIRBE: SPI	x RX Buffer Em	pty Status bit				
	1 = RX buffer						
	0 = RX buffer						
	Standard Buff			IC is read from		RXB. Automatio	ally alcored i
		en SPIx transfe					
	Enhanced Bu						
	Indicates RXE		0000.				

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 22-4: ADCON2H: ADC CONTROL REGISTER 2 HIGH

R-0, HSC	R-0, HSC	r-0	r-0	r-0	r-0	R/W-0	R/W-0
REFRDY	REFERR	—	—	—	—	SHRSAMC9	SHRSAMC8
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SHRSAMC7 | SHRSAMC6 | SHRSAMC5 | SHRSAMC4 | SHRSAMC3 | SHRSAMC2 | SHRSAMC1 | SHRSAMC0 |
| bit 7 | · | | | | | | bit 0 |

Legend:	r = Reserved bit	U = Unimplemented bit, read as '0'	
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	

bit 15	REFRDY: Band Gap and Reference Voltage Ready Flag bit 1 = Band gap is ready 0 = Band gap is not ready
bit 14	REFERR: Band Gap or Reference Voltage Error Flag bit 1 = Band gap was removed after the ADC module was enabled (ADON = 1) 0 = No band gap error was detected
bit 13-10	Reserved: Maintain as '0'
bit 9-0	<pre>SHRSAMC<9:0>: Shared ADC Core Sample Time Selection bits These bits specify the number of shared ADC Core Clock Periods (TADCORE) for the shared ADC core sample time. 111111111 = 1025 TADCORE</pre>

REGISTER 22-11: ADCOREXL: DEDICATED ADC CORE x CONTROL REGISTER LOW (x = 0 to 3)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—		—	_	SAMO	C<9:8>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SAM	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unki		nown		

bit 9-0 SAMC<9:0>: Dedicated ADC Core x Conversion Delay Selection bits These bits determine the time between the trigger event and the start of conversion in the number of the Core Clock Periods (TADCORE). During this time, the ADC Core x still continues sampling. This feature is enabled by the SAMCxEN bits in the ADCON4L register. 111111111 = 1025 TADCORE

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
<l

REGISTER 22-15: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	EIEN<15:8>									
bit 15	bit 15 b									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			EIEN	<7:0>						
bit 7							bit 0			
Legend:										

Legena.			
R = Readable bit W = Writable bit		U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 EIEN<15:0>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 22-16: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15 bit 8								

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—		EIEN<21:16>							
bit 7							bit 0			

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit,	J = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-6 Unimplemented: Read as '0'

bit 5-0 EIEN<21:16>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

23.0 CONTROLLER AREA NETWORK (CAN) MODULE (dsPIC33EPXXXGS80X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

23.1 Overview

The Controller Area Network (CAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/ protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGS80X devices contain two CAN modules.

The CAN module is a communication controller, implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The CAN module features are as follows:

- Implementation of the CAN Protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and Extended Data Frames
- 0-8 Bytes of Data Length
- Programmable Bit Rate, up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to 8 Transmit Buffers with Application Specified Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (Standard/Extended Identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback mode supports Self-Test Operation
- Signaling via Interrupt Capabilities for All CAN Receiver and Transmitter Error States
- Programmable Clock Source
- Programmable Link to Input Capture 2 (IC2) module for Timestamping and Network Synchronization
- Low-Power Sleep and Idle modes

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

24.3 Module Applications

This module provides a means for the SMPS dsPIC[®] DSC devices to monitor voltage and currents in a power conversion application. The ability to detect transient conditions and stimulate the dsPIC DSC processor and/or peripherals, without requiring the processor and ADC to constantly monitor voltages or currents, frees the dsPIC DSC to perform other tasks.

The comparator module has a high-speed comparator and an associated 12-bit DAC that provides a programmable reference voltage to the inverting input of the comparator. The polarity of the comparator output is user-programmable. The output of the module can be used in the following modes:

- Generate an Interrupt
- Trigger an ADC Sample and Convert Process
- Truncate the PWMx Signal (current limit)
- Truncate the PWMx Period (current minimum)
- Disable the PWMx Outputs (Fault latch)

The output of the comparator module may be used in multiple modes at the same time, such as: 1) generate an interrupt, 2) have the ADC take a sample and convert it, and 3) truncate the PWMx output in response to a voltage being detected beyond its expected value.

The comparator module can also be used to wake-up the system from Sleep or Idle mode when the analog input voltage exceeds the programmed threshold voltage.

24.4 Digital-to-Analog Comparator (DAC)

Each analog comparator has a dedicated 12-bit DAC that is used to program the comparator threshold voltage via the CMPxDAC register. The DAC voltage reference source is selected using the EXTREF and RANGE bits in the CMPxCON register.

The EXTREF bit selects either the external voltage reference, EXTREFx, or an internal source as the voltage reference source. The EXTREFx input enables users to connect to a voltage reference that better suits their application. The RANGE bit enables AVDD as the voltage reference source for the DAC when an internal voltage reference is selected.

Note: EXTREF2 is not available on all devices.

Each DACx has an output enable bit, DACOE, in the CMPxCON register that enables the DACx reference voltage to be routed to an external output pin (DACOUTx). Refer to Figure 24-1 for connecting the DACx output voltage to the DACOUTx pins.

Note 1:	Ensure that multiple DACOE bits are not
	set in software. The output on the
	DACOUTx pin will be indeterminate if
	multiple comparators enable the DACx
	output.

2: DACOUT2 is not available on all devices.

24.5 Pulse Stretcher and Digital Logic

The analog comparator can respond to very fast transient signals. After the comparator output is given the desired polarity, the signal is passed to a pulse stretching circuit. The pulse stretching circuit has an asynchronous set function and a delay circuit that ensures the minimum pulse width is three system clock cycles wide to allow the attached circuitry to properly respond to a narrow pulse event.

The pulse stretcher circuit is followed by a digital filter. The digital filter is enabled via the FLTREN bit in the CMPxCON register. The digital filter operates with the clock specified via the FCLKSEL bit in the CMPxCON register. The comparator signal must be stable in a high or low state, for at least three of the selected clock cycles, for it to pass through the digital filter.

30.0 ELECTRICAL CHARACTERISTICS

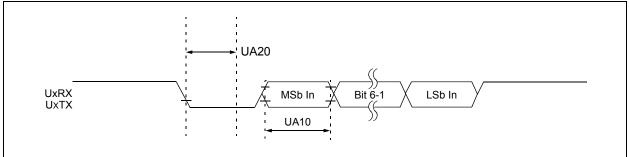
This section provides an overview of the dsPIC33EPXXXGS70X/80X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXXGS70X/80X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	15 mA
Maximum current sunk/sourced by any 8x I/O pin	25 mA
Maximum current sunk by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.


TABLE 30-23: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SY00	Tpu	Power-up Period	_	400	600	μS			
SY10	Тоѕт	Oscillator Start-up Time	—	1024 Tosc	_	—	Tosc = OSC1 period		
SY12	Twdt	Watchdog Timer Time-out Period		_	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-21) at +85°C		
			3.25	_	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-21) at +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS			
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μS			
SY30	TBOR	BOR Pulse Width (low)	1			μS			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS	-40°C to +85°C		
SY36	Tvreg	Voltage Regulator Standby-to-Active mode Transition Time	—	_	30	μS			
SY37	Toscdfrc	FRC Oscillator Start-up Delay	_	48	_	μS			
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	—	—	70	μS			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

FIGURE 30-32: UARTX MODULE I/O TIMING CHARACTERISTICS

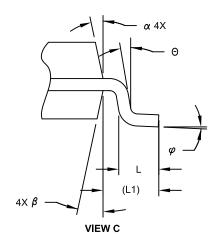
TABLE 30-50: UARTX MODULE I/O TIMING REQUIREMENTS

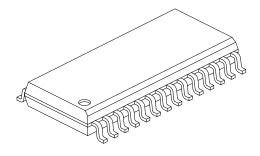
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No. Symbol Characteristic ⁽¹⁾		Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
UA10	TUABAUD	UARTx Baud Time	66.67	_	_	ns		
UA11	FBAUD	UARTx Baud Frequency	—		15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 30-51: ANALOG CURRENT SPECIFICATIONS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Condition			Conditions	
AVD01	IDD	Analog Modules Current Consumption	_	9	_		Characterized data with the following modules enabled: APLL, 5 ADC Cores, 2 PGAs and 4 Analog Comparators


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		1.27 BSC				
Overall Height	A	-	-	2.65			
Molded Package Thickness	A2	2.05	-	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E		10.30 BSC				
Molded Package Width	E1	7.50 BSC					
Overall Length	D	17.90 BSC					
Chamfer (Optional)	h	0.25	-	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1		1.40 REF				
Lead Angle	Θ	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.18	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2