

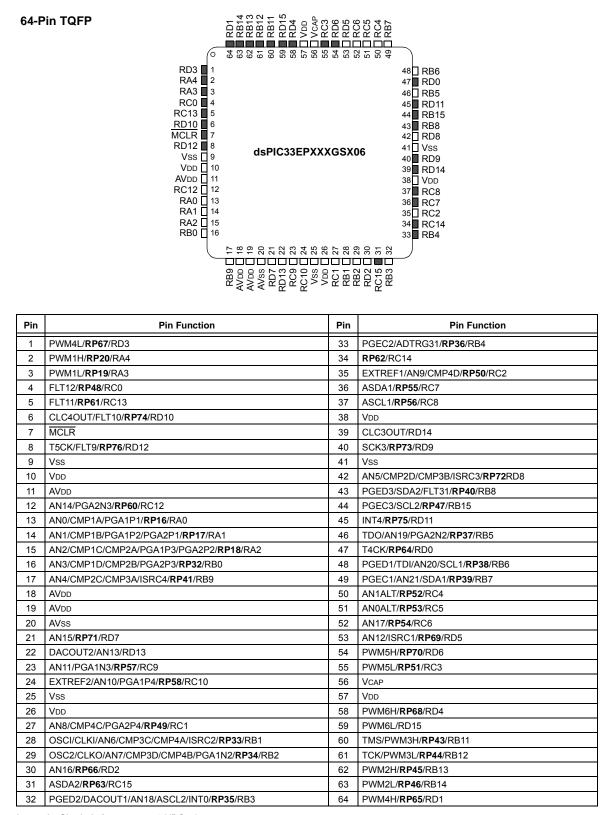
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Dectano	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	67
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs808t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.

Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description
U2CTS	I	ST	Yes	UART2 Clear-to-Send.
U2RTS	0	—	Yes	UART2 Ready-to-Send.
U2RX		ST	Yes	UART2 receive.
U2TX	0		Yes	UART2 transmit.
BCLK2	0	ST	Yes	UART2 IrDA baud clock output.
SCK1	I/O	ST	Yes	Synchronous serial clock input/output for SPI1.
SDI1		ST	Yes	SPI1 data in.
SDO1	0		Yes	SPI1 data out.
SS1	I/O	ST	Yes	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2	I	ST	Yes	SPI2 data in.
SDO2	0	—	Yes	SPI2 data out.
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
SCK3	I/O	ST	Yes ⁽³⁾	Synchronous serial clock input/output for SPI3.
SDI3	1	ST	Yes	SPI3 data in.
SDO3	0	—	Yes	SPI3 data out.
SS3	I/O	ST	Yes	SPI3 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.
TMS	I	ST	No	JTAG Test mode select pin.
ТСК	I	ST	No	JTAG test clock input pin.
TDI	1	ST	No	JTAG test data input pin.
TDO	0	—	No	JTAG test data output pin.
FLT1-FLT8	1	ST	Yes	PWM Fault Inputs 1 through 8.
FLT9-FLT12	I	ST	No	PWM Fault Inputs 9 through 12.
PWM1L-PWM3L	0	_	No	PWM Low Outputs 1 through 3.
PWM1H-PWM3H	0	—	No	PWM High Outputs 1 through 3.
PWM4L-PWM8L ⁽²⁾	0	—	Yes	PWM Low Outputs 4 through 8.
PWM4H-PWM8H ⁽²⁾	0	—	Yes	PWM High Outputs 4 through 8.
SYNCI1, SYNCI2	I.	ST	Yes	PWM Synchronization Inputs 1 and 2.
SYNCO1, SYNCO2	0		Yes	PWM Synchronization Outputs 1 and 2.
Legend: CMOS = C				
ST = Schm	itt Trigg	jer input	with CN	IOS levels O = Output I = Input

TABLE 1-1. PINOUT I/O DESCRIPTIONS (CONTINUED)

PPS = Peripheral Pin Select TTL = TTL input buffer 1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

2: PWM4H/L through PWM8H/L are fixed on dsPIC33EPXXXGS708/808 devices. PWM4H/L through PWM6H/L are fixed on dsPIC33EPXXXGS706/806 devices.

3: The SCK3 pin is fixed on dsPIC33EPXXXGS706/806 and dsPIC33EPXXXGS708/808 devices.

4: PPS is available on dsPIC33EPXXXGS702 devices only.

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	
TRAPF	R IOPUWR	_		VREGSF		CM	VREGS	
bit 15	•						bit	
D #44.0	D M U O	Date	D 444 0	D 444 A	D 444 0	D 444 4		
R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR	
bit 7							bit	
Legend:								
R = Reada	able bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown	
bit 15	TRAPR: Trap	Reset Flag bit						
		onflict Reset ha						
		onflict Reset ha						
bit 14		gal Opcode or		-		-		
		 An illegal opcode detection, an illegal address mode or Uninitialized W register used as an Address Pointer caused a Reset 						
		l opcode or Uni		egister Reset h	as not occurre	d		
bit 13-12	-	nted: Read as '0		- 3		-		
bit 11	•	ash Voltage Reg		by During Slee	p bit			
		Itage regulator i						
		0 = Flash voltage regulator goes into Standby mode during Sleep						
bit 10	Unimplemer	nted: Read as 'o	2					
bit 9	CM: Configu	ration Mismatch	Flag bit					
	Ų	uration Mismatc uration Mismatc						
bit 8	VREGS: Volt	age Regulator S	Standby Durir	ng Sleep bit				
	•	regulator is activ	•	•				
	-	regulator goes in	-	mode during Sl	еер			
bit 7		nal Reset (MCLI	,					
		Clear (pin) Res Clear (pin) Res						
bit 6		are RESET (Instr						
		instruction has						
		instruction has						
bit 5	SWDTEN: Se	oftware Enable/I	Disable of W	DT bit ⁽²⁾				
	1 = WDT is e							
	0 = WDT is d							
bit 4		hdog Timer Tim	•	IT				
		e-out has occurr e-out has not oc						
Note 1:	All of the Reset sta cause a device Re		set or cleare	d in software. S	Setting one of th	nese bits in soft	ware does no	
2:	If the WDTEN<1:0 of the SWDTEN b	se a device Reset. e WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardle the SWDTEN bit potting						

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

© 2016-2017 Microchip Technology Inc.

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

7.3.1 KEY RESOURCES

- "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

7.4 Interrupt Control and Status Registers

dsPIC33EPXXXGS70X/80X family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior, contains the Global Interrupt Enable bit (GIE) and the Alternate Interrupt Vector Table Enable bit (AIVTEN).

INTCON3 contains the status flags for the Auxiliary PLL and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap Status bit (SGHT).

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of seven priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number of Pending Interrupt bits (VECNUM<7:0>) and New CPU Interrupt Priority Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP<2:0> bits in the first position of IPC0 (IPC0<2:0>).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "dsPIC33E Enhanced CPU" (DS70005158) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

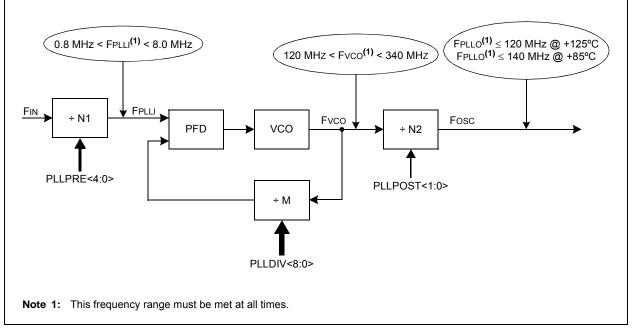
R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0				
GIE	DISI	SWTRAP	_	_	_		AIVTEN				
bit 15					4		bit 8				
U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
_			INT4EP	—	INT2EP	INT1EP	INT0EP				
bit 7							bit C				
Legend:						(a)					
R = Readable		W = Writable		-	emented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown				
bit 15	CIE: Clobal	Interrupt Enable	hit								
DIL 15		Interrupt Enable s and associate		nabled							
		s are disabled,									
bit 14	DISI: DISI	nstruction Statu	s bit								
	1 = DISI ins	struction is activ	е								
		struction is not a									
bit 13		Software Trap St									
		e trap is enabled e trap is disabled									
bit 12-9		nted: Read as '									
bit 8	-	ernate Interrupt		Enable							
		ernate Interrupt									
		andard Interrupt									
bit 7-5	Unimpleme	nted: Read as '	0'								
bit 4	INT4EP: Ext	ternal Interrupt 4	Edge Detect	Polarity Selec	ct bit						
	 1 = Interrupt on negative edge 0 = Interrupt on positive edge 										
h:+ 0	-										
bit 3	-	nted: Read as '		Delarity Color	at bit						
bit 2	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit										
		1 = Interrupt on negative edge0 = Interrupt on positive edge									
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit										
1 = Interrupt on negative edge											
	-	on positive edg									
bit 0		ternal Interrupt (-	Polarity Selec	ct bit						
		on negative ed									
	0 = interrupt	on positive edg	e								

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

9.1 CPU Clocking System

The dsPIC33EPXXXGS70X/80X family of devices provides six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (FRCPLL)
- FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL (XTPLL, HSPLL, ECPLL)
- Low-Power RC (LPRC) Oscillator



Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.

EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Figure 9-2 is a block diagram of the PLL module. Equation 9-2 provides the relationship between Input Frequency (FIN) and Output Frequency (FPLLO). Equation 9-3 provides the relationship between Input Frequency (FIN) and VCO Frequency (FVCO).

EQUATION 9-2: FPLLO CALCULATION

$$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{PLLDIV < 8:0 > + 2}{(PLLPRE < 4:0 > + 2) \times 2(PLLPOST < 1:0 > + 1)}\right)$$

Where:

N1 = PLLPRE < 4:0 > +2

N2 = 2 x (PLLPOST < 1:0 > +1)

M = PLLDIV < 8:0 > +2

EQUATION 9-3: Fvco CALCULATION

$$F_{VCO} = F_{IN} \times \left(\frac{M}{N1}\right) = F_{IN} \times \left(\frac{PLLDIV < 8:0 > +2}{(PLLPRE < 4:0 > +2)}\right)$$

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select x (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select x registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.8 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

11.8.1 KEY RESOURCES

- "I/O Ports" (DS70000598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

11.9 Peripheral Pin Select Registers

REGISTER 11-9: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	—	—	_
bit 7	·	•	•	•			bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8INT1R<7:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.bit 7-0Unimplemented: Read as '0'

REGISTER 11-10: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| INT2R7 | INT2R6 | INT2R5 | INT2R4 | INT2R3 | INT2R2 | INT2R1 | INT2R0 |
| bit 7 | | | | • | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **INT2R<7:0>:** Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

-n = Value at POR (1' = Bi		'1' = Bit is set	'0' = Bit is cleared		ared	x = Bit is unknown	
R = Readable bit W =		W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
Legend:							
bit 7	•	1	•	•			bit (
IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-8	IC2R<7:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits
	See Table 11-11 which contains a list of remappable inputs for the index value.
bit 7-0	IC1R<7:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pin bits
	See Table 11-11 which contains a list of remappable inputs for the index value.

REGISTER 11-14: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC4R7	IC4R6	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IC3R7 | IC3R6 | IC3R5 | IC3R4 | IC3R3 | IC3R2 | IC3R1 | IC3R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8IC4R<7:0>: Assign Input Capture 4 (IC4) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.bit 7-0IC3R<7:0>: Assign Input Capture 3 (IC3) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

	U-0	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0			
R/W-0 ENFLTA	U-0				OCISELU	_		
ENFLTA	U-0						bit	
ENFLTA	00	U-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	
bit 7	_		OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	
							bit	
Legend:		USC - Hardwa	are Settable/Cle	arablo bit				
R = Readab	lo hit	W = Writable b			ented bit, read a	ae 'O'		
-n = Value a		'1' = Bit is set	п	'0' = Bit is clea		x = Bit is unkr		
							101111	
bit 15-14	Unimpleme	ented: Read as '0	,					
bit 13	OCSIDL: 0	utput Compare x	Stop in Idle Mo	de Control bit				
	1 = Output	Compare x halts	in CPU Idle mo	de				
	0 = Output	Compare x contir	ues to operate	in CPU Idle mo	de			
bit 12-10	OCTSEL<2	:0>: Output Com	oare x Clock Se	lect bits				
	111 = Peripheral clock (FP)							
		110 = Reserved						
	101 = Rese		was of the OCy					
		K is the clock sou			Ironous clock is	supported)		
		K is the clock sou						
		K is the clock sou						
	000 = T2CL	K is the clock sou	urce of the OCx					
bit 9-8	Unimpleme	ented: Read as '0	,					
bit 7	ENFLTA: Fa	ault A Input Enabl	e bit					
	1 = Output Compare Fault A input (OCFA) is enabled							
	0 = Output	Compare Fault A	input (OCFA) is	s disabled				
bit 6-5	Unimpleme	ented: Read as '0	,					
bit 4	OCFLTA: P	WM Fault A Cond	lition Status bit					
		ault A condition c						
	0 = No PW	M Fault A condition	on on the OCFA	pin has occurre	ed			
bit 3		: Trigger Status N						
		TAT (OCxCON2<	,	/hen OCxRS = (OCxTMR or in s	oftware		
	0 = TRIGS	TAT is cleared on	y by software					

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

REGISTER 16-5: STCON: PWMx SECONDARY MASTER TIME BASE CONTROL REGISTER

U-0	U-0	U-0	R-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	_	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL	SYNCOEN		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0		
bit 7							bit		
Legend:	. 1. 11		are Settable/Cle			1			
R = Readable		W = Writable		•	nented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-13	Unimplomon	ted: Read as '	``						
bit 12	-	cial Event Inter							
			interrupt is pen	dina					
			interrupt is not						
bit 11	SEIEN: Speci	ial Event Interru	upt Enable bit						
			interrupt is ena						
		• •	interrupt is disa						
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾ 1 = Active Secondary Period register is updated immediately								
						ndaries			
bit 9	 0 = Active Secondary Period register updates occur on PWMx cycle boundaries SYNCPOL: Synchronize Input and Output Polarity bit 1 = SYNCIx/SYNCO2 polarity is inverted (active-low) 								
	0 = SYNCIx/S	SYNCO2 polari	ty is active-high						
bit 8		-	ter Time Base S	Synchronizatio	n Enable bit				
		output is enabl output is disab							
bit 7		-	iry Master Time	Rase Synchro	nization Enabl	e hit			
			of secondary ti	-					
			of secondary ti						
bit 6-4	SYNCSRC<2	:0>: Secondar	y Time Base Sy	nc Source Sel	ection bits				
	111 = Reserv								
	101 = Reserved								
	100 = Reserved 011 = PTG Trigger Output 17								
	010 = PTG Trigger Output 16								
	001 = SYNCI2								
hit 2 0	 3-0 SEVTPS<3:0>: PWMx Secondary Special Event Trigger Output Postscaler Select bi 								
bit 3-0	1111 = 1:16 p		nuary opecial E						
	0001 = 1:2 pc								
	•								
	•								

Note 1: This bit only applies to the secondary master time base period.

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
HRPDIS	HRDDIS			BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSELO
bit 15	TIRDDIG			DEANICOLLU	DEANICOLLZ	DEANINOLLI	bit 8
							5110
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7					•		bit 0
Lonondi							
Legend: R = Readable	bit	W = Writable b	nit	II – I Inimplem	nented bit, read	as '0'	
-n = Value at		'1' = Bit is set	JIL	$0^{\circ} = \text{Bit is clear}$		x = Bit is unkn	iown
		1 – Dit 13 3et			area		
bit 15	1 = High-reso	n-Resolution PV lution PWMx pe lution PWMx pe	eriod is disable	d to reduce po	wer consumpti	on	
bit 14	•	n-Resolution P\					
		lution PWMx dเ lution PWMx dเ			e power consur	nption	
bit 13-12	-	ted: Read as '0	• •				
bit 11-8	BLANKSEL<	3:0>: PWMx St	ate Blank Sou	rce Select bits			
	0111 = PWM 0110 = PWM 0101 = PWM 0100 = PWM 0011 = PWM 0011 = PWM	8H is selected a 7H is selected a 6H is selected a 5H is selected a 4H is selected a 3H is selected a 2H is selected a 1H is selected a	as the state bla as the state bla	ank source ank source ank source ank source ank source ank source			
bit 7-6	-	ted: Read as '0					
bit 5-2		:0>: PWMx Cho	•				
	The selected signal will enable and disable (chop) the selected PWMx outputs. 1001 = Reserved 1000 = PWM8H is selected as the chop clock source 0111 = PWM7H is selected as the chop clock source 0110 = PWM6H is selected as the chop clock source 0101 = PWM5H is selected as the chop clock source 0100 = PWM4H is selected as the chop clock source 0011 = PWM3H is selected as the chop clock source 0010 = PWM2H is selected as the chop clock source 0010 = PWM2H is selected as the chop clock source 0001 = PWM1H is selected as the chop clock source 0001 = PWM1H is selected as the chop clock source						
bit 1	CHOPHEN: P	WMxH Output	Chopping Ena	ble bit			
		hopping functic					
bit 0	CHOPLEN: P	WMxL Output (Chopping Enal	ole bit			

REGISTER 16-26: AUXCONx: PWMx AUXILIARY CONTROL REGISTER (x = 1 to 8)

REGISTER 22-26: ADTRIGxL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW (x = 0 to 5) (CONTINUED)

bit 4-0 TRGSRC(4x)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits 11111 = ADTRG31 11110 = PTG Trigger Output 30 11101 = PWM Generator 6 current-limit trigger 11100 = PWM Generator 5 current-limit trigger 11011 = PWM Generator 4 current-limit trigger 11010 = PWM Generator 3 current-limit trigger 11001 = PWM Generator 2 current-limit trigger 11000 = PWM Generator 1 current-limit trigger 10111 = Output Compare 2 trigger 10110 = Output Compare 1 trigger 10101 = CLC2 output 10100 = PWM Generator 6 secondary trigger 10011 = PWM Generator 5 secondary trigger 10010 = PWM Generator 4 secondary trigger 10001 = PWM Generator 3 secondary trigger 10000 = PWM Generator 2 secondary trigger 01111 = PWM Generator 1 secondary trigger 01110 = PWM secondary Special Event Trigger 01101 = Timer2 period match 01100 = Timer1 period match 01011 = CLC1 output 01010 = PWM Generator 6 primary trigger 01001 = PWM Generator 5 primary trigger 01000 = PWM Generator 4 primary trigger 00111 = PWM Generator 3 primary trigger 00110 = PWM Generator 2 primary trigger 00101 = PWM Generator 1 primary trigger 00100 = PWM Special Event Trigger 00011 = Reserved 00010 = Level software trigger 00001 = Common software trigger

00000 = No trigger is enabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	F7MSK<1:0>: Mask Source for Filter 7 bits								
	11 = Reserved								
		0 = Acceptance Mask 2 registers contain mask							
		nce Mask 1 reg	5						
h:+ 40 40		nce Mask 0 re	5		hite 15 (1)				
bit 13-12				`	s as bits 15-14)				
bit 11-10	F5MSK<1:0>	·: Mask Source	for Filter 5 bit	ts (same value:	s as bits 15-14)				
bit 9-8	F4MSK<1:0>	: Mask Source	for Filter 4 bit	ts (same value	s as bits 15-14)				
bit 7-6	F3MSK<1:0>	: Mask Source	for Filter 3 bit	ts (same value	s as bits 15-14)				
bit 5-4	F2MSK<1:0>	: Mask Source	for Filter 2 bit	ts (same values	s as bits 15-14)				
bit 3-2	F1MSK<1:0>	: Mask Source	for Filter 1 bit	ts (same value	s as bits 15-14)				

REGISTER 23-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

bit 1-0 FUMSK<1:0>: Mask Source for Filler 0 bits (same values as bits 15-14)	bit 1-0	FOMSK<1:0>: Mask Source for Filter 0 bits (same values as bits 15-14)
---	---------	---

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1	
bit 15	·			-			bit 8	
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-10	EID<5:0>: Extended Identifier bits							
bit 9	RTR: Remote Transmission Request bit							
	When IDE = 1:							
	1 = Message will request remote transmission							
	0 = Normal message							
	When IDE = 0:							
	The RTR bit i	s ignored.						
bit 8	RB1: Reserv	ed Bit 1						

BUFFER 21-3: CANx MESSAGE BUFFER WORD 2

bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

BUFFER 21-4: CANx MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	1<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	0<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit		id as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknowr			nown	

bit 15-8	Byte 1<15:8>: CANx Message Byte 1 bits
bit 7-0	Byte 0<7:0>: CANx Message Byte 0 bits

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

TABLE 30-55: DACx MODULE SPECIFICATIONS

AC/DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(2)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments
DA01	EXTREF	External Voltage Reference ⁽¹⁾	1	_	AVdd	V	
DA02	CVRES	Resolution		12		bits	
DA03	INL	Integral Nonlinearity Error	-16	-12	0	LSB	
DA04	DNL	Differential Nonlinearity Error	-1.8	±1	1.8	LSB	
DA05	EOFF	Offset Error	-8	3	15	LSB	
DA06	EG	Gain Error	-1.2	-0.5	0	%	
DA07	TSET	Settling Time ⁽¹⁾	—	700	_	ns	Output with 2% of desired output voltage with a 10-90% or 90-10% step

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments
DA11	RLOAD	Resistive Output Load Impedance	10K		—	Ohm	
DA11a	CLOAD	Output Load Capacitance	_		35	pF	Including output pin capacitance
DA12	Ιουτ	Output Current Drive Strength	_	300	—	μA	Sink and source
DA13	VRANGE	Output Drive Voltage Range at Current Drive of 300 µA	AVss + 250 mV		AVDD – 900 mV	V	
DA14	VLRANGE	Output Drive Voltage Range at Reduced Current Drive of 50 µA	AVss + 50 mV	_	AVDD – 500 mV	V	
DA15	IDD	Current Consumed when Module is Enabled		_	1.3 x IOUT	μA	Module will always consume this current, even if no load is connected to the output
DA30	VOFFSET	Input Offset Voltage		±5		mV	

TABLE 30-56: DACX OUTPUT (DACOUTX PIN) SPECIFICATIONS

Note 1: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

SPIx Slave, Frame Master Connection	
SPIx Slave, Frame Slave Connection	
Suggested Oscillator Circuit Placement	
Timerx (x = 2 through 5)	
Type B/Type C Timer Pair (32-Bit Timer)	
UARTx Module	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	347, 355

С

C Compilers	
MPLAB XC	. 372
CAN Module	
Control Registers	. 309
Message Buffers	
Word 0	
Word 1	
Word 2	
Word 3	
Word 4	
Word 5	
Word 6	
Word 7	
Modes of Operation	
Overview	
CAN Module (CAN)	. 307
CLC	
Control Registers	. 262
Code Examples	
Port Write/Read	. 130
PWM Write-Protected Register	
Unlock Sequence	
PWRSAV Instruction Syntax	
Code Protection	357
CodeGuard Security	357
Configurable Logic Cell (CLC)	. 259
Configurable Logic Cell. See CLC.	
Configuration Bits	. 347
Description	
Configuration Register Map	
Constant-Current Source	
Control Register	
Description	
Features Overview	
Controller Area Network. See CAN.	. 040
CPU	
Addressing Modes	21
Clocking System Options	
Fast RC (FRC) Oscillator	
FRC Oscillator with PLL (FRCPLL)	
FRC Oscillator with Postscaler	
Low-Power RC (LPRC) Oscillator	
Primary (XT, HS, EC) Oscillator	. 105
Primary Oscillator with PLL	
(XTPLL, HSPLL, ECPLL)	
Control Registers	
Data Space Addressing	
Instruction Set	
Registers	21
Resources	
Customer Change Notification Service	
Customer Notification Service	. 474
Customer Support	. 474

D

Data Address Space	
Memory Map for dsPIC33EP64GS70X/80X	
Devices	38
Near Data Space	37
Organization, Alignment	37
SFR Space	
Width	
Data Space	
Extended X	50
Paged Data Memory Space (figure)	
Paged Memory Scheme	
DC Characteristics	
Brown-out Reset (BOR)	
Constant-Current Source Specifications	
DACx Output (DACOUTx Pin) Specifications	
Doze Current (IDOZE)	381
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
Watchdog Timer Delta Current (∆IWDT)	380
DC/AC Characteristics	
Graphs and Tables	435
Demo/Development Boards, Evaluation and	
Starter Kits	374
Development Support	371
Device Calibration	353
Addresses	353
and Identification	
Device Programmer	
MPLAB PM3	373
Direct Memory Access. See DMA.	
DMA Controller	
Channel to Peripheral Associations	00
Control Registers	
DMAxCNT	
DMAxCON	
DMAxPAD	
DMAxREQ	
DMAxSTAL/H	
DMAxSTBL/H	
Supported Peripherals	89
Doze Mode	117
DSP Engine	
5	
E	
Electrical Characteristics	
AC	
Equations	
Device Operating Frequency	105
FPLLO Calculation	
Fvco Calculation	105
Relationship Between Device and SPIx	

Timing Diagrams	
BOR and Master Clear Reset Characteristics	391
CANx I/O	426
External Clock	388
High-Speed PWMx Fault Characteristics	397
High-Speed PWMx Module Characteristics	397
I/O Characteristics	
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	424
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	424
Input Capture x (ICx) Characteristics	
OCx/PWMx Characteristics	
Output Compare x (OCx) Characteristics	
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,	
CKE = 0, CKP = x, SMP = 1)	401
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,	
CKE = 1, CKP = x, SMP = 1)	400
SPI1, SPI2 and SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	398
SPI1, SPI2 and SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	399
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 0, CKP = 0, SMP = 0)	408
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 0, CKP = 1, SMP = 0)	406
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 0, SMP = 0)	402
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 1, SMP = 0)	404
SPI3 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	413
SPI3 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	412
SPI3 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	410
SPI3 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	411
SPI3 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	420
SPI3 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	418
SPI3 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	414
SPI3 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	416
Timer1-Timer5 External Clock Characteristics	
UARTx I/O Characteristics	

U

UART	
Unique Device Identifier (UDID) 32	2
Universal Asynchronous Receiver	
Transmitter (UART) 253	5
Control Registers 255	;
Helpful Tips 254	ŀ
Resources 254	ŀ
Universal Asynchronous Receiver Transmitter. See UART.	
User OTP Memory 355	;
V	
Voltage Regulator (On-Chip) 355	;
W	
Watchdog Timer (WDT)	5
Programming Considerations	
WWW Address	

WWW, On-Line Support 10

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoq, KEELoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016-2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1251-9