

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs804-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.6 Control Registers

Five SFRs are used to write and erase the Program Flash Memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADR/H.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program, Inactive Partition erase), initiates the program or erase cycle and is used to determine the Active Partition in Dual Partition modes.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations, or the selected page for erase operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

For row programming operation, data to be written to Program Flash Memory is written into data memory space (RAM) at an address defined by the NVMSRCADR register (location of first element in row programming data).

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
_		—	—	—	CMPMD	—	_
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
	—	—	—	—	—	I2C2MD	—
bit 7							bit 0
Legend:							

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-11	Unimplemented: Read as '0'
bit 10	CMPMD: Comparator Module Disable bit
	 1 = Comparator module is disabled 0 = Comparator module is enabled
bit 9-2	Unimplemented: Read as '0'
bit 1	I2C2MD: I2C2 Module Disable bit
	1 = I2C2 module is disabled0 = I2C2 module is enabled
bit 0	Unimplemented: Read as '0'

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4 Unimplemented: I	Read as '0'
bit 3 REFOMD: Referen	ce Clock Module Disable bit
1 = Reference cloc	k module is disabled
0 = Reference cloc	k module is enabled
bit 2-0 Unimplemented:	Read as '0'

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U2CTSR7 | U2CTSR6 | U2CTSR5 | U2CTSR4 | U2CTSR3 | U2CTSR2 | U2CTSR1 | U2CTSR0 |
| bit 15 | | | | | | | bit 8 |

REGISTER 11-19: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| U2RXR7 | U2RXR6 | U2RXR5 | U2RXR4 | U2RXR3 | U2RXR2 | U2RXR1 | U2RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 **U2CTSR<7:0>:** Assign UART2 Clear-to-Send (U2CTS) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

bit 7-0 **U2RXR<7:0>:** Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

REGISTER 11-20: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SCK1INR7 | SCK1INR6 | SCK1INR5 | SCK1INR4 | SCK1INR3 | SCK1INR2 | SCK1INR1 | SCK1INR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SDI1R7 | SDI1R6 | SDI1R5 | SDI1R4 | SDI1R3 | SDI1R2 | SDI1R1 | SDI1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **SCK1INR<7:0>:** Assign SPI1 Clock Input (SCK1) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

bit 7-0 **SDI1R<7:0>:** Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

REGISTER 11-37: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit 15 bit 15 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — RP35R6 RP35R5 RP35R4 RP35R3 RP35R2 RP35R1 RP35R0								
bit 15 Image: constraint of the second constraint	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U-0 R/W-0 R		RP36R6	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
— RP35R6 RP35R5 RP35R4 RP35R3 RP35R2 RP35R1 RP35R0 bit 7	bit 15		·					bit 8
— RP35R6 RP35R5 RP35R4 RP35R3 RP35R2 RP35R1 RP35R0 bit 7								
bit 7 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)		RP35R6	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)	bit 7	•						bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' x = Bit is unknown bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)	Legend:							
bit 15 Unimplemented: Read as '0' bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)	R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		
bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)								
(see Table 11-13 for peripheral function numbers)	bit 15	Unimplemen	ted: Read as '	0'				
bit 7 Unimplemented: Read as '0'	bit 14-8			•	•	RP36 Output F	Pin bits	
	bit 7	Unimplemented: Read as '0'						

bit 6-0 **RP35R<6:0>:** Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-38: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP38R6	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP37R6	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	כי				
bit 14-8					RP38 Output P		

- (see Table 11-13 for peripheral function numbers)
- bit 7 Unimplemented: Read as '0'
- bit 6-0 **RP37R<6:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-13 for peripheral function numbers)

U-0	R/W-0						
—	RP40R6	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
bit 15							bit 8
U-0	R/W-0						
—	RP39R6	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0
bit 7							bit 0

REGISTER 11-39: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-8	RP40R<6:0>: Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'
bit 6-0	RP39R<6:0>: Peripheral Output Function is Assigned to RP39 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-40: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	RP43R6	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	RP41R6	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0
bit 7		•	•	•		•	bit 0
Legend:							
D - Doodable	hit	M = M/ritable	hit	II – Unimplor	monted hit read	aa '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8 **RP43R<6:0>:** Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-13 for peripheral function numbers)

bit 7 Unimplemented: Read as '0'

bit 6-0 **RP41R<6:0>:** Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 11-13 for peripheral function numbers)

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

	U-0	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		
R/W-0 ENFLTA	U-0				OCISELU		
ENFLTA	U-0						bit
ENFLTA	00	U-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
bit 7	_		OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
							bit
Legend:		USC - Hardwa	are Settable/Cle	arablo bit			
R = Readab	lo hit	W = Writable b			ented bit, read a	ae 'O'	
-n = Value a		'1' = Bit is set	п	'0' = Bit is clea		x = Bit is unkr	
							101111
bit 15-14	Unimpleme	ented: Read as '0	,				
bit 13	OCSIDL: 0	utput Compare x	Stop in Idle Mo	de Control bit			
	1 = Output	Compare x halts	in CPU Idle mo	de			
	0 = Output	Compare x contir	ues to operate	in CPU Idle mo	de		
bit 12-10	OCTSEL<2	:0>: Output Com	oare x Clock Se	lect bits			
	111 = Perip	heral clock (FP)					
	110 = Rese						
	101 = Rese		was of the OCy				
		K is the clock sou			Ironous clock is	supported)	
		K is the clock sou					
		K is the clock sou					
	000 = T2CL	K is the clock sou	urce of the OCx				
bit 9-8	Unimpleme	ented: Read as '0	,				
bit 7	ENFLTA: Fa	ault A Input Enabl	e bit				
	1 = Output	Compare Fault A	input (OCFA) is	s enabled			
	0 = Output	Compare Fault A	input (OCFA) is	s disabled			
bit 6-5	Unimpleme	ented: Read as '0	,				
bit 4	OCFLTA: P	WM Fault A Cond	lition Status bit				
		ault A condition c					
	0 = No PW	M Fault A condition	on on the OCFA	pin has occurre	ed		
bit 3		: Trigger Status N					
		TAT (OCxCON2<	,	/hen OCxRS = (OCxTMR or in s	oftware	
	0 = TRIGS	TAT is cleared on	y by software				

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

REGISTER 16-8: SSEVTCMP: PWMx SECONDARY SPECIAL EVENT COMPARE REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVTC	MP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	S	SEVTCMP<4:0)>		—	—	—
bit 7							bit 0
Legend:							

_ogona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 SSEVTCMP<12:0>: Special Event Compare Count Value bits

bit 2-0 Unimplemented: Read as '0'

Note 1: One LSB = 1.04 ns (at fastest auxiliary clock rate); therefore, the minimum SSEVTCMP resolution is 8.32 ns.

REGISTER 16-9: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER⁽¹⁾

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
CHPCLKEN	_	—	—	—	—	CHOPCLK6	CHOPCLK5	
bit 15 b								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15
 CHPCLKEN: Enable Chop Clock Generator bit

 1 = Chop clock generator is enabled
 0 = Chop clock generator is disabled

 bit 14-10
 Unimplemented: Read as '0'

 bit 9-3
 CHOPCLK<6:0>: Chop Clock Divider bits

 Value is in 8.32 ns increments. The frequency of the chop clock signal is given by:

 Chop Frequency = 1/(16.64 * (CHOP<7:3> + 1) * Primary Master PWM Input Clock Period)

bit 2-0 Unimplemented: Read as '0'

Note 1: The chop clock generator operates with the primary PWMx clock prescaler (PCLKDIV<2:0>) in the PTCON2 register (Register 16-2).

REGISTER 16-22: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (x = 1 to 8) (CONTINUED)

bit 7-3	FLTSRC<4:0>: Fault Control Signal Source Select for PWMx Generator bits 11111 = Reserved 10001 = Reserved 10000 = Analog Comparator 4 01111 = Analog Comparator 3 01110 = Analog Comparator 2 01101 = Analog Comparator 1 01100 = Fault 12 01011 = Fault 11 01010 = Fault 11 01010 = Fault 10 01001 = Fault 9 01000 = Fault 8 00111 = Fault 7
	00110 = Fault 7 $00110 = Fault 6$ $00101 = Fault 5$ $00100 = Fault 4$ $00011 = Fault 3$ $00010 = Fault 2$ $00001 = Fault 1$ $00000 = Reserved$
bit 2	FLTPOL: Fault Polarity for PWMx Generator bit ⁽¹⁾ 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode for PWMx Generator bits 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (cycle) 00 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (latched condition)

Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

REGISTER 16-23: STRIGX: PWMX SECONDARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 8)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STRGC	MP<12:5>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
		STRGCMP<4:0	>			_	_	
bit 7							bit (
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-3	When the se	<12:0>: Seconda econdary PWMx ger the ADC mod	functions in th	•		contains the co	mpare values	
bit 2-0		nted: Read as '						

Note 1: STRIGx cannot generate the PWM trigger interrupts.

Step Command	OPTION<3:0>	Option Description
PTGCTRL(1)	0000	Reserved
	0001	Reserved
	0010	Disable PTG Step Delay Timer (PTGSD)
	0011	Reserved
	0100	Reserved
	0101	Reserved
	0110	Enable PTG Step Delay Timer (PTGSD)
	0111	Reserved
	1000	Start and wait for the PTG Timer0 to match the PTG Timer0 Limit register
	1001	Start and wait for the PTG Timer1 to match the PTG Timer1 Limit register
	1010	Reserved
	1011	Wait for software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1)
	1100	Copy contents of the PTG Counter 0 register to the CNVCHSEL<5:0> bits (ADCON3L<5:0>)
	1101	Copy contents of the PTG Counter 1 register to the CNVCHSEL<5:0> bits (ADCON3L<5:0>)
	1110	Copy contents of the PTG Literal 0 register to the CNVCHSEL<5:0> bits (ADCON3L<5:0>)
	1111	Generate the triggers indicated in the PTG Broadcast Trigger Enable register (PTGBTE)
PTGADD ⁽¹⁾	0000	Add contents of PTGADJ register to the PTG Counter 0 Limit register (PTGC0LIM
	0001	Add contents of PTGADJ register to the PTG Counter 1 Limit register (PTGC1LIN
	0010	Add contents of PTGADJ register to the PTG Timer0 Limit register (PTGT0LIM)
	0011	Add contents of PTGADJ register to the PTG Timer1 Limit register (PTGT1LIM)
	0100	Add contents of PTGADJ register to the PTG Step Delay Limit register (PTGSDLIM)
	0101	Add contents of PTGADJ register to the PTG Literal 0 register (PTGL0)
	0110	Reserved
	0111	Reserved
PTGCOPY(1)	1000	Copy contents of PTGHOLD register to the PTG Counter 0 Limit register (PTGC0LIM)
	1001	Copy contents of PTGHOLD register to the PTG Counter 1 Limit register (PTGC1LIM)
	1010	Copy contents of PTGHOLD register to the PTG Timer0 Limit register (PTGT0LIM
	1011	Copy contents of PTGHOLD register to the PTG Timer1 Limit register (PTGT1LIM
	1100	Copy contents of PTGHOLD register to the PTG Step Delay Limit register (PTGSDLIM)
	1101	Copy contents of PTGHOLD register to the PTG Literal 0 register (PTGL0)
	1110	Reserved
	1111	Reserved

TABLE 17-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 17-2 for the trigger output descriptions.

REGISTER 18-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 9	SMP: SPIx Data Input Sample Phase bit
	<u>Master Mode:</u> 1 = Input data is sampled at the end of data output time
	0 = Input data is sampled at the middle of data output time
	Slave Mode:
	Input data is always sampled at the middle of data output time, regardless of the SMP setting.
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾
	 1 = Transmit happens on transition from active clock state to Idle clock state 0 = Transmit happens on transition from Idle clock state to active clock state
bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
	1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6	CKP: Clock Polarity Select bit
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode 0 = Slave mode
bit 4	DISSDI: Disable SDIx Input Port bit
	 1 = SDIx pin is not used by the module; pin is controlled by port function 0 = SDIx pin is controlled by the module
bit 3	DISSCK: Disable SCKx Output Port bit
	 1 = SCKx pin is not used by the module; pin is controlled by port function 0 = SCKx pin is controlled by the module
bit 2	MCLKEN: Master Clock Enable bit ⁽³⁾
	 1 = REFO is used by the Baud Rate Generator (BRG) 0 = Peripheral clock is used by the BRG
bit 1	SPIFE: Frame Sync Pulse Edge Select bit
	 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0	ENHBUF: Enhanced Buffer Enable bit
	 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note 1: 2:	When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value. When $FRMEN = 1$ SSEN is not used

- **2:** When FRMEN = 1, SSEN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_	—	_			_	_			
bit 15							bit 8			
		5 .444.6	54446	5444.6	-	D 444 A				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN			
bit 7							bit 0			
Legend:										
R = Readat	ole bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	iown			
bit 15-7	Unimplemen	ted: Read as 'o	3							
bit 6	PCIE: Stop C	ondition Interru	ot Enable bit (² C Slave mode	only)					
	1 = Enables i	nterrupt on dete	ction of Stop	condition						
	0 = Stop dete	ction interrupts	are disabled							
bit 5	SCIE: Start C	CIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)								
	1 = Enables interrupt on detection of Start or Restart conditions									
		ction interrupts								
bit 4	BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only)									
	 1 = I2CxRCV is updated and ACK is generated for a received address/data byte, ignoring the state of the I2COV only if the RBF bit = 0 									
				is clear						
bit 3		 0 = I2CxRCV is only updated when I2COV is clear SDAHT: SDAx Hold Time Selection bit 								
DIL J	1 = Minimum of 300 ns hold time on SDAx after the falling edge of SCLx									
	0 = Minimum of 100 ns hold time on SDAx after the falling edge of SCLx									
bit 2				-	-	V)				
	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only) 1 = Enables slave bus collision interrupts									
	0 = Slave bus collision interrupts are disabled									
	If the rising edge of SCLx and SDAx is sampled low when the module is in a high state, the BCL bit is									
	set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit sequences									
bit 1		AHEN: Address Hold Enable bit (I ² C Slave mode only)								
	1 = Following the 8th falling edge of SCLx for a matching received address byte, the SCLREL									
	(I2CxCONL<12>) bit will be cleared and SCLx will be held low 0 = Address holding is disabled									
bit 0		-		de only)						
	DHEN: Data Hold Enable bit (I ² C Slave mode only)									
	1 = Following the 8th falling edge of SCLx for a received data byte, the slave hardware clears the SCLREL (I2CxCONL<12>) bit and SCLx is held low									
					i uala Dyle, life	e slave naruwa	ire clears the			

REGISTER 19-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

R-0, HSC R-0. HSC R-0. HSC R-0. HSC R/C-0. HS U-0 U-0 R-0. HSC ACKSTAT ACKTIM ADD10 TRSTAT BCL GCSTAT bit 15 bit 8 R/C-0, HS R/C-0, HS R/C-0, HSC R/C-0, HSC R-0, HSC R-0, HSC R-0, HSC R-0, HSC Ρ IWCOL I2COV DΑ S RW RBF TBF bit 7 bit 0 Legend: C = Clearable bit '0' = Bit is cleared HS = Hardware Settable bit R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit -n = Value at POR '1' = Bit is set U = Unimplemented bit, read as '0' ACKSTAT: Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) bit 15 1 = NACK was received from slave 0 = ACK was received from slave Hardware is set or clear at the end of a slave Acknowledge. **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation) bit 14 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge. bit 13 **ACKTIM:** Acknowledge Time Status bit (I²C Slave mode only) $1 = I^2C$ bus is an Acknowledge sequence, set on the 8th falling edge of SCLx 0 = Not an Acknowledge sequence, cleared on the 9th rising edge of SCLx bit 12-11 Unimplemented: Read as '0' bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation 0 = No bus collision detected Hardware is set at detection of a bus collision. bit 9 GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware is set when address matches the general call address. Hardware is clear at Stop detection. bit 8 ADD10: 10-Bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop detection. bit 7 IWCOL: I2Cx Write Collision Detect bit 1 = An attempt to write to the I2CxTRN register failed because the I²C module is busy $0 = No \ collision$ Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software). I2COV: I2Cx Receive Overflow Flag bit bit 6 1 = A byte was received while the I2CxRCV register was still holding the previous byte 0 = No overflowHardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software). D_A: Data/Address bit (I²C Slave mode only) bit 5 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was a device address Hardware is clear at a device address match. Hardware is set by reception of a slave byte.

REGISTER 2	2-0. ADCC		CONTROL RE	EGISTER 3 H	IGH		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLKSEL1	CLKSEL0	CLKDIV5	CLKDIV4	CLKDIV3	CLKDIV2	CLKDIV1	CLKDIV0
bit 15							bit 8
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
SHREN	—	—	—	C3EN	C2EN	C1EN	C0EN
bit 7							bit 0
Lonondi							
Legend: R = Readable	hit	W = Writable	hit	II – Unimplon	anted hit rea	d oo 'O'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea	nented bit, read	x = Bit is unkr	0.000
	FUR	I - DILIS SEL			areu		IUWII
bit 15-14	11 = APLL 10 = FRC 01 = Fosc (S	>: ADC Module		Selection bits			
bit 13-8	00 = Fsys(S)	/stem Clock) >: ADC Module					
	module clock TCORESRC clo register or the 111111 = 64	source selecte ock to get a con SHRADCS<6 Source Clock P Source Clock P Source Clock P Source Clock P Source Clock P	d by the CLKS re-specific TAD :0> bits in the A Periods eriods eriods eriods eriod	EL<1:0> bits. T	hen, each AD ng the ADCS	ledicated) from C core individua <6:0> bits in the	ally divides the
bit 7	1 = Shared Al	red ADC Core DC core is ena DC core is disa	bled				
bit 6-4	Unimplemen	ted: Read as ')'				
bit 3	C3EN: Dedicated ADC Core 3 Enable bits 1 = Dedicated ADC Core 3 is enabled 0 = Dedicated ADC Core 3 is disabled						
bit 2	1 = Dedicated	ated ADC Core I ADC Core 2 is I ADC Core 2 is	s enabled				
bit 1	1 = Dedicated	ated ADC Core I ADC Core 1 is I ADC Core 1 is	s enabled				
bit 0	1 = Dedicated	ated ADC Core I ADC Core 0 is I ADC Core 0 is	s enabled				

REGISTER 22-6: ADCON3H: ADC CONTROL REGISTER 3 HIGH

REGISTER 23-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

RXFUL<15:8>	R/C-0 bit 8
	bit 8
bit 15	bit 8
R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 I	R/C-0
RXFUL<7:0>	
bit 7	bit 0
bit 7	bit

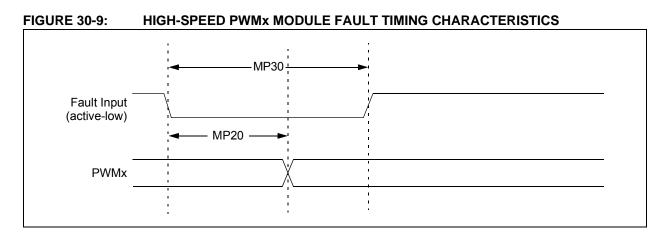
Legend: C = Writable bit, but only '0'		' can be Written to Clear bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

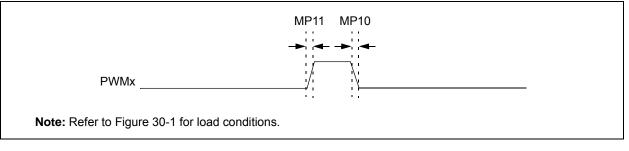
1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 23-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2


R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXFU	_<31:24>				
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXFU	_<23:16>				
bit 7							bit 0	
Legend: C = Writable bit, but only '0' can be Written to Clear bit								
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno		nown		

bit 15-0


RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

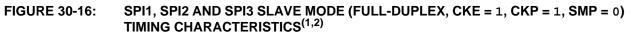
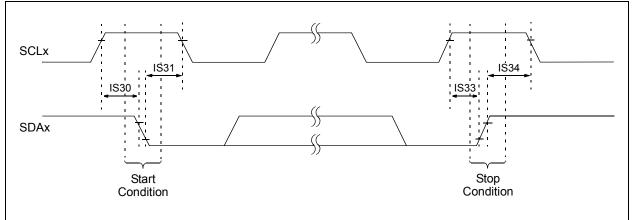
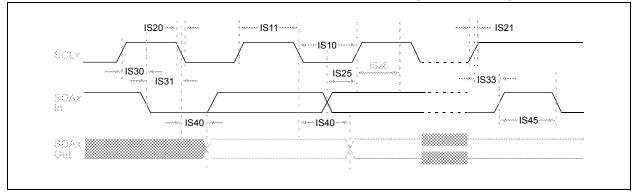

FIGURE 30-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS



TABLE 30-30: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
MP10	TFPWM	PWMx Output Fall Time	_			ns	See Parameter DO32
MP11	TRPWM	PWMx Output Rise Time	—	_	_	ns	See Parameter DO31
MP20	Tfd	Fault Input ↓ to PWMx I/O Change	_	_	15	ns	
MP30	Tfh	Fault Input Pulse Width	15	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.



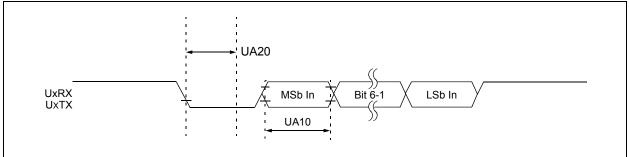

FIGURE 30-29: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

FIGURE 30-32: UARTX MODULE I/O TIMING CHARACTERISTICS

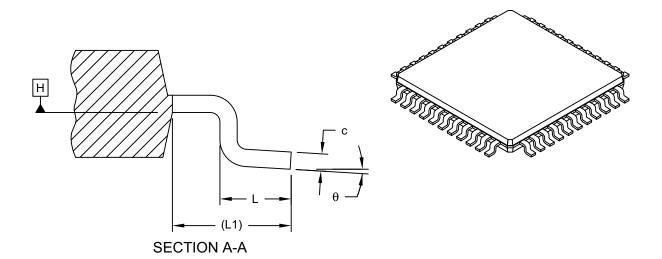
TABLE 30-50: UARTX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
UA10	TUABAUD	UARTx Baud Time	66.67	_	_	ns			
UA11	FBAUD	UARTx Baud Frequency	—		15	Mbps			
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_		ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 30-51: ANALOG CURRENT SPECIFICATIONS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
AVD01	IDD	Analog Modules Current Consumption	_	9			Characterized data with the following modules enabled: APLL, 5 ADC Cores, 2 PGAs and 4 Analog Comparators

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

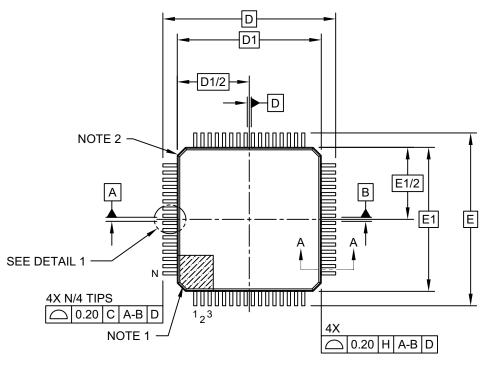
	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Leads	Ν	44				
Lead Pitch	е	0.80 BSC				
Overall Height	Α	-	-	1.20		
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Overall Width	E	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Width	b	0.30	0.37	0.45		
Lead Thickness	С	0.09	-	0.20		
Lead Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	θ	0°	3.5°	7°		

Notes:

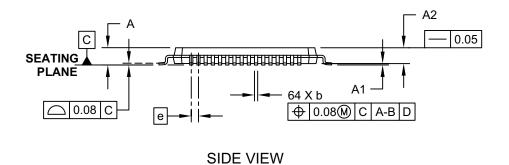
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.


Microchip Technology Drawing C04-076C Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2