

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs804-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGS70X/80X family architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the base Data Space address is used in conjunction with the Data Space Read Page (DSRPAG) register to form the Program Space Visibility (PSV) address.

The Data Space Read Page (DSRPAG) register is located in the SFR space. Construction of the PSV address is shown in Figure 4-7. When DSRPAG<9> = 1 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit PSV read address.

The paged memory scheme provides access to multiple 32-Kbyte windows in the PSV memory. The Data Space Read Page (DSRPAG) register, in combination with the upper half of the Data Space address, can provide up to 8 Mbytes of PSV address space. The paged data memory space is shown in Figure 4-8.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG register.

5.4 Dual Partition Flash Configuration

For dsPIC33EPXXXGS70X/80X devices operating in Dual Partition Flash Program Memory modes, the Inactive Partition can be erased and programmed without stalling the processor. The same programming algorithms are used for programming and erasing the Flash in the Inactive Partition, as described in **Section 5.2 "RTSP Operation"**. On top of the page erase option, the entire Flash memory of the Inactive Partition can be erased by configuring the NVMOP<3:0> bits in the NVMCON register.

Note 1: The application software to be loaded into the Inactive Partition will have the address of the Active Partition. The bootloader firmware will need to offset the address by 0x400000 in order to write to the Inactive Partition.

5.4.1 FLASH PARTITION SWAPPING

The Boot Sequence Number is used for determining the Active Partition at start-up and is encoded within the FBTSEQ Configuration register bits. Unlike most Configuration registers, which only utilize the lower 16 bits of the program memory, FBTSEQ is a 24-bit Configuration Word. The Boot Sequence Number (BSEQ) is a 12-bit value and is stored in FBTSEQ twice. The true value is stored in bits, FBTSEQ<11:0>, and its complement is stored in bits, FBTSEQ<23:12>. At device Reset, the sequence numbers are read and the partition with the lowest sequence number becomes the Active Partition. If one of the Boot Sequence Numbers is invalid, the device will select the partition with the valid Boot Sequence Number, or default to Partition 1 if both sequence numbers are invalid. See Section 27.0 "Special Features" for more information.

The BOOTSWP instruction provides an alternative means of swapping the Active and Inactive Partitions (soft swap) without the need for a device Reset. The BOOTSWP must always be followed by a GOTO instruction. The BOOTSWP instruction swaps the Active and Inactive Partitions, and the PC vectors to the location specified by the GOTO instruction in the newly Active Partition.

It is important to note that interrupts should temporarily be disabled while performing the soft swap sequence and that after the partition swap, all peripherals and interrupts which were enabled remain enabled. Additionally, the RAM and stack will maintain state after the switch. As a result, it is recommended that applications using soft swaps jump to a routine that will reinitialize the device in order to ensure the firmware runs as expected. The Configuration registers will have no effect during a soft swap. For robustness of operation, in order to execute the BOOTSWP instruction, it is necessary to execute the NVM unlocking sequence as follows:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Execute the BOOTSWP instruction.

If the unlocking sequence is not performed, the BOOTSWP instruction will be executed as a forced NOP and a GOTO instruction, following the BOOTSWP instruction, will be executed, causing the PC to jump to that location in the current operating partition.

The SFTSWP and P2ACTIV bits in the NVMCON register are used to determine a successful swap of the Active and Inactive Partitions, as well as which partition is active. After the BOOTSWP and GOTO instructions, the SFTSWP bit should be polled to verify the partition swap has occurred and then cleared for the next panel swap event.

5.4.2 DUAL PARTITION MODES

While operating in Dual Partition mode, the dsPIC33EPXXXGS70X/80X family devices have the option for both partitions to have their own defined security segments, as shown in Figure 27-4. Alternatively, the device can operate in Protected Dual Partition mode, where Partition 1 becomes permanently erase/ write-protected. Protected Dual Partition mode allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1.

dsPIC33EPXXXGS70X/80X family devices can also operate in Privileged Dual Partition mode, where additional security protections are implemented to allow for protection of intellectual property when multiple parties have software within the device. In Privileged Dual Partition mode, both partitions place additional restrictions on the FBSLIM register. These prevent changes to the size of the Boot Segment and General Segment, ensuring that neither segment will be altered.

5.5 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

5.5.1 KEY RESOURCES

- "Dual Partition Flash Program Memory" (DS70005156) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/S-0	U-0						
FORCE ⁽¹⁾	_	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IRQSEL7 | IRQSEL6 | IRQSEL5 | IRQSEL4 | IRQSEL3 | IRQSEL2 | IRQSEL1 | IRQSEL0 |
| bit 7 | | | | | | | |

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	FORCE: Force DMA Transfer bit ⁽¹⁾
	1 = Forces a single DMA transfer (Manual mode)
	0 = Automatic DMA transfer initiation by DMA request
bit 14-8	Unimplemented: Read as '0'
bit 7-0	IRQSEL<7:0>: DMA Peripheral IRQ Number Select bits
	01000111 = CAN2 – TX data request
	01000110 = CAN1 – TX data request
	00110111 = CAN2 – RX data ready
	00100110 = IC4 – Input Capture 4
	00100101 = IC3 – Input Capture 3
	00100010 = CAN1 – RX data ready
	00011111 = UART2TX – UART2 transmitter
	00011110 = UART2RX – UART2 receiver
	00011100 = TMR5 – Timer5
	00011011 = TMR4 – Timer4
	00011010 = OC4 - Output Compare 4
	00011001 = OC3 – Output Compare 3
	00001100 = UART1TX – UART1 transmitter
	00001011 = UART1RX – UART1 receiver
	00001000 = TMR3 – Timer3
	00000111 = TMR2 – Timer2
	00000110 = OC2 - Output Compare 2
	00000101 = IC2 - Input Capture 2
	00000010 = OC1 - Output Compare 1
	0000001 = 101 - Input Capture 1
	00000000 = INIO - External Interrupt O

Note 1: The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 -	Legend:									
U-0 U-0 U-0 U-0 U-0 U-0 U-0 bit 15 U-0 U-0 U-0 U-0 U-0 R-0 R-0 R-0 RQCOL3 RQCOL2 RQCOL1 RQCOL0	bit 7 bi									
U-0 U-0 U-0 U-0 U-0 U-0 - <		—	—	_	RQCOL3	RQCOL2	RQCOL2 RQCOL1			
U-0 U-0 U-0 U-0 U-0 U-0 U-0 — …	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0		
U-0 U-0 U-0 U-0 U-0 U-0 U-0 -								bit o		
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 - -	bit 15		•	•			•	bit 8		
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0	_	—	_	—	—	_	_	—		
	U-0	U-0 U-0 U-0			U-0	U-0	U-0	U-0		

- J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	RQCOL3: Channel 3 Transfer Request Collision Flag bit
	1 = User FORCE and interrupt-based request collision are detected0 = No request collision is detected
bit 2	RQCOL2: Channel 2 Transfer Request Collision Flag bit
	1 = User FORCE and interrupt-based request collision are detected0 = No request collision is detected
bit 1	RQCOL1: Channel 1 Transfer Request Collision Flag bit
	1 = User FORCE and interrupt-based request collision are detected0 = No request collision is detected
bit 0	RQCOL0: Channel 0 Transfer Request Collision Flag bit
	1 = User FORCE and interrupt-based request collision are detected0 = No request collision is detected

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

bit 4-0

PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33

•

00001 = Input divided by 3

00000 = Input divided by 2 (default)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - **2:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—		PLLDIV8
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

TABLE 11-10: PORTE REGISTER MAP⁽¹⁾

IADLL I	1-10. F		LOISILI													
File Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TRISE								TRISE<	:15:0>							
PORTE								RE<1	5:0>							
LATE								LATE<	15:0>							
ODCE								ODCE<	:15:0>							
CNENE								CNIEE<	<15:0>							
CNPUE								CNPUE	<15:0>							
CNPDE	CNPDE<15:0>															
ANSELE		—	—	—	—	_	_	—	—		_	_	_	_	_	

Legend: — = unimplemented, read as '0'.

Note 1: Refer to Table 11-5 for bit availability on each pin count variant.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select x (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select x registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.8 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

11.8.1 KEY RESOURCES

- "I/O Ports" (DS70000598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	R-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1(1)	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend:		HSC = Hardware Settat	HSC = Hardware Settable/Clearable bit						
R = Read	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'					
-n = Value	e at POR	'1' = Bit is set	'1' = Bit is set'0' = Bit is clearedx = Bit is unknown						
bit 15	PTEN: P	WMx Module Enable bit							
	1 = PWM 0 = PWM	x module is enabled x module is disabled							
bit 14	Unimple	mented: Read as '0'							
bit 13	PTSIDL:	PWMx Time Base Stop in Idle	e Mode bit						
	1 = PWM 0 = PWM	x time base halts in CPU Idle x time base runs in CPU Idle	mode mode						
bit 12	SESTAT:	Special Event Interrupt Status	s bit						
	1 = Speci 0 = Speci	al event interrupt is pending al event interrupt is not pendi	ng						
bit 11	SEIEN: S	pecial Event Interrupt Enable	bit						
	1 = Speci 0 = Speci	al event interrupt is enabled al event interrupt is disabled							
bit 10	EIPU: En	able Immediate Period Updat	es bit ⁽¹⁾						
	1 = Active 0 = Active	e Period register is updated in e Period register updates occu	nmediately ur on PWMx cycle boundaries						
bit 9	SYNCPO	L: Synchronize Input and Out	tput Polarity bit ⁽¹⁾						
	1 = SYN0 0 = SYN0	Clx/SYNCO1 polarity is inverte Clx/SYNCO1 is active-high	ed (active-low)						
bit 8	SYNCOE	N: Primary Time Base Synch	ronization Enable bit ⁽¹⁾						
	1 = SYN0 0 = SYN0	CO1 output is enabled CO1 output is disabled							
bit 7	SYNCEN	: External Time Base Synchro	onization Enable bit ⁽¹⁾						
	1 = Exter 0 = Exter	nal synchronization of primary nal synchronization of primary	/ time base is enabled / time base is disabled						
bit 6-4	SYNCSR	C<2:0>: Synchronous Source	e Selection bits ⁽¹⁾						
	111 = Re 101 = Re 100 = Re 011 = PT 010 = PT 001 = SY 000 = SY	served served G Trigger Output 17 G Trigger Output 16 NCl2 NCl1							
Note 1	These bits sh	ould be changed only when F	PTEN = ∩ In addition when us	sing the SYNCIx feature, the user					

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 22-26: ADTRIGxL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW (x = 0 to 5) (CONTINUED)

bit 4-0 TRGSRC(4x)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits 11111 = ADTRG31 11110 = PTG Trigger Output 30 11101 = PWM Generator 6 current-limit trigger 11100 = PWM Generator 5 current-limit trigger 11011 = PWM Generator 4 current-limit trigger 11010 = PWM Generator 3 current-limit trigger 11001 = PWM Generator 2 current-limit trigger 11000 = PWM Generator 1 current-limit trigger 10111 = Output Compare 2 trigger 10110 = Output Compare 1 trigger 10101 = CLC2 output 10100 = PWM Generator 6 secondary trigger 10011 = PWM Generator 5 secondary trigger 10010 = PWM Generator 4 secondary trigger 10001 = PWM Generator 3 secondary trigger 10000 = PWM Generator 2 secondary trigger 01111 = PWM Generator 1 secondary trigger 01110 = PWM secondary Special Event Trigger 01101 = Timer2 period match 01100 = Timer1 period match 01011 = CLC1 output 01010 = PWM Generator 6 primary trigger 01001 = PWM Generator 5 primary trigger 01000 = PWM Generator 4 primary trigger 00111 = PWM Generator 3 primary trigger 00110 = PWM Generator 2 primary trigger 00101 = PWM Generator 1 primary trigger 00100 = PWM Special Event Trigger 00011 = Reserved 00010 = Level software trigger 00001 = Common software trigger

00000 = No trigger is enabled

FIGURE 23-1: CANX MODULE BLOCK DIAGRAM

23.2 Modes of Operation

The CANx module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- · Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

REGISTER 23-2: CxCTRL2: CANx CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_		—	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
	—	—			DNCNT<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown	
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	DNCNT<4:0>: DeviceNet [™] Filter Bit Number bits						
	10010-11111 = Invalid selection						
	10001 = Compare up to Data Byte 3, bit 6 with EID<17>						
	•						
	•						
	•	noro un to Dot	o Duto 1 bit 7				
	00001 = Compare up to Data Byte 1, bit / with EID<0>						
	00000 – Do noi compare data bytes						

REGISTER 23-16: CxRXFnSID: CANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15	·	•				·	bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0		EXIDE		EID17	EID16	
bit 7	·	•		·		·	bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown	
bit 15-5	SID<10:0>: S	tandard Identif	ier bits					
	1 = Message	address bit, SI	Dx, must be '	1' to match filte	er			
	0 = Message	address bit, SI	Dx, must be '	0' to match filte	er			
bit 4	Unimplemen	ted: Read as '	כ'					
bit 3	EXIDE: Exter	ded Identifier E	Enable bit					
	If MIDE = 1:							
	1 = Matches	only messages	with Extende	d Identifier add	Iresses			
	0 = Matches	only messages	with Standar	d Identifier add	resses			
	$\frac{\text{If MIDE} = 0}{\text{EVEN}}$							
	Ignores EXID							
bit 2	Unimplemen	ted: Read as '	2'					
bit 1-0	EID<17:16>:	Extended Iden	tifier bits					
	 1 = Message address bit, EIDx, must be '1' to match filter 0 = Message address bit, EIDx, must be '0' to match filter 							
	······································							

REGISTER 23-17: CxRXFnEID: CANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 =Message address bit, EIDx, must be '0' to match filter

BUFFER 21-5: CANx MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte 3	3<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	2<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkn		nown		

bit 15-8 Byte 3<15:8>: CANx Message Byte 3 bits

bit 7-0 Byte 2<7:0>: CANx Message Byte 2 bits

BUFFER 21-6: CANx MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	5<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	4<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	Byte 5<15:	8>: CANx Message	ge Byte 5 bi	ts			

bit 7-0 Byte 4<7:0>: CANx Message Byte 4 bits

24.6 Hysteresis

An additional feature of the module is hysteresis control. Hysteresis can be enabled or disabled and its amplitude can be controlled by the HYSSEL<1:0> bits in the CMPxCON register. Three different values are available: 15 mV, 30 mV and 45 mV. It is also possible to select the edge (rising or falling) to which hysteresis is to be applied.

Hysteresis control prevents the comparator output from continuously changing state because of small perturbations (noise) at the input (see Figure 24-2).

24.7 Analog Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

24.7.1 KEY RESOURCES

- "High-Speed Analog Comparator Module" (DS70005128) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

REGISTER 24-1: CMPxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

bit 5	EXTREF: Enable External Reference bit
	 1 = External source provides reference to DACx (maximum DAC voltage is determined by the external voltage source)
	0 = AVDD provides reference to DACx (maximum DAC voltage is AVDD)
bit 4	HYSPOL: Comparator Hysteresis Polarity Select bit
	 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 3	CMPSTAT: Comparator Current State bit
	Reflects the current output state of Comparator x, including the setting of the CMPPOL bit.
bit 2	ALTINP: Alternate Input Select bit
	1 = INSEL<1:0> bits select alternate inputs
	0 = INSEL<1:0> bits select comparator inputs
bit 1	CMPPOL: Comparator Output Polarity Control bit
	1 = Output is inverted
	0 = Output is non-inverted
bit 0	RANGE: DACx Output Voltage Range Select bit
	1 = AVDD is the maximum DACx output voltage0 = Unimplemented, do not use

Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DACx output by setting their respective DACOE bit.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles, with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

Field	Description				
#text	Means literal defined by "text"				
(text)	Means "content of text"				
[text]	Means "the location addressed by text"				
{}	Optional field or operation				
a ∈ {b, c, d}	a is selected from the set of values b, c, d				
<n:m></n:m>	Register bit field				
.b	Byte mode selection				
.d	Double-Word mode selection				
.S	Shadow register select				
.w	Word mode selection (default)				
Acc	One of two accumulators {A, B}				
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}				
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$				
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero				
Expr	Absolute address, label or expression (resolved by the linker)				
f	File register address ∈ {0x00000x1FFF}				
lit1	1-bit unsigned literal $\in \{0,1\}$				
lit4	4-bit unsigned literal ∈ {015}				
lit5	5-bit unsigned literal $\in \{031\}$				
lit8	8-bit unsigned literal \in {0255}				
lit10	10-bit unsigned literal $\in \{0255\}$ for Byte mode, $\{0:1023\}$ for Word mode				
lit14	14-bit unsigned literal $\in \{016384\}$				
lit16	16-bit unsigned literal $\in \{065535\}$				
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'				
None	Field does not require an entry, can be blank				
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate				
PC	Program Counter				
Slit10	10-bit signed literal ∈ {-512511}				
Slit16	16-bit signed literal ∈ {-3276832767}				
Slit6	6-bit signed literal \in {-1616}				
Wb	Base W register ∈ {W0W15}				
Wd	Destination W register \in { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }				
Wdo	Destination W register ∈				
	{ Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }				
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)				

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Leads	Ν		48	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ø	0° 3.5° 7°		7°
Overall Width	Е		9.00 BSC	
Overall Length	D		9.00 BSC	
Molded Package Width	E1		7.00 BSC	
Molded Package Length	D1		7.00 BSC	
Lead Thickness	С	0.09	-	0.16
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A-B and D to be determined at center line between leads where leads exit plastic body at datum plane

Microchip Technology Drawing C04-300-PT Rev A Sheet 2 of 2

INDEX

Α
Absolute Maximum Ratings
AC Characteristics
ADC Specifications
Analog Current Specifications
Analog-to-Digital Conversion Requirements
Auxiliary PLL Clock
CANx I/O Requirements 426
Capacitive Loading Requirements on
Output Pins
DMA Module Requirements433
External Clock Requirements
High-Speed PWMx Requirements
I/O Requirements
I2Cx Bus Data Requirements (Master Mode)
I2Cx Bus Data Requirements (Slave Mode)
Input Capture x Requirements
Internal FRC Accuracy
Internal LPRC Accuracy
Load Conditions
OUX/PWMX Module Requirements
Dul Clock 280
PLL CIUCK
SPI1 SPI2 and SPI3 Master Mode (Full-Dupley
CKF = 0 $CKP = x$ $SMP = 1$ Requirements 401
SPI1 SPI2 and SPI3 Master Mode (Full-Dupley
CKF = 1 CKP = x SMP = 1) Requirements 400
SPI1 SPI2 and SPI3 Master Mode (Half-Duplex
Transmit Only) Requirements 399
SPI1. SPI2 and SPI3 Slave Mode (Full-Duplex.
CKE = 0, $CKP = 0$, $SMP = 0$) Requirements, 409
SPI1. SPI2 and SPI3 Slave Mode (Full-Duplex.
CKE = 0, CKP = 1, SMP = 0) Requirements 407
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,
CKE = 1, $CKP = 0$, $SMP = 0$) Requirements 403
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,
CKE = 1, CKP = 1, SMP = 0) Requirements 405
SPI3 Master Mode (Full-Duplex, CKE = 0,
CKP = x, SMP = 1) Requirements
SPI3 Master Mode (Full-Duplex, CKE = 1,
CKP = x, SMP = 1) Requirements
SPI3 Master Mode (Half-Duplex,
Transmit Only) Requirements 411
SPI3 Slave Mode (Full-Duplex, CKE = 0,
CKP = 0, $SMP = 0$) Requirements
SPI3 Slave Mode (Full-Duplex, CKE = 0,
CKP = 1, $SMP = 0$) Requirements
SPI3 Slave Mode (Full-Duplex, CKE = 1, $CKE = 0$, $CME = 0$) Begwiresterate
CKP = 0, $SMP = 0$) Requirements
SPIS Slave Mode (Full-Duplex, CKE = 1, CKP = 1, $SMP = 0$) Poquiromonts (117)
Tomporature and Voltage Specifications 387
Timer1 External Clock Requirements 303
Timer2/Timer4 External Clock Requirements 394
Timer3/Timer5 External Clock Requirements 394
UARTX I/O Requirements 427
AC/DC Characteristics
DACx Specifications
High-Speed Analog Comparator Specifications
PGAx Specifications
Analog-to-Digital Converter. See ADC.
Arithmetic Logic Unit (ALU)

Assembler	
MPASM Assembler 372	
MPLAB Assembler, Linker, Librarian	
B	
Б	
Bit-Reversed Addressing 56	
Example57	
Implementation	
Sequence Table (16-Entry) 57	
Block Diagrams	
16-Bit Timer1 Module 169	
ADC Module 274	
Addressing for Table Registers	
CALL Stack Frame	
CANx Module 308	
CLCx Input Source Selection 261	
CLCx Logic Function Combinatorial Ontions 260	
CLCx Module 250	
Connections for On Chin Voltage Regulator 355	
Contractions for On-Onip Voltage Regulator	
CPU Core	
Data Access from Program Space	
Address Generation	
Dedicated ADC Cores 0-3 275	
DMA Controller 91	
dsPIC33EPXXGS70X/80X Family 11	
High-Speed Analog Comparator x 334	
High-Speed PWM Architecture 189	
Hysteresis Control 336	
I2Cx Module	
Input Capture x 177	
Interleaved PFC	
MCLR Pin Connections 16	
Multiplexing Remappable Outputs for RPn	
Off-Line UPS 20	
Oscillator System 104	
Output Compare x Module 181	
Perinheral to DMA Controller 89	
PGAy Functions 342	
PGAx Module 341	
Phase Shifted Full Bridge Converter	
Phase-Shilled Full-Dhuge Converter	
PLL MODULE	
Programmer's Model	
PSV Read Address Generation	
PTG Module	
Recommended Minimum Connection 16	
Remappable Input for U1RX 136	
Reset System 69	
Security Segments for dsPIC33EP128GS70X/80X	
(Dual Partition Modes) 359	
Security Segments for dsPIC33EP64GS70X/80X	
(Dual Partition Modes)	
Security Segments for	
dsPIC33EPXXXGS70X/80X	
Shared ADC Core	
Shared Port Structure 125	
Simplified Conceptual of High-Speed PWM 190	
SPIx Master, Frame Master Connection 243	
SPIx Master Frame Slave Connection 244	
SPIx Master/Slave Connection	
(Enhanced Buffer Modes) 243	
SPly Master/Slave Connection (Standard Mode) 242	
SPly Module (Enhanced Mode) 221	
SPIN Module (Standard Mode)	

SPIx Slave, Frame Master Connection	
SPIx Slave, Frame Slave Connection	
Suggested Oscillator Circuit Placement	
Timerx (x = 2 through 5)	
Type B/Type C Timer Pair (32-Bit Timer)	
UARTx Module	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	347, 355

С

C Compilers	
MPLAB XC	. 372
CAN Module	
Control Registers	. 309
Message Buffers	328
Word 0	328
Word 1	328
Word 2	320
Word 3	320
Word 4	220
Word E	. 330
	. 330
Word 6	.331
Word 7	. 331
Modes of Operation	. 308
Overview	. 307
CAN Module (CAN)	. 307
Control Registers	262
Code Examples	. 202
Dott Write/Dood	120
PUIL WITE/Reau	. 130
PWW Write-Protected Register	400
	. 188
PWRSAV Instruction Syntax	. 115
Code Protection	357
CodeGuard Security	357
Configurable Logic Cell (CLC)	. 259
Configurable Logic Cell. See CLC.	
Configuration Bits	. 347
Description	. 349
Configuration Register Map	. 348
Constant-Current Source	.345
Control Register	346
Description	345
Eastures Overview	345
Controller Area Network, See CAN	. 545
CPU	
Addressing Modes	21
Clocking System Options	. 105
Fast RC (FRC) Oscillator	. 105
FRC Oscillator with PLL (FRCPLL)	. 105
FRC Oscillator with Postscaler	. 105
Low-Power RC (LPRC) Oscillator	105
Primary (XT_HS_EC) Oscillator	105
Primary Oscillator with PLI	
	105
Control Registers	201.
	20
Data Space Addressing	21
	21
Registers	21
Resources	25
Customer Change Notification Service	. 474
Customer Notification Service	. 474
Customer Support	. 474

D

Data Address Space	
Memory Map for dsPIC33EP64GS70X/80X	
Devices	38
Near Data Space	
Organization, Alignment	
SFR Space	
Width	37
Data Share	
Extended X	50
Paged Data Memory Space (ligure)	
Paged Memory Scheme	
DC Characteristics	
Brown-out Reset (BOR)	385
Constant-Current Source Specifications	433
DACx Output (DACOUTx Pin) Specifications	431
Doze Current (IDOZE)	381
I/O Pin Input Specifications	382
I/O Pin Output Specifications	385
Idle Current (IDLE)	379
Operating Current (IDD)	378
Operating MIPS vs. Voltage	376
Bower Down Current (IPD)	390
Program Memory	
remperature and voltage Specifications	
Watchdog Timer Delta Current (∆IWDT)	380
DC/AC Characteristics	
Graphs and Tables	435
Demo/Development Boards, Evaluation and	
Starter Kits	374
Development Support	371
Device Calibration	353
Addresses	353
and Identification	353
Device Programmer	
MPLAB PM3	373
Direct Memory Access See DMA	
DMA Controllor	
Channel to Derinheral Associations	00
DMAXPAD	
DMAxREQ	92
DMAxSTAL/H	
DMAxSTBL/H	
Supported Peripherals	89
Doze Mode	117
DSP Engine	30
_	
E	
Electrical Characteristics	375
AC	387
Equations	
Device Operating Frequency	105
	105
	405
Relationship Between Device and SPIX	

NOTES: