

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Becano	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs804-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < FIN < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings, after a POR with an oscillator frequency outside this range, will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

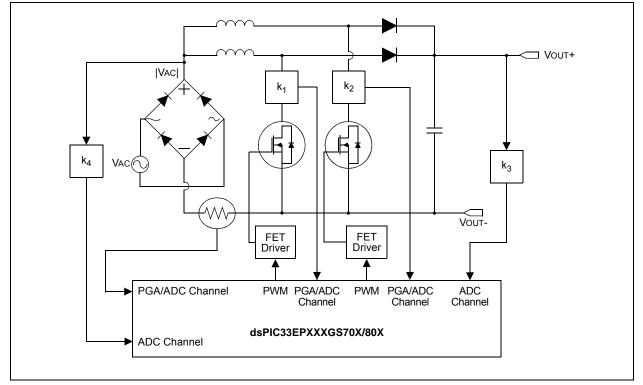
2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

Power Factor Correction (PFC)

- Interleaved PFC
- Interneaved FFC
- Critical Conduction PFC
- Bridgeless PFC
- DC/DC Converters
 - Buck, Boost, Forward, Flyback, Push-Pull


Targeted Applications

- Half/Full-Bridge
- Phase-Shift Full-Bridge
- Resonant Converters
- DC/AC

2.9

- Half/Full-Bridge Inverter
- Resonant Inverter

Examples of typical application connections are shown in Figure 2-4 through Figure 2-6.

FIGURE 2-4: INTERLEAVED PFC

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15						bit 8		
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1	
_	—		—		LSTCH	1<3:0>		
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-4	Unimplemen	ted: Read as '	0'					
bit 3-0	LSTCH<3:0>	: Last DMA Co	ntroller Chanr	nel Active Statu	us bits			
	1111 = No Di	MA transfer ha	s occurred sin	ce system Res	set			
	1110 = Rese	rved						
	•							
	•							
	•							
	0100 = Reser			Observal 0				
		lata transfer wa						
		data transfer wa						
		data transfer wa data transfer wa						
			as nanuleu by					

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP17R6	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP16R6	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15 bit 14-8	RP17R<6:0>	ited: Read as ' : Peripheral Ou -13 for periphe	tput Function	•	RP17 Output F	Pin bits	

bit 7 Unimplemented: Read as '0'

bit 6-0	RP16R<6:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits
	(see Table 11-13 for peripheral function numbers)

REGISTER 11-34: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	RP19R6	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP18R6	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown		
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8	RP19R<6:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 11-13 for peripheral function numbers)						

bit 7 Unimplemented: Read as '0'

bit 6-0 **RP18R<6:0>:** Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 16-10: MDC: PWMx MASTER DUTY CYCLE REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn				nown			

bit 15-0 MDC<15:0>: PWMx Master Duty Cycle Value bits

Note 1: The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

2: As the duty cycle gets closer to 0% or 100% of the PWMx period (0 to 40 ns, depending on the mode of operation), PWMx duty cycle resolution will increase from 1 to 3 LSBs.

REGISTER 16-11: PWMKEY: PWMx PROTECTION LOCK/UNLOCK KEY REGISTER

bit
'W-0
bit

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PWMKEY<15:0>:** PWMx Protection Lock/Unlock Key Value bits

	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
OVRDAT1	OVRDAT0	FLTDAT1 ⁽²⁾	FLTDAT0 ⁽²⁾	CLDAT1 ⁽²⁾	CLDAT0 ⁽²⁾	SWAP	OSYNC	
bit 7							bit	
Legend:								
R = Readable		W = Writable		•	nented bit, read			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15		xH Output Pin	Ownorship hit					
511 15		•	he PWMxH pin					
		dule controls th						
bit 14		L Output Pin C	-					
		•	he PWMxL pin					
		dule controls th						
bit 13	POLH: PWM	xH Output Pin I	Polarity bit					
	1 = PWMxH p	oin is active-low	/					
		oin is active-hig						
bit 12	POLL: PWMx	L Output Pin F	olarity bit					
		in is active-low in is active-hig						
bit 11-10	PMOD<1:0>:	PWMx I/O Pin	Mode bits ⁽¹⁾					
	11 = PWMx I/	/O pin pair is in	the True Indep	endent Output	mode			
			the Push-Pull (•				
			the Redundant					
		· ·	the Compleme		node			
bit 9			for PWMxH Pin					
			for output on the F		1			
bit 8	-	-		-				
JILO	OVRENL: Override Enable for PWMxL Pin bit 1 = OVRDAT0 provides data for output on the PWMxL pin							
		-	es data for the F					
bit 7-6	•	•	/MxH, PWMxL		e is Enabled bi	its		
			provides data fo					
			provides data fo					
bit 5-4		-	MxH and PWM	-		Enabled bits(2)		
			= 0: Normal Fa					
			AT1 provides the		PWMxH pin.			
	If Fault is activ	ve, then FLTDA	AT0 provides the	e state for the	PWMxL pin.			
	IFLTMOD (FC							
	If current limit	is active, then	FLTDAT1 provi AT0 provides the	ides the state f	for the PWMxH	l pin.		

REGISTER 16-20: IOCONX: PWMx I/O CONTROL REGISTER (x = 1 to 8)

2: State represents the active/inactive state of the PWMx depending on the POLH and POLL bits settings.

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - a) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 6. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

REGISTER 18-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

Legend: R = Readable		W = Writable			ented bit read	(0)	
bit 7							bit 0
SSEN ⁽²⁾	CKP	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
SPIEN	_	SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15 SPIEN: SPIx On bit

- 1 = Enables module
- 0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications

bit 14 Unimplemented: Read as '0'

- bit 13 SPISIDL: SPIx Stop in Idle Mode bit
 - 1 = Halts in CPU Idle mode
 - 0 = Continues to operate in CPU Idle mode

bit 12 DISSDO: Disable SDOx Output Port bit

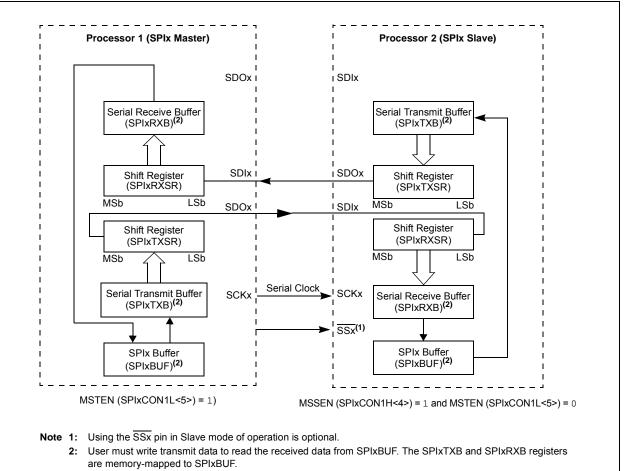
1 = SDOx pin is not used by the module; pin is controlled by port function

0 = SDOx pin is controlled by the module

bit 11-10 MODE32 and MODE16: Serial Word Length Select bits^(1,4)

MODE32	MODE16	AUDEN	Communication
1	x		32-Bit
0	1	0	16-Bit
0	0		8-Bit
1	1		24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
1	0	1	32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	1	T	16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	0		16-Bit FIFO, 16-Bit Channel/32-Bit Frame

Note 1: When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.


- 2: When FRMEN = 1, SSEN is not used.
- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 18-4: SPIxS	TATL: SPIX STATUS REGISTER LOW
----------------------	--------------------------------

U-0	U-0	U-0	R/C-0, HS	R-0, HSC	U-0	U-0	R-0, HSC
_	_	—	FRMERR	SPIBUSY		—	SPITUR ⁽¹⁾
bit 15						·	bit 8
R-0, HSC	R/C-0, HS	R-1, HSC	U-0	R-1, HSC	U-0	R-0, HSC	R-0, HSC
SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF
bit 7							bit
Legend:		C = Clearable	hit	U = Unimplerr	ented read as	: 'O'	
R = Readabl	e hit	W = Writable b		HSC = Hardw			
-n = Value at		'1' = Bit is set	it.	'0' = Bit is clea		HS = Hardwar	e Settable bit
		1 Dicio Cot		Bit lo biod			
bit 15-13	Unimplemen	ted: Read as '0)'				
bit 12	FRMERR: SF	Plx Frame Error	Status bit				
	1 = Frame er	ror is detected					
	0 = No frame	error is detecte	d				
bit 11		Plx Activity State					
		currently busy					
bit 10-9	•	ng transactions i ted: Read as '0		d)			
	•	x Transmit Und		(1)			
bit 8		buffer has enco			condition		
		buffer does not					
bit 7	SRMT: Shift F	Register Empty	Status bit				
				, neither SPIxT	XB or SPIxT>	(SR contains da	ta to transmit)
		r pending trans					
bit 6		x Receive Over					
	1 = A new by 0 = No overflo		rd has been co	ompletely recei	ved when the	SPIxRXB was f	ull
bit 5	SPIRBE: SPI	x RX Buffer Em	pty Status bit				
	1 = RX buffer						
	0 = RX buffer						
	Standard Buff			IC is read from		RXB. Automatio	ally alcored i
		en SPIx transfe					
	Enhanced Bu						
	Indicates RXE		0000.				

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 22-32: ADCMPxENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER LOW (x = 0 or 1)

bit 15	R/W/0	R/W-0						
bit 15								
	bit 15							bit
CMPEN<15:8>	_	R/W-0						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CMPEN<15:0>:** Comparator Enable for Corresponding Input Channels bits

0 = Conversion result for corresponding channel is not used by the comparator

REGISTER 22-33: ADCMPxENH: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER HIGH (x = 0 or 1)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			CMPEN	<21:16>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0

CMPEN<21:16>: Comparator Enable for Corresponding Input Channels bits

1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

^{1 =} Conversion result for corresponding channel is used by the comparator

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0	
bit 15	•				·		bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0	
bit 7	·			·	•		bit 0	
Legend:								
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-12	1111 = Filter 1110 = Filter • • • • •	RX Buffer Mash hits received ir hits received ir hits received ir hits received ir	RX FIFO bu RX Buffer 14 RX Buffer 1	ffer				

REGISTER 23-13: CxBUFPNT2: CANx FILTERS 4-7 BUFFER POINTER REGISTER 2

bit 11-8	F6BP<3:0>: RX Buffer Mask for Filter 6 bits	(same values as bits 15-12)

bit 7-4 F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits 15-12)
--

bit 3-0	F4BP<3:0>: RX Buffer Mask for Filter 4 bits	(same values as bits 15-12)

REGISTER 23-14: CxBUFPNT3: CANx FILTERS 8-11 BUFFER POINTER REGISTER 3

R/W-0								
F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0	
bit 15								
R/W-0								
F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0	
bit 7			•	•		•	bit 0	

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

© 2016-2017 Microchip Technology Inc.

23.4 CAN Message Buffers

CAN Message Buffers are part of RAM memory. They are not CAN Special Function Registers. The user application must directly write into the RAM area that is configured for CAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: CANx MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x								
_	_	_	SID10	SID9	SID8	SID7	SID6								
bit 15				• •			bit 8								
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x								
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE								
bit 7							bit 0								
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'															
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is un			known								
bit 15-13	Unimplemen	ted: Read as '	0'												
bit 12-2	SID<10:0>: S	Standard Identif	ier bits												
bit 1	SRR: Substit	ute Remote Re	quest bit												
	When IDE =	0:													
	1 = Message	1 = Message will request remote transmission													
	0 = Normal m	0 = Normal message													
	When IDE =	When IDE = 1:													
	The SRR bit	must be set to '	1'.												
bit 0	IDE: Extende	d Identifier bit													
 1 = Message will transmit an Extended Identifier 0 = Message will transmit a Standard Identifier 															

BUFFER 21-2: CANx MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
_		—			EID	<17:14>	
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<13:6>			
bit 7							bit (
Legend:							
R = Readable bit W = Writable bi		bit	U = Unimplen	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is unk		nown	

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

BUFFER 21-5: CANx MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	3<15:8>			
bit 15			-				bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	2<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at POR (1' = Bit is set				0° = Bit is cleared $x = Bit is unknown$			

bit 15-8 Byte 3<15:8>: CANx Message Byte 3 bits

bit 7-0 Byte 2<7:0>: CANx Message Byte 2 bits

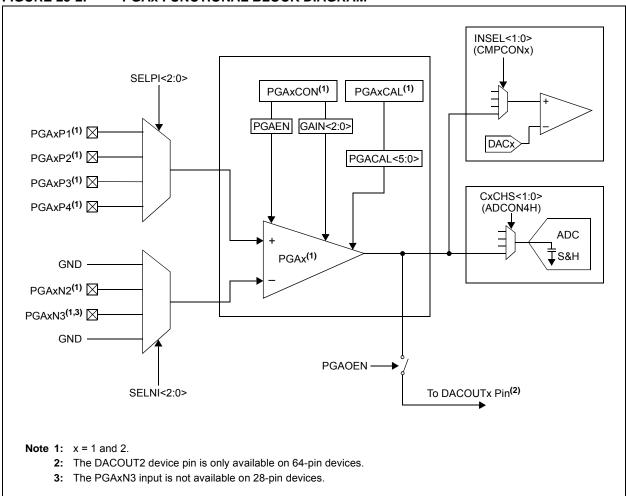
BUFFER 21-6: CANx MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	5<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	4<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 7-0 Byte 4<7:0>: CANx Message Byte 4 bits

25.1 Module Description

The Programmable Gain Amplifiers are used to amplify small voltages (i.e., voltages across burden/shunt resistors) to improve the signal-to-noise ratio of the measured signal. The PGAx output voltage can be read by any of the four dedicated Sample-and-Hold circuits on the ADC module. The output voltage can also be fed to the comparator module for overcurrent/ voltage protection. Figure 25-2 shows a functional block diagram of the PGAx module. Refer to **Section 22.0 "High-Speed, 12-Bit Analog-to-Digital Converter (ADC)"** and **Section 24.0 "High-Speed Analog Comparator"** for more interconnection details.


The gain of the PGAx module is selectable via the GAIN<2:0> bits in the PGAxCON register. There are five selectable gains, ranging from 4x to 64x. The SELPI<2:0> and SELNI<2:0> bits in the PGAxCON register select one of four positive/negative inputs to the PGAx module. For single-ended applications, the SELNI<2:0> bits will select the ground as the negative

input source. To provide an independent ground reference, the PGAxN2 and PGAxN3 pins are available as the negative input source to the PGAx module.

Note 1: Not all PGA positive/negative inputs are available on all devices. Refer to the specific device pinout for available input source pins.

The output voltage of the PGAx module can be connected to the DACOUTx pin by setting the PGAOEN bit in the PGAxCON register. When the PGAOEN bit is enabled, the output voltage of PGA1 is connected to DACOUT1 and PGA2 is connected to DACOUT2. For devices with a single DACOUTx pin, the output voltage of PGA2 can be connected to DACOUT1 by configuring the DBCC Configuration bit in the FDEVOPT register (FDEVOPT<6>).

If both the DACx output voltage and PGAx output voltage are connected to the DACOUTx pin, the resulting output voltage would be a combination of signals. There is no assigned priority between the PGAx module and the DACx module.

FIGURE 25-2: PGAx FUNCTIONAL BLOCK DIAGRAM

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Device Configuration" (DS70000618), "Watchdog Timer and Power-Saving Modes" (DS70615) and "CodeGuard™ Intermediate Security" (DS70005182) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXXGS70X/80X family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

27.1 Configuration Bits

In dsPIC33EPXXXGS70X/80X family devices, the Configuration Words are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored at the end of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 27-1 with detailed descriptions in Table 27-2. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration Shadow registers during device Resets.

For devices operating in Dual Partition Flash modes, the BSEQx bits (FBTSEQ<11:0>) determine which panel is the Active Partition at start-up and the Configuration Words from that panel are loaded into the Configuration Shadow registers.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Words for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled. Program code executing out of configuration space will cause a device Reset.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words.

TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Description
CTXT4<2:0>	Alternate Working Register Set 4 Interrupt Priority Level (IPL) Select bits
	111 = Reserved
	110 = Assigned to IPL of 7
	101 = Assigned to IPL of 6
	100 = Assigned to IPL of 5
	011 = Assigned to IPL of 4
	010 = Assigned to IPL of 3
	001 = Assigned to IPL of 2
	000 = Assigned to IPL of 1
BTMODE<1:0>	Boot Mode Configuration bits
	11 = Single Partition mode
	10 = Dual Partition mode
	01 = Protected Dual Partition mode
	00 = Privileged Dual Partition mode

Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.

27.7 JTAG Interface

The dsPIC33EPXXXGS70X/80X family devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to "Programming and Diagnostics"							
	(DS70608) in the "dsPIC33/PIC24 Family							
	Reference Manual" for further information on							
	usage, configuration and operation of the							
	JTAG interface.							

27.8 In-Circuit Serial Programming[™] (ICSP[™])

The dsPIC33EPXXXGS70X/80X family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming $\mathbb{C}(\mathsf{LSP}^{\mathsf{TM}})$.

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.9 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] emulator is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/ Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to $\overline{\text{MCLR}}$, VDD, VSS and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.10 Code Protection and CodeGuard™ Security

dsPIC33EPXXXGS70X/80X devices offer multiple levels of security for protecting individual intellectual property. The program Flash protection can be broken up into three segments: Boot Segment (BS), General Segment (GS) and Configuration Segment (CS). Boot Segment has the highest security privilege and can be thought to have limited restrictions when accessing other segments. General Segment has the least security and is intended for the end user system code. Configuration Segment contains only the device user configuration data which is located at the end of the program memory space.

The code protection features are controlled by the Configuration registers, FSEC and FBSLIM. The FSEC register controls the code-protect level for each segment and if that segment is write-protected. The size of BS and GS will depend on the BSLIM<12:0> bits setting and if the Alternate Interrupt Vector Table (AIVT) is enabled. The BSLIM<12:0> bits define the number of pages for BS with each page containing 512 IW. The smallest BS size is one page, which will consist of the Interrupt Vector Table (IVT) and 256 IW of code protection.

If the AIVT is enabled, the last page of BS will contain the AIVT and will not contain any BS code. With AIVT enabled, the smallest BS size is now two pages (1024 IW), with one page for the IVT and BS code, and the other page for the AIVT. Write protection of the BS does not cover the AIVT. The last page of BS can always be programmed or erased by BS code. The General Segment will start at the next page and will consume the rest of program Flash except for the Flash Configuration Words. The IVT will assume GS security only if BS is not enabled. The IVT is protected from being programmed or page erased when either security segment has enabled write protection.

Note: Refer to "CodeGuard™ Intermediate Security" (DS70005182) in the "dsPIC33/ PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

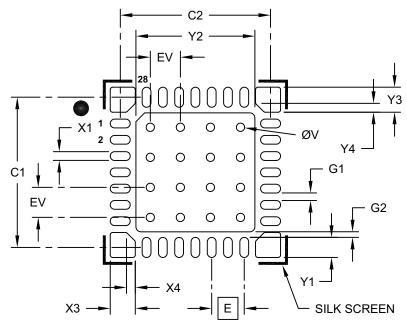
TABLE 30-36:SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency			11	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time				ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx \downarrow Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	(Note 4)	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.


4: Assumes 50 pF load on all SPIx pins.

5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with a remappable SCK3 pin.

NOTES:

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			4.75
Optional Center Pad Length	Y2			4.75
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.35
Contact Pad Length (X28)	Y1			0.80
Corner Anchor (X4)	X3			1.00
Corner Anchor (X4)	Y3			1.00
Corner Anchor Chamfer (X4)	X4			0.35
Corner Anchor Chamfer (X4)	Y4			0.35
Contact Pad to Pad (X28)	G1	0.20		
Contact Pad to Center Pad (X28)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2385B

Note: Corner anchor pads are not connected internally and are designed as mechanical features when the package is soldered to the PCB.

APPENDIX A: REVISION HISTORY

Revision A (May 2016)

This is the initial version of the document.

Revision B (January 2017)

- Sections:
 - Updates Note 1 in Section 5.0 "Flash Program Memory".
- Tables:
 - Updates the device description table on page 2.
 - Updates Table 1-1, Table 4-2, Table 4-11, Table 7-1, Table 8-1, Table 11-11, Table 11-13, Table 17-1, Table 30-3, Table 30-4, Table 30-6, Table 30-7, Table 30-8, Table 30-9, Table 30-10, Table 30-11, Table 30-52, Table 30-54 and Table 30-55.
 - Adds Table 11-6, Table 11-7, Table 11-8, Table 11-9 and Table 11-10.
- Figures:
 - Updates the Pin Function tables in the Pin Diagram figures on pages 5 through 8.
 - Updates Figure 4-1, Figure 17-1, Figure 18-1 and Figure 18-2.
- Registers:
 - Updates Register 3-3, Register 16-5, Register 17-11, Register 18-1 and Register 19-2.
 - Adds Register 11-1, Register 11-2, Register 11-3, Register 11-4, Register 11-5, Register 11-6, Register 11-7 and Register 11-8.