

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs805-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description
AN0-AN21		Analog	No	Analog input channels.
AN0ALT-AN1ALT	I	Analog	No	Alternate analog input channels.
C1RXR	I	ST	Yes	CAN1 receive.
C2RXR	I	ST	Yes	CAN2 receive.
C1TX	0	ST	Yes	CAN1 transmit.
C2TX	0	ST	Yes	CAN2 transmit.
CLKI	I	ST/	No	External clock source input. Always associated with OSC1 pin
		CMOS		function.
CLKO	0	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/ CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	I/O		No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
CLC1OUT	0	DIG	Yes	CLC1 output.
CLC2OUT	0	DIG	Yes	CLC2 output.
CLC3OUT	0	DIG	No ⁽⁴⁾	CLC3 output.
CLC4OUT	0	DIG	No ⁽⁴⁾	CLC4 output.
REFCLKO	0	—	Yes	Reference clock output.
IC1-IC4	I	ST	Yes	Capture Inputs 1 through 4.
OCFA	I	ST	Yes	Compare Fault A input (for compare channels).
OC1-OC4	0		Yes	Compare Outputs 1 through 4.
INT0	I	ST	No	External Interrupt 0.
INT1	I	ST	Yes	External Interrupt 1.
INT2	I	ST	Yes	External Interrupt 2.
INT4	I	ST	Yes	External Interrupt 4.
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
RC0-RC15	I/O	ST	No	PORTC is a bidirectional I/O port.
RD0-RD15	I/O	ST	No	PORTD is a bidirectional I/O port.
RE0-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.
T1CK	I	ST	Yes	Timer1 external clock input.
T2CK	I	ST	Yes	Timer2 external clock input.
T3CK	I	ST	Yes	Timer3 external clock input.
T4CK		ST	No	Timer4 external clock input.
T5CK		ST	No	Timer5 external clock input.
U1CTS	I	ST	Yes	UART1 Clear-to-Send.
U1RTS	0	_	Yes	UART1 Ready-to-Send.
U1RX		ST	Yes	UART1 receive.
U1TX	0		Yes	UART1 transmit.
BCLK1	0	ST	Yes	UART1 IrDA [®] baud clock output.
Legend: CMOS = C				
				IOS levels O = Output I = Input
PPS = Per	ripneral	Pin Selec	л Л	TTL = TTL input buffer

1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

2: PWM4H/L through PWM8H/L are fixed on dsPIC33EPXXXGS708/808 devices. PWM4H/L through PWM6H/L are fixed on dsPIC33EPXXXGS706/806 devices.

3: The SCK3 pin is fixed on dsPIC33EPXXXGS706/806 and dsPIC33EPXXXGS708/808 devices.

4: PPS is available on dsPIC33EPXXXGS702 devices only.

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

-							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		—	
bit 15							bit 8
				=		=	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-6	Unimplemen	ted: Read as '0	,				
bit 5-0	TUN<5:0>: F	RC Oscillator To	uning bits				
		ximum frequen			7 MHz)		
	011110 = Ce	nter frequency	+ 1.41% (7.47	4 MHz)			
	•						
	•						
	000001 = Ce	nter frequency	+ 0.047% (7.3	73 MHz)			
	000000 = Ce	nter frequency	(7.37 MHz noi	minal)			
	111111 = Ce	nter frequency	- 0.047% (7.3	67 MHz)			
	•						
	•						
	100001 = Ce	nter frequency	- 1.457% (7.2	63 MHz)			
		nimum frequenc	•	,	/IHz)		

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 1 C1MD: CAN1 Module Disable bit
 - 1 = CAN1 module is disabled
 - 0 = CAN1 module is enabled
- bit 0 ADCMD: ADC Module Disable bit
 - 1 = ADC module is disabled 0 = ADC module is enabled

NOTES:

REGISTER 16-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER (x = 1 to 8) (CONTINUED)

- bit 1
 BPLH: Blanking in PWMxL High Enable bit

 1 = State blanking (of current-limit and/or Fault input signals) when the PWMxL output is high

 bit 0
 BPLL: Blanking in PWMxL Low Enable bit

 1 = State blanking (of current-limit and/or Fault input signals) when the PWMxL output is low

 0 = No blanking when the PWMxL low Enable bit

 1 = State blanking (of current-limit and/or Fault input signals) when the PWMxL output is low

 0 = No blanking when the PWMxL output is low
- **Note 1:** The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

REGISTER 16-25: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER (x = 1 to 8)

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	_		LEB	<8:5>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		LEB<4:0>			—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit			x = Bit is unkr	nown			

bit 15-12 Unimplemented: Read as '0'

bit 11-3 **LEB<8:0>:** Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits The value is in 8.32 ns increments.

bit 2-0 Unimplemented: Read as '0'

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. All devices in the dsPIC33EPXXXGS70X/80X family include three SPI modules.

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Variable length data can be transmitted and received, from 2 to 32 bits.

Note:	Do not perform Read-Modify-Write opera-
	tions (such as bit-oriented instructions) on
	the SPIxBUF register in either Standard or
	Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

SPI3 also supports Audio modes. Four different Audio modes are available.

- I²S
- · Left Justified
- Right Justified
- PCM/DSP

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the master and the other is the slave. However, audio data can be transferred between two slaves. Because the audio protocols require free-running clocks, the master can be a third party controller. In either case, the master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC). The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

The SPI module has the ability to generate three interrupts, reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - SPIRBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxIF. This event occurs when
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 18-1 and Figure 18-2.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules.

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit
Note 1: F	Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the

"dsPIC33/PIC24 Family Reference Manual" for information on enabling the UARTx module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 21-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N			
bit 15	•						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N			
bit 7	GIDHN	GIBOI	GIDSN	01021	GIDZIN	01011	bit 0			
Legend:										
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
		2.1.0 001		0 2000 0.00						
bit 15	G2D4T: Gate	2 Data Source	4 True Enable	e bit						
	1 = Data Sour	rce 4 non-inver	ed signal is er	nabled for Gate	2					
	0 = Data Sour	rce 4 non-inver	ed signal is di	sabled for Gate	e 2					
bit 14		2 Data Source	•							
		rce 4 inverted s rce 4 inverted s								
bit 13		2 Data Source	•							
	1 = Data Sour	rce 3 non-inver	ed signal is er	nabled for Gate						
bit 12	 0 = Data Source 3 non-inverted signal is disabled for Gate 2 G2D3N: Gate 2 Data Source 3 Negated Enable bit 									
511 12	1 = Data Sour	rce 3 inverted s	ignal is enable	ed for Gate 2						
bit 11	 0 = Data Source 3 inverted signal is disabled for Gate 2 G2D2T: Gate 2 Data Source 2 True Enable bit 									
	 1 = Data Source 2 non-inverted signal is enabled for Gate 2 0 = Data Source 2 non-inverted signal is disabled for Gate 2 									
bit 10		2 Data Source	•							
	 1 = Data Source 2 inverted signal is enabled for Gate 2 0 = Data Source 2 inverted signal is disabled for Gate 2 									
bit 9		2 Data Source	•							
		rce 1 non-inver rce 1 non-inver	•							
bit 8		2 Data Source	-							
		rce 1 inverted s rce 1 inverted s								
bit 7		1 Data Source	-							
		rce 4 non-inver rce 4 non-inver								
bit 6	 0 = Data Source 4 non-inverted signal is disabled for Gate 1 G1D4N: Gate 1 Data Source 4 Negated Enable bit 									
	 1 = Data Source 4 inverted signal is enabled for Gate 1 0 = Data Source 4 inverted signal is disabled for Gate 1 									
bit 5		1 Data Source	-							
	1 = Data Sour	rce 3 non-inver rce 3 non-inver	ed signal is er	nabled for Gate						
bit 4		1 Data Source	-							
	1 = Data Sour	rce 3 inverted s rce 3 inverted s	ignal is enable	ed for Gate 1						

REGISTER 22-26: ADTRIGXL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW

(x = 0 to 5)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_		TRO	GSRC(4x+1)<4:0)>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_		TR	GSRC(4x)<4:0	>	
bit 7							bit 0

Legend:

bit

bit

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

t 12-8	TRGSRC(4x+1)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits
	11111 = ADTRG31
	11110 = PTG Trigger Output 12
	11101 = PWM Generator 6 current-limit trigger
	11100 = PWM Generator 5 current-limit trigger
	11011 = PWM Generator 4 current-limit trigger
	11010 = PWM Generator 3 current-limit trigger
	11001 = PWM Generator 2 current-limit trigger
	11000 = PWM Generator 1 current-limit trigger
	10111 = Output Compare 2 trigger
	10110 = Output Compare 1 trigger
	10101 = CLC2 output
	10100 = PWM Generator 6 secondary trigger
	10011 = PWM Generator 5 secondary trigger
	10010 = PWM Generator 4 secondary trigger
	10001 = PWM Generator 3 secondary trigger
	10000 = PWM Generator 2 secondary trigger
	01111 = PWM Generator 1 secondary trigger
	01110 = PWM secondary Special Event Trigger
	01101 = Timer2 period match
	01100 = Timer1 period match
	01011 = CLC1 output
	01010 = PWM Generator 6 primary trigger
	01001 = PWM Generator 5 primary trigger
	01000 = PWM Generator 4 primary trigger
	00111 = PWM Generator 3 primary trigger
	00110 = PWM Generator 2 primary trigger
	00101 = PWM Generator 1 primary trigger
	00100 = PWM Special Event Trigger 00011 = Reserved
	00011 – Reserved
	000001 = Common software trigger
	00000 = No trigger is enabled
t 7-5	Unimplemented: Read as '0'

REGISTER 22-27: ADTRIGXH: ADC CHANNEL TRIGGER x SELECTION REGISTER HIGH (x = 0 to 5) (CONTINUED)

bit 4-0	TRGSRC(4x+2)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits
	11111 = ADTRG31
	11110 = PTG Trigger Output 30
	11101 = PWM Generator 6 current-limit trigger
	11100 = PWM Generator 5 current-limit trigger
	11011 = PWM Generator 4 current-limit trigger
	11010 = PWM Generator 3 current-limit trigger
	11001 = PWM Generator 2 current-limit trigger
	11000 = PWM Generator 1 current-limit trigger
	10111 = Output Compare 2 trigger
	10110 = Output Compare 1 trigger
	10101 = CLC2 output
	10100 = PWM Generator 6 secondary trigger
	10011 = PWM Generator 5 secondary trigger
	10010 = PWM Generator 4 secondary trigger
	10001 = PWM Generator 3 secondary trigger
	10000 = PWM Generator 2 secondary trigger
	01111 = PWM Generator 1 secondary trigger
	01110 = PWM secondary Special Event Trigger
	01101 = Timer2 period match
	01100 = Timer1 period match
	01011 = CLC1 output
	01010 = PWM Generator 6 primary trigger
	01001 = PWM Generator 5 primary trigger
	01000 = PWM Generator 4 primary trigger
	00111 = PWM Generator 3 primary trigger
	00110 = PWM Generator 2 primary trigger
	00101 = PWM Generator 1 primary trigger 00100 = PWM Special Event Trigger
	00010 = P Win Special Event Higger
	00011 – Reserved 00010 = Level software trigger

00001 = Common software trigger

00000 = No trigger is enabled

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles, with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

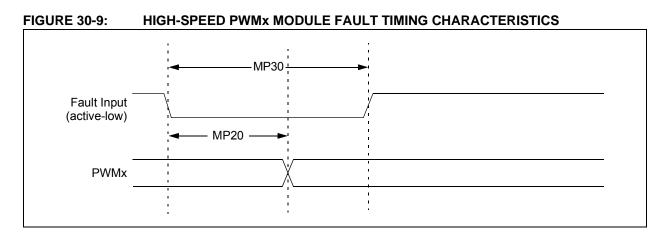
Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
a ∈ {b, c, d}	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal \in {065535}
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register \in { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

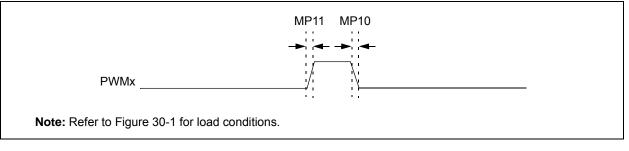
TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter Typ. Max.			Units	Units Conditions			
Power-Down	Current (IPD) ⁽¹⁾						
DC60d	15	110	μA	-40°C			
DC60a	20	150	μA	+25°C +85°C 3.3V			
DC60b	150	500	μA				
DC60c	500	1200	μA	+125°C			

Note 1: IPD (Sleep) current is measured as follows:


• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled


TABLE 30-9: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT $(\triangle IwDT)^{(1)}$

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Parameter No.	Тур.	Max.	Units Conditions					
DC61d	1	10	μΑ	-40°C				
DC61a	1	10	μA	+25°C				
DC61b	2	17	μA	+85°C	3.3V			
DC61c	2	20	μA	+125°C				

Note 1: The \triangle IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

FIGURE 30-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-30: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				
MP10	TFPWM	PWMx Output Fall Time	_	_	—	ns	See Parameter DO32
MP11	TRPWM	PWMx Output Rise Time	—	_	—	ns	See Parameter DO31
MP20	Tfd	Fault Input ↓ to PWMx I/O Change	_	_	15	ns	
MP30	Tfh	Fault Input Pulse Width	15	—	—	ns	

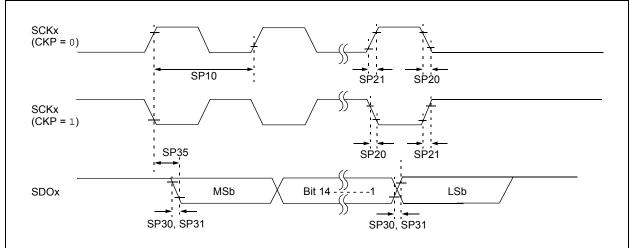
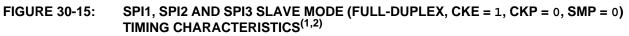
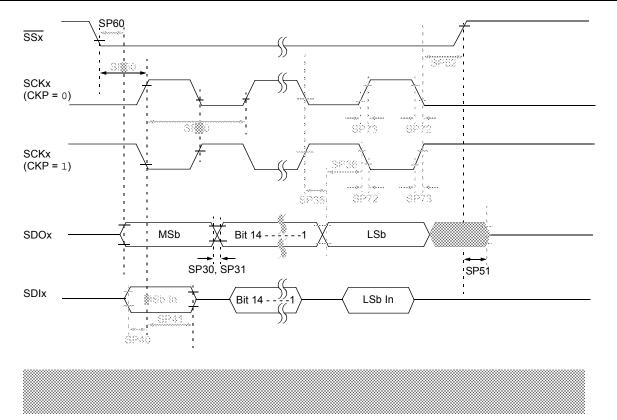

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-31: SPI1, SPI2 AND SPI3 MAXIMUM DATA/CLOCK RATE SUMMARY⁽¹⁾

AC CHARA	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 30-32	_	_	0,1	0,1	0,1		
9 MHz	_	Table 30-33	—	1	0,1	1		
9 MHz	—	Table 30-34	—	0	0,1	1		
15 MHz	—	—	Table 30-35	1	0	0		
11 MHz	_	—	Table 30-36	1	1	0		
15 MHz	_	—	Table 30-37	0	1	0		
11 MHz	—	—	Table 30-38	0	0	0		


Note 1: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with a remappable SCK3 pin.


FIGURE 30-11: SPI1, SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS^(1,2)

Note 1: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with a remappable SCK3 pin.

2: Refer to Figure 30-1 for load conditions.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)(5)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
		ADC	Accuracy: S	ingle-Ende	d Input		·	
AD20b	Nr	Resolution		12		bits		
AD21b	INL	Integral Nonlinearity	> 5		< 5	LSb	AVss = 0V, AVDD = 3.3V	
AD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	AVss = 0V, AVDD = 3.3V (Note 2)	
AD23b	Gerr	Gain Error (Dedicated Core)	> 0	8	< 15	LSb	AVss = 0V, AVdd = 3.3V	
		Gain Error (Shared Core)	> 5	15	< 22	LSb		
AD24b	Eoff	Offset Error (Dedicated Core)	> 2	9	< 15	LSb	AVss = 0V, AVdd = 3.3V	
		Offset Error (Shared Core)	> 5	17	< 22	LSb		
AD25b	_	Monotonicity	_	_	_	_	Guaranteed	
			Dynamic P	erformanc	e			
AD31b	SINAD	Signal-to-Noise and Distortion	63	_	> 65	dB	(Notes 3, 4)	
AD34b	ENOB	Effective Number of Bits	10.3		_	bits	(Notes 3, 4)	

TABLE 30-52: ADC MODULE SPECIFICATIONS (CONTINUED)

Note 1: These parameters are not characterized or tested in manufacturing.

2: No missing codes, limits based on characterization results.

3: These parameters are characterized but not tested in manufacturing.

4: Characterized with a 15 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

TABLE 30-55: DACx MODULE SPECIFICATIONS

		$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(2)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array} $					
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Comments				Comments
DA01	EXTREF	External Voltage Reference ⁽¹⁾	1	_	AVdd	V	
DA02	CVRES	Resolution		12		bits	
DA03	INL	Integral Nonlinearity Error	-16	-12	0	LSB	
DA04	DNL	Differential Nonlinearity Error	-1.8	±1	1.8	LSB	
DA05	EOFF	Offset Error	-8	3	15	LSB	
DA06	EG	Gain Error	-1.2	-0.5	0	%	
DA07	TSET	Settling Time ⁽¹⁾	—	700	_	ns	Output with 2% of desired output voltage with a 10-90% or 90-10% step

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

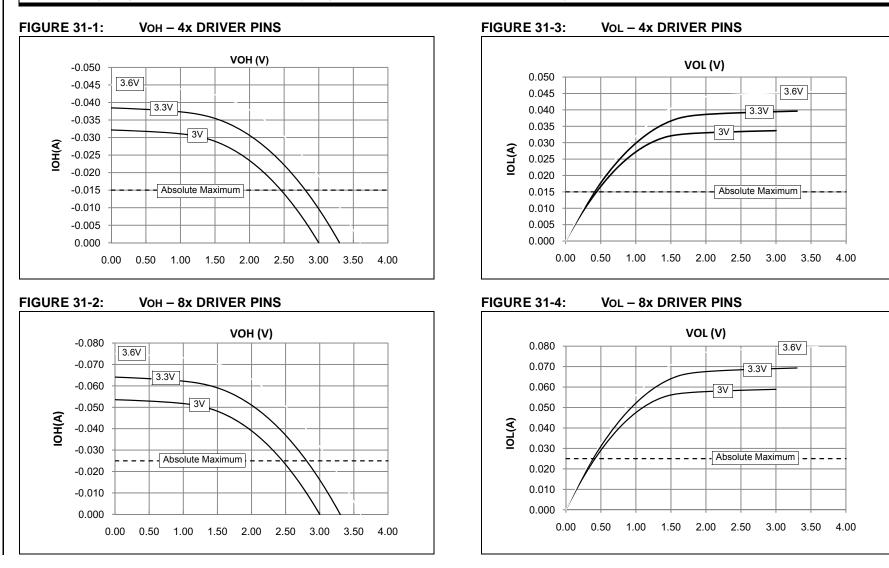
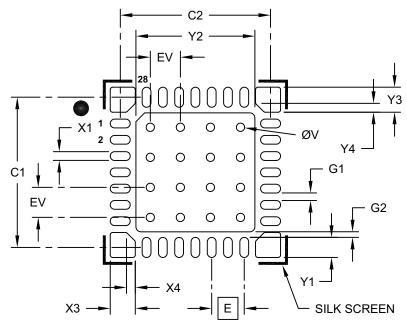

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max. Units				
DA11	RLOAD	Resistive Output Load Impedance	10K		—	Ohm		
DA11a	CLOAD	Output Load Capacitance	_		35	pF	Including output pin capacitance	
DA12	Ιουτ	Output Current Drive Strength	_	300	—	μA	Sink and source	
DA13	VRANGE	Output Drive Voltage Range at Current Drive of 300 µA	AVss + 250 mV		AVDD – 900 mV	V		
DA14	VLRANGE	Output Drive Voltage Range at Reduced Current Drive of 50 µA	AVss + 50 mV	_	AVDD – 500 mV	V		
DA15	IDD	Current Consumed when Module is Enabled		_	1.3 x IOUT	μA	Module will always consume this current, even if no load is connected to the output	
DA30	VOFFSET	Input Offset Voltage		±5		mV		

TABLE 30-56: DACX OUTPUT (DACOUTX PIN) SPECIFICATIONS

Note 1: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.


31.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			4.75
Optional Center Pad Length	Y2			4.75
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.35
Contact Pad Length (X28)	Y1			0.80
Corner Anchor (X4)	X3			1.00
Corner Anchor (X4)	Y3			1.00
Corner Anchor Chamfer (X4)	X4			0.35
Corner Anchor Chamfer (X4)	Y4			0.35
Contact Pad to Pad (X28)	G1	0.20		
Contact Pad to Center Pad (X28)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2385B

Note: Corner anchor pads are not connected internally and are designed as mechanical features when the package is soldered to the PCB.