

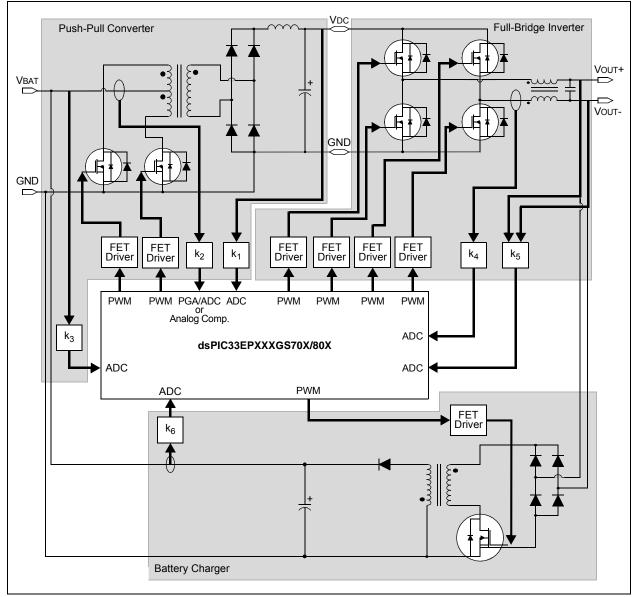
Welcome to E-XFL.COM

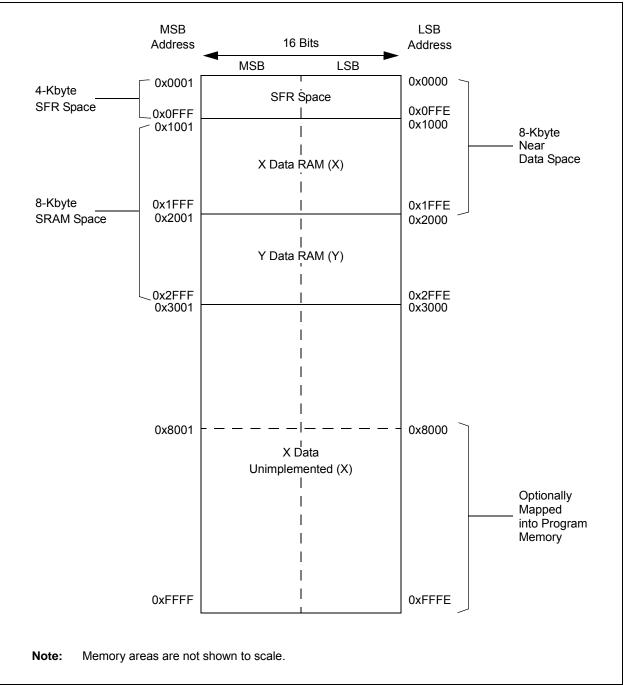
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XE


Detuns	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs805t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-6: OFF-LINE UPS

FIGURE 4-6: DATA MEMORY MAP FOR dsPIC33EP64GS70X/80X DEVICES

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
NVM			C2INTF	78A	000000000000000000000000000000000000000	C2RXF1SID	7C4	*****
NVMCON	728	000000000000000000000000000000000000000	C2INTE	78C	000000000000000000000000000000000000000	C2RXF1EID	7C6	*****
NVMADR	72A	000000000000000000000000000000000000000	C2EC	78E	000000000000000000000000000000000000000	C2RXF2SID	7C8	*****
NVMADRU	72C	000000000000000000000000000000000000000	C2CFG1	790	000000000000000000000000000000000000000	C2RXF2EID	7CA	*****
NVMKEY	72E	000000000000000000000000000000000000000	C2CFG2	792	0x000xxxxxxxxxx	C2RXF3SID	7CC	*****
NVMSRCADR	730	000000000000000000000000000000000000000	C2FEN1	794	11111111111111111	C2RXF3EID	7CE	*****
NVMSRCADRH	732	000000000000000000000000000000000000000	C2FMSKSEL1	798	000000000000000000000000000000000000000	C2RXF4SID	7D0	*****
System Control			C2FMSKSEL2	79A	0000000000000000000	C2RXF4EID	7D2	*****
RCON	740	0x00x0x01x0xxxxx	CAN (WIN (C1	CTR1<0>)	= 0)	C2RXF5SID	7D4	*****
OSCCON	742	0000000000000000000	C2RXFUL1	7A0	0000000000000000000	C2RXF5EID	7D6	*****
CLKDIV	744	0000000000000000000	C2RXFUL2	7A2	0000000000000000000	C2RXF6SID	7D8	*****
PLLFBD	746	000000000000000000000000000000000000000	C2RXOVF1	7A8	000000000000000000000000000000000000000	C2RXF6EID	7DA	*****
OSCTUN	748	000000000000000000000000000000000000000	C2RXOVF2	7AA	000000000000000000000000000000000000000	C2RXF7SID	7DC	*****
LFSR	74C	000000000000000000000000000000000000000	C2TR01CON	7B0	000000000000000000000000000000000000000	C2RXF7EID	7DE	*****
REFOCON	74E	0000000000000000000	C2TR23CON	7B2	0000000000000000000	C2RXF8SID	7E0	*****
ACLKCON	750	0000000000000000000	C2TR45CON	7B4	0000000000000000000	C2RXF8EID	7E2	*****
PMD			C2TR67CON	7B6	*****	C2RXF9SID	7E4	*****
PMD1	760	0000000000000000000	C2RXD	7C0	*****	C2RXF9EID	7E6	*****
PMD2	762	000000000000000000000000000000000000000	C2TXD	7C2	*****	C2RXF10SID	7E8	*****
PMD3	764	000000000000000000000000000000000000000	CAN (WIN (C10	CTR1<0>):	= 1)	C2RXF10EID	7EA	*****
PMD4	766	000000000000000000000000000000000000000	C2BUFPNT1	7A0	000000000000000000000000000000000000000	C2RXF11SID	7EC	*****
PMD6	76A	000000000000000000000000000000000000000	C2BUFPNT2	7A2	000000000000000000000000000000000000000	C2RXF11EID	7EE	*****
PMD7	76C	000000000000000000000000000000000000000	C2BUFPNT3	7A4	000000000000000000000000000000000000000	C2RXF12SID	7F0	*****
PMD8	76E	000000000000000000000000000000000000000	C2BUFPNT4	7A6	000000000000000000000000000000000000000	C2RXF12EID	7F2	*****
CAN (WIN (C1CT	R1<0>) =	0 or 1)	C2RXM0SID	7B0	*****	C2RXF13SID	7F4	*****
C2CTRL1	780	0000010010000000	C2RXM0EID	7B2	*****	C2RXF13EID	7F6	*****
C2CTRL2	782	000000000000000000000000000000000000000	C2RXM1SID	7B4	*****	C2RXF14SID	7F8	*****
C2VEC	784	000000001000000	C2RXM1EID	7B6	*****	C2RXF14EID	7FA	*****
C2FCTRL	786	000000000000000000000000000000000000000	C2RXM2SID	7B8	*****	C2RXF15SID	7FC	*****
C2FIFO	788	000000000000000000000000000000000000000	C2RXM2EID	7BA	*****	C2RXF15EID	7FE	*****

TABLE 4-9:SFR BLOCK 700h

Legend: x = unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector	IRQ		In	terrupt Bit Lo	cation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
AN17 Conversion Done	168	160	0x000154	IFS10<0> AN17IF	IEC10<0> AN17IE	IPC40<2:0> AN17IP<2:0>
AN18 Conversion Done	169	161	0x000156	IFS10<1> AN18IF	IEC10<1> AN18IE	IPC40<6:4> AN18IP<2:0>
AN19 Conversion Done	170	162	0x000158	IFS10<2> AN19IF	IEC10<2> AN19IE	IPC40<10:8> AN19IP<2:0>
AN20 Conversion Done	171	163	0x00015A	IFS10<3> AN20IF	IEC10<3> AN20IE	IPC40<14:12> AN20IP<2:0>
AN21 Conversion Done	172	164	0x00015C	IFS10<4> AN21IF	IEC10<4> AN21IE	IPC41<2:0> AN21IP<2:0>
Reserved	173-180	165-172	0x00015C-0x00016C	_	—	—
I2C1 – I2C1 Bus Collision	181	173	0x00016E	IFS10<13> I2C1IF	IEC10<13> I2C1IE	IPC43<6:4> I2C1IP<2:0>
I2C2 – I2C2 Bus Collision	182	174	0x000170	IFS10<14> I2C2IF	IEC10<14> I2C2IE	IPC43<10:8> I2C2IP<2:0>
Reserved	183-184	175-176	0x000172-0x000174	—	_	—
ADCMP0 – ADC Digital Comparator 0	185	177	0x000176	IFS11<1> ADCMP0IF	IEC11<1> ADCMP0IE	IPC44<6:4> ADCMP0IP<2:0>
ADCMP1 – ADC Digital Comparator 1	186	178	0x000178	IFS11<2> ADCMP1IF	IEC11<2> ADCMP1IE	IPC44<10:8> ADCMP1IP<2:0>
ADFLTR0 – ADC Filter 0	187	179	0x00017A	IFS11<3> ADFLTR0IF	IEC11<3> ADFLTR0IE	IPC44<14:12> ADFLTR0IP<2:0>
ADFLTR1 – ADC Filter 1	188	180	0x00017C	IFS11<4> ADFLTR1IF	IEC11<4> ADFLTR1IE	IPC45<2:0> ADFLTR1IP<2:0>
Reserved	189-253	181-245	0x00017E-0x000192	—	—	_

REGISTER 8-5: DMAxSTBH: DMA CHANNEL x START ADDRESS REGISTER B (HIGH)

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
	_				—		_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB<	23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB<23:16>: DMA Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAxSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un				x = Bit is unkr	nown		

bit 15-0 STB<15:0>: DMA Secondary Start Address bits (source or destination)

REGISTER 8-7: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAI)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = E			x = Bit is unkı	nown			

bit 15-0 PAD<15:0>: DMA Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_		CNT<13:8> ⁽²⁾					
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CNT<	<7:0> (2)				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	W = Writable bit U = Unimplemented bit, read as '0'			1 as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
_	—		—		LSTCH	1<3:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, read	as '0'		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3-0	LSTCH<3:0>	: Last DMA Co	ntroller Chanr	nel Active Statu	us bits		
	1111 = No Di	MA transfer ha	s occurred sin	ce system Res	set		
	1110 = Rese	rved					
	•						
	•						
	•						
	0100 = Reser			Observal 0			
		lata transfer wa					
		data transfer wa					
		lata transfer wa lata transfer wa					
			as nanuleu by				

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

bit 4-0

PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33

•

00001 = Input divided by 3

00000 = Input divided by 2 (default)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - **2:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	PLLDIV8
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLDI	V<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

-							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		—	
bit 15							bit 8
				=		=	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is u			nown
bit 15-6	Unimplemen	ted: Read as '0	,				
bit 5-0	TUN<5:0>: F	RC Oscillator To	uning bits				
		ximum frequen			7 MHz)		
	011110 = Ce	nter frequency	+ 1.41% (7.47	4 MHz)			
	•						
	•						
	000001 = Ce	nter frequency	+ 0.047% (7.3	73 MHz)			
	000000 = Ce	nter frequency	(7.37 MHz noi	minal)			
	111111 = Ce	nter frequency	- 0.047% (7.3	67 MHz)			
	•						
	•						
	100001 = Ce	nter frequency	- 1.457% (7.2	63 MHz)			
		nimum frequenc	•	,	/IHz)		

REGISTER 11-27: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SYNCI1R7 | SYNCI1R6 | SYNCI1R5 | SYNCI1R4 | SYNCI1R3 | SYNCI1R2 | SYNCI1R1 | SYNCI1R0 |
| bit 15 | | | | | | | bit 8 |

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 SYNCI1R<7:0>: Assign PWM Synchronization Input 1 (SYNCI1) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-28: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SYNCI2R7 | SYNCI2R6 | SYNCI2R5 | SYNCI2R4 | SYNCI2R3 | SYNCI2R2 | SYNCI2R1 | SYNCI2R0 |
| bit 7 | • | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **SYNCI2R<7:0>:** Assign PWM Synchronization Input 2 (SYNCI2) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

13.2 Timer2/3 and Timer4/5 Control Registers

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	—			_	—
bit 15		I				•	bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
_	TGATE	TCKPS1	TCKPS0	T32	_	TCS ⁽¹⁾	
bit 7							bit (
Legend: R = Readable	hit	W = Writable	bit		nonted hit read	d as 'O'	
-n = Value at l		'1' = Bit is set		'0' = Bit is cle	nented bit, read	x = Bit is unkn	014/0
					areu		0001
bit 15	TON: Timerx <u>When T32 = 1</u> 1 = Starts 32- 0 = Stops 32- <u>When T32 = 0</u> 1 = Starts 16-	L: bit Timerx/y bit Timerx/y <u>):</u>					
	0 = Stops 16-						
bit 14	Unimplemented: Read as '0'						
bit 13	TSIDL: Timer	x Stop in Idle N	lode bit				
		ues module op s module opera			dle mode		
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6	When TCS = This bit is igno When TCS = 1 = Gated tim	ored.	n is enabled	Enable bit			
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescal	e Select bits			
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1						
bit 3	T32: 32-Bit Ti	mer Mode Sele	ect bit				
		d Timery form d Timery act a					
bit 2	Unimplemen	ted: Read as '	0'				
bit 1		Clock Source S clock is from pi		e rising edge)			
	0 = Internal cl	ock (FP)	·	· · ·			
bit 0	Unimplemen	' se heag ' Roat	0 <i>1</i>				

REGISTER 18-4: SPIx STATL: SPIx STATUS REGISTER LOW (CONTINUED)

- bit 3 SPITBE: SPIx Transmit Buffer Empty Status bit 1 = SPIxTXB is empty 0 = SPIxTXB is not empty Standard Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically cleared in hardware when SPIxBUF is written, loading SPIxTXB. Enhanced Buffer mode: Indicates TXELM<5:0> = 000000. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = SPIxTXB is full 0 = SPIxTXB not full Standard Buffer mode: Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Enhanced Buffer mode: Indicates TXELM<5:0> = 111111. SPIRBF: SPIx Receive Buffer Full Status bit bit 0 1 = SPIxRXB is full 0 = SPIxRXB is not full Standard Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. Enhanced Buffer mode: Indicates RXELM<5:0> = 111111.
- **Note 1:** SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 22-4: ADCON2H: ADC CONTROL REGISTER 2 HIGH

R-0, HSC	R-0, HSC	r-0	r-0	r-0	r-0	R/W-0	R/W-0
REFRDY	REFERR	—	—	—	—	SHRSAMC9	SHRSAMC8
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SHRSAMC7 | SHRSAMC6 | SHRSAMC5 | SHRSAMC4 | SHRSAMC3 | SHRSAMC2 | SHRSAMC1 | SHRSAMC0 |
| bit 7 | · | | | | | | bit 0 |

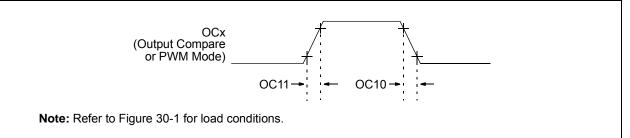
Legend:	r = Reserved bit	U = Unimplemented bit, read as '0'	
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	

bit 15	REFRDY: Band Gap and Reference Voltage Ready Flag bit 1 = Band gap is ready 0 = Band gap is not ready
bit 14	REFERR: Band Gap or Reference Voltage Error Flag bit 1 = Band gap was removed after the ADC module was enabled (ADON = 1) 0 = No band gap error was detected
bit 13-10	Reserved: Maintain as '0'
bit 9-0	<pre>SHRSAMC<9:0>: Shared ADC Core Sample Time Selection bits These bits specify the number of shared ADC Core Clock Periods (TADCORE) for the shared ADC core sample time. 111111111 = 1025 TADCORE</pre>

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HSC	R/W-0	R-0, HSC
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH
bit 15							bit 8

R/W-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0
bit 7 bit 0							

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			


bit 15-13 REFSEL<2:0>: ADC Reference Voltage Selection bits

Value	VREFH	VREFL
000	AVDD	AVss

001-111 = Unimplemented: Do not use

bit 12	SUSPEND: All ADC Cores Triggers Disable bit
	1 = All new trigger events for all ADC cores are disabled
	0 = All ADC cores can be triggered
bit 11	SUSPCIE: Suspend All ADC Cores Common Interrupt Enable bit
	 1 = Common interrupt will be generated when ADC core triggers are suspended (SUSPEND bit = 1) and all previous conversions are finished (SUSPRDY bit becomes set) 0 = Common interrupt is not generated for suspend ADC cores event
bit 10	SUSPRDY: All ADC Cores Suspended Flag bit
	 1 = All ADC cores are suspended (SUSPEND bit = 1) and have no conversions in progress 0 = ADC cores have previous conversions in progress
bit 9	SHRSAMP: Shared ADC Core Sampling Direct Control bit
	This bit should be used with the individual channel conversion trigger controlled by the CNVRTCH bit. It connects an analog input, specified by the CNVCHSEL<5:0> bits, to the shared ADC core and allows extending the sampling time. This bit is not controlled by hardware and must be cleared before the conversion starts (setting CNVRTCH to '1'). 1 = Shared ADC core samples an analog input specified by the CNVCHSEL<5:0> bits
	0 = Sampling is controlled by the shared ADC core hardware
bit 8	CNVRTCH: Software Individual Channel Conversion Trigger bit
	 1 = Single trigger is generated for an analog input specified by the CNVCHSEL<5:0> bits; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 0 = Next individual channel conversion trigger can be generated
bit 7	SWLCTRG: Software Level-Sensitive Common Trigger bit
	 1 = Triggers are continuously generated for all channels with the software, level-sensitive common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers 0 = No software, level-sensitive common triggers are generated
bit 6	SWCTRG: Software Common Trigger bit
	 1 = Single trigger is generated for all channels with the software, common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 2 = Deadly to generate the next offware common trigger
	0 = Ready to generate the next software common trigger
bit 5-0	CNVCHSEL <5:0>: Channel Number Selection for Software Individual Channel Conversion Trigger bits These bits define a channel to be converted when the CNVRTCH bit is set.

FIGURE 30-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

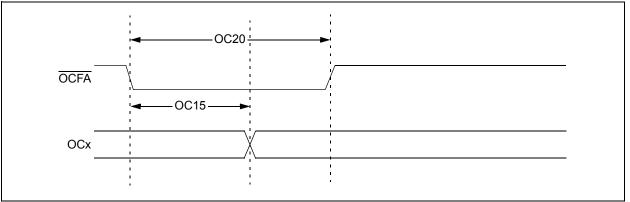


TABLE 30-28: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40 \ ^\circ C \leq TA \leq +85 \ ^\circ C \ for \ Industrial \\ -40 \ ^\circ C \leq TA \leq +125 \ ^\circ C \ for \ Extended \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
OC10	TccF	OCx Output Fall Time	_	_	_	ns	See Parameter DO32	
OC11	TccR	OCx Output Rise Time		_	_	ns	See Parameter DO31	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-29: OCx/PWMx MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC15	TFD	Fault Input to PWMx I/O Change	_	_	Tcy + 20	ns	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-36:SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency			11	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time				ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	(Note 4)	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

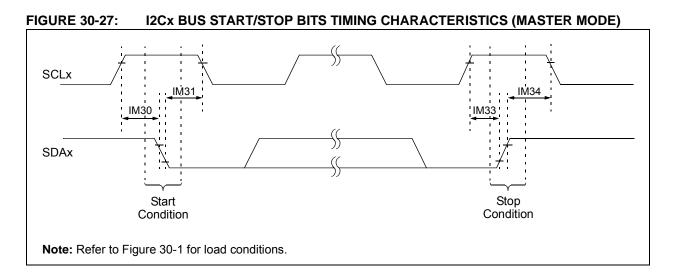
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

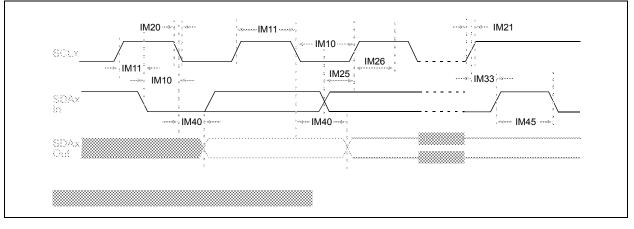
5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with a remappable SCK3 pin.

TABLE 30-37:SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency	—		15	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—		ns	(Note 4)	

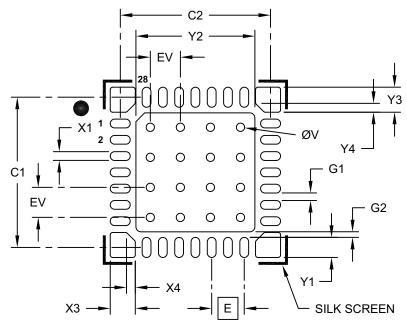

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.


3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with a remappable SCK3 pin.



28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

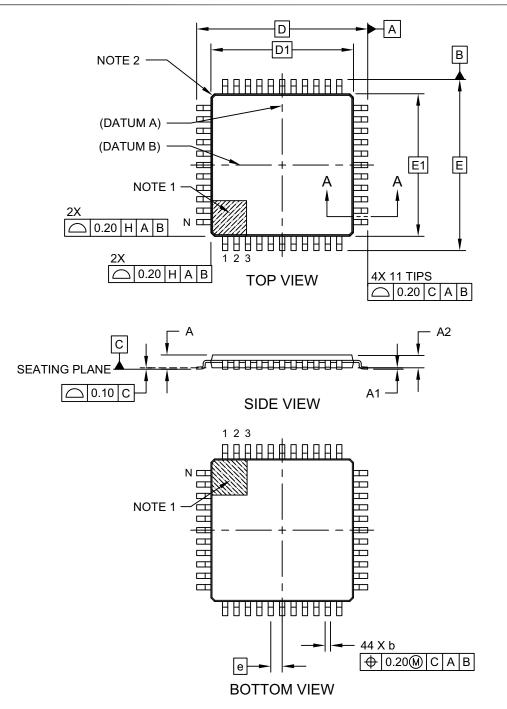
RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			4.75
Optional Center Pad Length	Y2			4.75
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.35
Contact Pad Length (X28)	Y1			0.80
Corner Anchor (X4)	X3			1.00
Corner Anchor (X4)	Y3			1.00
Corner Anchor Chamfer (X4)	X4			0.35
Corner Anchor Chamfer (X4)	Y4			0.35
Contact Pad to Pad (X28)	G1	0.20		
Contact Pad to Center Pad (X28)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2385B

Note: Corner anchor pads are not connected internally and are designed as mechanical features when the package is soldered to the PCB.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2