

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | dsPIC                                                                           |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 70 MIPs                                                                         |
| Connectivity               | I²C, IrDA, LINbus, SPI, UART/USART                                              |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                    |
| Number of I/O              | 51                                                                              |
| Program Memory Size        | 64KB (64K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 8K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | A/D 22x12b; D/A 2x12b                                                           |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 64-TQFP                                                                         |
| Supplier Device Package    | 64-TQFP (10x10)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs806-i-pt |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

| h:+ 7 C | $ \mathbf{p}  \sim 2 \cdot \mathbf{p} \sim C \mathbf{p} $   Interment Driver in Level Contraction hits (1.2) |
|---------|--------------------------------------------------------------------------------------------------------------|
| bit 7-5 | <b>IPL&lt;2:0&gt;:</b> CPU Interrupt Priority Level Status bits <sup>(1,2)</sup>                             |
|         | 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled                                   |
|         | 110 = CPU Interrupt Priority Level is 6 (14)                                                                 |
|         | 101 = CPU Interrupt Priority Level is 5 (13)<br>100 = CPU Interrupt Priority Level is 4 (12)                 |
|         | 011 = CPU Interrupt Priority Level is 3 (11)                                                                 |
|         | 010 = CPU Interrupt Priority Level is 2 (10)                                                                 |
|         | 001 = CPU Interrupt Priority Level is 1 (9)                                                                  |
|         | 000 = CPU Interrupt Priority Level is 0 (8)                                                                  |
| bit 4   | RA: REPEAT Loop Active bit                                                                                   |
|         | 1 = REPEAT loop is in progress                                                                               |
|         | 0 = REPEAT loop is not in progress                                                                           |
| bit 3   | N: MCU ALU Negative bit                                                                                      |
|         | 1 = Result was negative                                                                                      |
|         | 0 = Result was non-negative (zero or positive)                                                               |
| bit 2   | OV: MCU ALU Overflow bit                                                                                     |
|         | This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that      |
|         | causes the sign bit to change state.                                                                         |
|         | 1 = Overflow occurred for signed arithmetic (in this arithmetic operation)                                   |
|         | 0 = No overflow occurred                                                                                     |
| bit 1   | Z: MCU ALU Zero bit                                                                                          |
|         | 1 = An operation that affects the Z bit has set it at some time in the past                                  |
|         | 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)                |
| bit 0   | C: MCU ALU Carry/Borrow bit                                                                                  |
|         | 1 = A carry-out from the Most Significant bit of the result occurred                                         |
|         | 0 = No carry-out from the Most Significant bit of the result occurred                                        |
| Note 1: | The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority        |
|         |                                                                                                              |

- Iote 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
  - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
  - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

#### REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

| U-0          | U-0               | U-0                                                       | U-0        | R/W-0             | R/W-0            | R/W-0           | R/W-0  |  |
|--------------|-------------------|-----------------------------------------------------------|------------|-------------------|------------------|-----------------|--------|--|
| _            | —                 | —                                                         | _          | CMP4MD            | CMP3MD           | CMP2MD          | CMP1MD |  |
| bit 15       |                   |                                                           |            |                   |                  |                 | bit 8  |  |
|              |                   |                                                           |            |                   |                  |                 |        |  |
| U-0          | U-0               | U-0                                                       | R/W-0      | R/W-0             | U-0              | R/W-0           | U-0    |  |
| —            |                   |                                                           | DMAMD      | PTGMD             | —                | PGA1MD          |        |  |
| bit 7        |                   |                                                           |            |                   |                  |                 | bit 0  |  |
| Legend:      |                   |                                                           |            |                   |                  |                 |        |  |
| R = Readat   | ole bit           | W = Writable                                              | bit        | U = Unimplen      | nented bit, read | d as '0'        |        |  |
| -n = Value a | at POR            | '1' = Bit is se                                           | t          | '0' = Bit is clea |                  | x = Bit is unkn | iown   |  |
|              |                   |                                                           |            |                   |                  |                 |        |  |
| bit 15-12    | Unimpleme         | nted: Read as                                             | 0'         |                   |                  |                 |        |  |
| bit 11       | CMP4MD: (         | CMP4 Module D                                             | isable bit |                   |                  |                 |        |  |
|              |                   | nodule is disable                                         |            |                   |                  |                 |        |  |
|              |                   | nodule is enable                                          |            |                   |                  |                 |        |  |
| bit 10       |                   | CMP3 Module D                                             |            |                   |                  |                 |        |  |
|              |                   | 1 = CMP3 module is disabled<br>0 = CMP3 module is enabled |            |                   |                  |                 |        |  |
| bit 9        |                   | CMP2 Module D                                             |            |                   |                  |                 |        |  |
| bit 0        |                   | nodule is disable                                         |            |                   |                  |                 |        |  |
|              | -                 | nodule is enable                                          |            |                   |                  |                 |        |  |
| bit 8        | CMP1MD: (         | CMP1 Module D                                             | isable bit |                   |                  |                 |        |  |
|              | 1 = CMP1 n        | nodule is disable                                         | ed         |                   |                  |                 |        |  |
|              | 0 = CMP1 n        | nodule is enable                                          | d          |                   |                  |                 |        |  |
| bit 7-5      | Unimpleme         | ented: Read as                                            | 0'         |                   |                  |                 |        |  |
| bit 4        |                   | MA Module Disa                                            |            |                   |                  |                 |        |  |
|              |                   | odule is disabled<br>odule is enabled                     |            |                   |                  |                 |        |  |
| bit 3        |                   | G Module Disal                                            |            |                   |                  |                 |        |  |
| DILS         | _                 | dule is disabled                                          |            |                   |                  |                 |        |  |
|              |                   | dule is enabled                                           |            |                   |                  |                 |        |  |
| bit 2        | Unimpleme         | nted: Read as                                             | 0'         |                   |                  |                 |        |  |
| bit 1        | -                 | PGA1 Module Di                                            |            |                   |                  |                 |        |  |
|              | 1 = PGA1 m        | nodule is disable                                         | d          |                   |                  |                 |        |  |
|              | 0 <b>= PGA1 m</b> | nodule is enable                                          | d          |                   |                  |                 |        |  |
| bit 0        | Unimpleme         | nted: Read as                                             | 0'         |                   |                  |                 |        |  |

### 11.9 Peripheral Pin Select Registers

#### REGISTER 11-9: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

| R/W-0   | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|---------|--------|--------|--------|--------|--------|--------|--------|
| INT1R7  | INT1R6 | INT1R5 | INT1R4 | INT1R3 | INT1R2 | INT1R1 | INT1R0 |
| bit 15  |        | •      |        |        |        |        | bit 8  |
|         |        |        |        |        |        |        |        |
| U-0     | U-0    | U-0    | U-0    | U-0    | U-0    | U-0    | U-0    |
| _       | _      | —      | —      | —      | —      | —      | _      |
| bit 7   | ·      | •      |        | •      |        |        | bit 0  |
|         |        |        |        |        |        |        |        |
| Legend: |        |        |        |        |        |        |        |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | 1 as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-8INT1R<7:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits<br/>See Table 11-11 which contains a list of remappable inputs for the index value.bit 7-0Unimplemented: Read as '0'

#### REGISTER 11-10: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | _   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| INT2R7 | INT2R6 | INT2R5 | INT2R4 | INT2R3 | INT2R2 | INT2R1 | INT2R0 |
| bit 7  |        |        |        | •      |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **INT2R<7:0>:** Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

## 14.2 Input Capture Registers

### REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

| U-0    | U-0   | R/W-0  | R/W-0       | R/W-0       | R/W-0   | U-0   | U-0   |
|--------|-------|--------|-------------|-------------|---------|-------|-------|
| _      | —     | ICSIDL | ICTSEL2     | ICTSEL1     | ICTSEL0 |       | —     |
| bit 15 |       |        |             |             |         |       | bit 8 |
|        |       |        |             |             |         |       |       |
| U-0    | R/W-0 | R/W-0  | R-0, HC, HS | R-0, HC, HS | R/W-0   | R/W-0 | R/W-0 |
| _      | ICI1  | ICI0   | ICOV        | ICBNE       | ICM2    | ICM1  | ICM0  |
| bit 7  |       |        |             |             |         |       | bit 0 |

| Legend: HC = Hardware Clearable bit HS = Hardware S |                  | HS = Hardware Settable bi          | t                  |
|-----------------------------------------------------|------------------|------------------------------------|--------------------|
| R = Readable bit                                    | W = Writable bit | U = Unimplemented bit, read as '0' |                    |
| -n = Value at POR                                   | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                                                                                                                                                                                                                                       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 13    | ICSIDL: Input Capture x Stop in Idle Control bit                                                                                                                                                                                                                                 |
|           | 1 = Input capture will halt in CPU Idle mode                                                                                                                                                                                                                                     |
|           | <ul><li>Input capture will continue to operate in CPU Idle mode</li></ul>                                                                                                                                                                                                        |
| bit 12-10 | ICTSEL<2:0>: Input Capture x Timer Select bits                                                                                                                                                                                                                                   |
|           | <ul> <li>111 = Peripheral clock (FP) is the clock source of the ICx</li> <li>110 = Reserved</li> <li>101 = Reserved</li> <li>100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported)</li> <li>011 = T5CLK is the clock source of the ICx</li> </ul> |
|           | 010 = T4CLK is the clock source of the ICx<br>001 = T2CLK is the clock source of the ICx                                                                                                                                                                                         |
|           | 000 = T3CLK is the clock source of the ICx                                                                                                                                                                                                                                       |
| bit 9-7   | Unimplemented: Read as '0'                                                                                                                                                                                                                                                       |
| bit 6-5   | ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111)                                                                                                                                                                         |
|           | <ul> <li>11 = Interrupt on every fourth capture event</li> <li>10 = Interrupt on every third capture event</li> <li>01 = Interrupt on every second capture event</li> <li>00 = Interrupt on every capture event</li> </ul>                                                       |
| bit 4     | ICOV: Input Capture x Overflow Status Flag bit (read-only)                                                                                                                                                                                                                       |
|           | <ul> <li>1 = Input capture buffer overflow has occurred</li> <li>0 = No input capture buffer overflow has occurred</li> </ul>                                                                                                                                                    |
| bit 3     | ICBNE: Input Capture x Buffer Not Empty Status bit (read-only)                                                                                                                                                                                                                   |
|           | <ul> <li>1 = Input capture buffer is not empty, at least one more capture value can be read</li> <li>0 = Input capture buffer is empty</li> </ul>                                                                                                                                |
| bit 2-0   | ICM<2:0>: Input Capture x Mode Select bits                                                                                                                                                                                                                                       |
|           | <ul> <li>111 = Input Capture x functions as an interrupt pin only in CPU Sleep and Idle modes (rising edge detect only, all other control bits are not applicable)</li> <li>110 = Unused (module is disabled)</li> </ul>                                                         |
|           | 101 = Capture mode, every 16th rising edge (Prescaler Capture mode)                                                                                                                                                                                                              |
|           | 100 = Capture mode, every 4th rising edge (Prescaler Capture mode)                                                                                                                                                                                                               |
|           | <ul><li>011 = Capture mode, every rising edge (Simple Capture mode)</li><li>010 = Capture mode, every falling edge (Simple Capture mode)</li></ul>                                                                                                                               |
|           | 001 = Capture mode, every raining edge (Simple Capture mode)<br>001 = Capture mode, every rising and falling edge (Edge Detect mode, ICI<1:0>, is not used in this mode)<br>000 = Input Capture x is turned off                                                                  |

## 17.2 PTG Control Registers

### REGISTER 17-1: PTGCST: PTG CONTROL/STATUS REGISTER

|                 | U-0                                      | R/W-0                                                  | R/W-0                  | U-0              | R/W-0                 | R/W-0                  | R/W-0                 |  |  |
|-----------------|------------------------------------------|--------------------------------------------------------|------------------------|------------------|-----------------------|------------------------|-----------------------|--|--|
| PTGEN           | _                                        | PTGSIDL                                                | PTGTOGL                | _                | PTGSWT <sup>(2)</sup> | PTGSSEN                | PTGIVIS               |  |  |
| bit 15          |                                          |                                                        |                        | •                |                       |                        | bit 8                 |  |  |
|                 |                                          |                                                        |                        |                  |                       |                        |                       |  |  |
| R/W-0           | HS-0                                     | U-0                                                    | U-0                    | U-0              | U-0                   | R/W-0                  | R/W-0                 |  |  |
| PTGSTRT         | PTGWDTO                                  |                                                        |                        |                  | _                     | PTGITM1 <sup>(1)</sup> | PTGITM0 <sup>(1</sup> |  |  |
| bit 7           |                                          |                                                        |                        |                  |                       |                        | bit                   |  |  |
| Legend:         |                                          | HS = Hardware                                          | e Settable bit         |                  |                       |                        |                       |  |  |
| R = Readable    | bit                                      | W = Writable b                                         |                        | U = Unimple      | mented bit, rea       | d as '0'               |                       |  |  |
| -n = Value at F | POR                                      | '1' = Bit is set                                       |                        | '0' = Bit is cle |                       | x = Bit is unkr        | iown                  |  |  |
|                 |                                          |                                                        |                        |                  |                       |                        |                       |  |  |
| bit 15          |                                          | 6 Module Enable                                        | e bit                  |                  |                       |                        |                       |  |  |
|                 |                                          | ule is enabled                                         |                        |                  |                       |                        |                       |  |  |
| bit 14          |                                          | nted: Read as '0                                       | ,                      |                  |                       |                        |                       |  |  |
| bit 13          | -                                        | TG Stop in Idle I                                      |                        |                  |                       |                        |                       |  |  |
|                 |                                          | ues module ope                                         |                        | vice enters Id   | le mode               |                        |                       |  |  |
|                 | 0 = Continue                             | s module opera                                         | tion in Idle mod       | е                |                       |                        |                       |  |  |
| bit 12          | PTGTOGL: PTG TRIG Output Toggle Mode bit |                                                        |                        |                  |                       |                        |                       |  |  |
|                 | 0 = Each exe                             | the state of the<br>ecution of the Pt<br>the PTGPWDx I | GTRIG comma            |                  |                       |                        | rmined by the         |  |  |
| bit 11          | Unimplemen                               | ted: Read as 'o                                        | ,                      |                  |                       |                        |                       |  |  |
| bit 10          | PTGSWT: PT                               | G Software Trig                                        | ger bit <sup>(2)</sup> |                  |                       |                        |                       |  |  |
|                 |                                          | the PTG module                                         |                        | <b>ff</b> + )    |                       |                        |                       |  |  |
| <b>h</b> # 0    |                                          | (clearing this b                                       |                        | nect)            |                       |                        |                       |  |  |
| bit 9           |                                          | PTG Enable Sing<br>Single-Step mod                     |                        |                  |                       |                        |                       |  |  |
|                 |                                          | Single-Step mo                                         |                        |                  |                       |                        |                       |  |  |
| bit 8           |                                          | G Counter/Time                                         |                        | rol bit          |                       |                        |                       |  |  |
|                 |                                          | f the PTGSDLI                                          | •                      |                  | registers retur       | n the current v        | alues of the          |  |  |
|                 | 0 = Reads of                             | nding Counter/<br>f the PTGSDLIN                       | I, PTGCxLIM or         |                  |                       | he value previo        | usly written t        |  |  |
| bit 7           |                                          | G Limit register<br>tart PTG Seque                     |                        |                  |                       |                        |                       |  |  |
|                 |                                          | sequentially exe                                       |                        | s (Continuous    | mode)                 |                        |                       |  |  |
|                 |                                          | ecuting commar                                         |                        |                  | meae)                 |                        |                       |  |  |
|                 |                                          |                                                        |                        |                  |                       |                        |                       |  |  |
| bit 6           | PTGWDTO:                                 | PTG Watchdog                                           | Timer Time-out         | Status bit       |                       |                        |                       |  |  |
| bit 6           | 1 = PTG Wat                              | PTG Watchdog<br>chdog Timer ha<br>chdog Timer ha       | s timed out            |                  |                       |                        |                       |  |  |

2: This bit is only used with the PTGCTRL Step command software trigger option.

| REGISTER 21-3: | CLCxSEL: CLCx INPUT MUX SELECT REGISTER |
|----------------|-----------------------------------------|
|----------------|-----------------------------------------|

| U-0                                | R/W-0        | R/W-0                                      | R/W-0          | U-0                                     | R/W-0           | R/W-0    | R/W-0   |  |  |  |
|------------------------------------|--------------|--------------------------------------------|----------------|-----------------------------------------|-----------------|----------|---------|--|--|--|
| —                                  |              | DS4<2:0>                                   |                | —                                       |                 | DS3<2:0> |         |  |  |  |
| bit 15                             |              |                                            |                |                                         |                 |          | bit 8   |  |  |  |
| U-0                                | R/W-0        | R/W-0                                      | R/W-0          | U-0                                     | R/W-0           | R/W-0    | R/W-0   |  |  |  |
| 0-0                                | 17/10-0      | DS2<2:0>                                   | FV/VV-U        | 0-0                                     | 1.000-0         | DS1<2:0> | FV VV-U |  |  |  |
| bit 7                              |              | D32~2.0>                                   |                | —                                       |                 | D31~2.02 | bit 0   |  |  |  |
| Dit 7                              |              |                                            |                |                                         |                 |          | bit 0   |  |  |  |
| Legend:                            |              |                                            |                |                                         |                 |          |         |  |  |  |
| R = Readab                         | ole bit      | W = Writable t                             | bit            | U = Unimplem                            | nented bit, rea | d as '0' |         |  |  |  |
| -n = Value at POR '1' = Bit is set |              |                                            |                | '0' = Bit is cleared x = Bit is unknown |                 |          |         |  |  |  |
|                                    |              |                                            |                |                                         |                 |          |         |  |  |  |
| bit 15                             | Unimpleme    | nted: Read as '0                           | ,              |                                         |                 |          |         |  |  |  |
| bit 14-12                          | DS4<2:0>: [  | Data Selection M                           | UX 4 Signal S  | Selection bits                          |                 |          |         |  |  |  |
|                                    | See Table Ta | able 21-1 for inpu                         | it selections. |                                         |                 |          |         |  |  |  |
| bit 11                             | Unimpleme    | nted: Read as '0                           | ,              |                                         |                 |          |         |  |  |  |
| bit 10-8                           | DS3<2:0>: [  | Data Selection M                           | UX 3 Signal S  | Selection bits                          |                 |          |         |  |  |  |
|                                    | See Table Ta | able 21-1 for inpu                         | it selections. |                                         |                 |          |         |  |  |  |
| bit 7                              | Unimpleme    | nted: Read as '0                           | ,              |                                         |                 |          |         |  |  |  |
| bit 6-4                            | DS2<2:0>: [  | Data Selection M                           | UX 2 Signal S  | Selection bits                          |                 |          |         |  |  |  |
|                                    | See Table Ta | able 21-1 for inpu                         | t selections.  |                                         |                 |          |         |  |  |  |
| bit 3                              | Unimpleme    | nted: Read as '0                           | ,              |                                         |                 |          |         |  |  |  |
| bit 2-0                            | DS1<2:0>: [  | Data Selection M                           | UX 1 Signal S  | Selection bits                          |                 |          |         |  |  |  |
|                                    | See Table Ta | See Table Table 21-1 for input selections. |                |                                         |                 |          |         |  |  |  |
|                                    |              |                                            |                |                                         |                 |          |         |  |  |  |

| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|--------|-------|-------|-------|-------|-------|-------|-------|
| G4D4T  | G4D4N | G4D3T | G4D3N | G4D2T | G4D2N | G4D1T | G4D1N |
| bit 15 |       |       |       |       |       |       | bit 8 |

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| G3D4T | G3D4N | G3D3T | G3D3N | G3D2T | G3D2N | G3D1T | G3D1N |
| bit 7 |       |       |       |       |       |       | bit 0 |

| Legend:       |                                             |                                                                |                       |                    |  |  |  |  |
|---------------|---------------------------------------------|----------------------------------------------------------------|-----------------------|--------------------|--|--|--|--|
| R = Readable  | e bit                                       | W = Writable bit                                               | U = Unimplemented bit | , read as '0'      |  |  |  |  |
| -n = Value at | POR                                         | '1' = Bit is set                                               | '0' = Bit is cleared  | x = Bit is unknown |  |  |  |  |
| bit 15        | G4D4T: (                                    | Gate 4 Data Source 4 True E                                    | nable bit             |                    |  |  |  |  |
|               |                                             | Source 4 non-inverted signa<br>Source 4 non-inverted signa     |                       |                    |  |  |  |  |
| bit 14        |                                             | Gate 4 Data Source 4 Negat<br>Source 4 inverted signal is e    |                       |                    |  |  |  |  |
|               | 0 = Data                                    | Source 4 inverted signal is c                                  | lisabled for Gate 4   |                    |  |  |  |  |
| bit 13        |                                             | Gate 4 Data Source 3 True E                                    |                       |                    |  |  |  |  |
|               |                                             | Source 3 non-inverted signal Source 3 non-inverted signal      |                       |                    |  |  |  |  |
| bit 12        | G4D3N:                                      | Gate 4 Data Source 3 Negat                                     | ed Enable bit         |                    |  |  |  |  |
|               |                                             | Source 3 inverted signal is a Source 3 inverted signal is a    |                       |                    |  |  |  |  |
| bit 11        | G4D2T: Gate 4 Data Source 2 True Enable bit |                                                                |                       |                    |  |  |  |  |
|               |                                             | Source 2 non-inverted signal Source 2 non-inverted signal      |                       |                    |  |  |  |  |
| bit 10        | G4D2N:                                      | Gate 4 Data Source 2 Negat                                     | ed Enable bit         |                    |  |  |  |  |
|               |                                             | Source 2 inverted signal is a Source 2 inverted signal is a    |                       |                    |  |  |  |  |
| bit 9         | G4D1T: (                                    | Gate 4 Data Source 1 True E                                    | nable bit             |                    |  |  |  |  |
|               |                                             | Source 1 non-inverted signal Source 1 non-inverted signal      |                       |                    |  |  |  |  |
| bit 8         | G4D1N:                                      | Gate 4 Data Source 1 Negat                                     | ed Enable bit         |                    |  |  |  |  |
|               |                                             | Source 1 inverted signal is a Source 1 inverted signal is a    |                       |                    |  |  |  |  |
| bit 7         | G3D4T: (                                    | Gate 3 Data Source 4 True E                                    | nable bit             |                    |  |  |  |  |
|               |                                             | Source 4 non-inverted signal Source 4 non-inverted signal      |                       |                    |  |  |  |  |
| bit 6         | G3D4N:                                      | Gate 3 Data Source 4 Negat                                     | ed Enable bit         |                    |  |  |  |  |
|               |                                             | Source 4 inverted signal is e<br>Source 4 inverted signal is o |                       |                    |  |  |  |  |
| bit 5         | G3D3T: (                                    | Gate 3 Data Source 3 True E                                    | nable bit             |                    |  |  |  |  |
|               |                                             | Source 3 non-inverted signa<br>Source 3 non-inverted signa     |                       |                    |  |  |  |  |
| bit 4         | G3D3N:                                      | Gate 3 Data Source 3 Negat                                     | ed Enable bit         |                    |  |  |  |  |
|               | 1 = Data                                    | Source 3 inverted signal is e                                  | enabled for Gate 3    |                    |  |  |  |  |

0 = Data Source 3 inverted signal is disabled for Gate 3

#### REGISTER 22-24: ADSTATL: ADC DATA READY STATUS REGISTER LOW

| R-0, HSC                           | R-0, HSC | R-0, HSC        | R-0, HSC                                | R-0, HSC       | R-0, HSC     | R-0, HSC | R-0, HSC |
|------------------------------------|----------|-----------------|-----------------------------------------|----------------|--------------|----------|----------|
|                                    |          |                 | AN<15                                   | :8>RDY         |              |          |          |
| bit 15                             |          |                 |                                         |                |              |          | bit 8    |
|                                    |          |                 |                                         |                |              |          |          |
| R-0, HSC                           | R-0, HSC | R-0, HSC        | R-0, HSC                                | R-0, HSC       | R-0, HSC     | R-0, HSC | R-0, HSC |
|                                    |          |                 | AN<7                                    | :0>RDY         |              |          |          |
| bit 7                              |          |                 |                                         |                |              |          | bit 0    |
|                                    |          |                 |                                         |                |              |          |          |
| Legend: U = Unimplemented bit,     |          | nented bit, rea | d as '0'                                |                |              |          |          |
| R = Readable bit W = Writable bit  |          | bit             | HSC = Hardw                             | are Settable/C | learable bit |          |          |
| -n = Value at POR '1' = Bit is set |          |                 | '0' = Bit is cleared x = Bit is unknown |                |              | nown     |          |

bit 15-0 AN<15:0>RDY: Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

#### REGISTER 22-25: ADSTATH: ADC DATA READY STATUS REGISTER HIGH

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | U-0 | R-0, HSC |
|-------|-----|----------|----------|----------|----------|----------|----------|
| —     | —   |          |          | AN<21:1  | 16>RDY   |          |          |
| bit 7 |     |          |          |          |          |          | bit 0    |

| Legend:           | U = Unimplemented bit, read | U = Unimplemented bit, read as '0'    |                    |  |  |  |
|-------------------|-----------------------------|---------------------------------------|--------------------|--|--|--|
| R = Readable bit  | W = Writable bit            | HSC = Hardware Settable/Clearable bit |                    |  |  |  |
| -n = Value at POR | '1' = Bit is set            | '0' = Bit is cleared                  | x = Bit is unknown |  |  |  |

bit 15-6 Unimplemented: Read as '0'

bit 5-0 AN<21:16>RDY: Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

### REGISTER 22-34: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER

| FLEN       MODE1       MODE0       OVRSAM2       OVRSAM1       OVRSAM0       IE       RI         bit 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REGISTER               | 22-34: ADFL<br>(x = 0                                                                                                                                                                                                                                   | _xCON: ADC<br>) or 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DIGITAL FIL                                             | TER x CONT               | ROL REGIS       | FER             |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|-----------------|-----------------|-----------|--|
| FLEN       MODE1       MODE0       OVRSAM2       OVRSAM1       OVRSAM0       IE       RI         bit 15       Image: State                                                                                                                                   | R/W-0                  | R/W-0                                                                                                                                                                                                                                                   | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/W-0                                                   | R/W-0                    | R/W-0           | R/W-0           | R-0, HSC  |  |
| U-0       U-0       R/W-0       R/W       R/W       R/W       R/W       R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FLEN                   | MODE1                                                                                                                                                                                                                                                   | MODE0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OVRSAM2                                                 | OVRSAM1                  | OVRSAM0         | IE              | RDY       |  |
| -       -       FLCHSEL4       FLCHSEL3       FLCHSEL2       FLCHSEL1       FLCHSEL1         bit 7         Legend:       U = Unimplemented bit, read as '0'         R = Readable bit       W = Writable bit       HSC = Hardware Settable/Clearable bit         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       FLEN: Filter Enable bit       -       -       -         0 = Filter is disabled and the RDY bit is cleared       -       -       -       -         bit 14-13       MODE<1:0>: Filter Mode bits       -       -       -       -         1 = Averaging mode       -       -       -       -       -       -       -         0 = Reserved       -       0 = OVersampling mode       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bit 15                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                          |                 |                 | bit 8     |  |
| bit 7 Legend: U = Unimplemented bit, read as '0' R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLEN: Filter Enable bit 1 = Filter is enabled 0 = Filter is disabled and the RDY bit is cleared bit 14-13 MODE<1:0:: Filter Mode bits 11 = Averaging mode 10 = Reserved 00 = Oversampling mode 10 = Reserved 00 = Oversampling mode 11 = 128 (16-bit result in the ADFLxDAT register is in 12.4 format) 110 = 32x (16-bit result in the ADFLxDAT register is in 12.4 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.4 format) 101 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 010 = 64x (13-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 011 = 126x 110 = 128. 110 = 128. 110 = 128. 111 = 128 100 = 32. 111 = 128 100 = 32. 111 = 128 100 = 32. 111 = 128 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 101 = 4X 100 = 32. 111 = 16X 101 = 4X | U-0                    | U-0                                                                                                                                                                                                                                                     | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/W-0                                                   | R/W-0                    | R/W-0           | R/W-0           | R/W-0     |  |
| Legend:       U = Unimplemented bit, read as '0'         R = Readable bit       W = Writable bit       HSC = Hardware Settable/Clearable bit         .n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       FLEN: Filter Enable bit       1 = Filter is disabled and the RDY bit is cleared       x = Bit is unknown         bit 14.13       MODE<1:0>: Filter Mode bits       1 = Averaging mode       10 = Reserved         00 = Oversampling mode       00 = Oversampling mode       10 = Reserved       11 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format)         110 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format)       101 = 8x (14-bit result in the ADFLxDAT register is in 12.4 format)         101 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format)       010 = 0 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format)         010 = 0 = 32x (15-bit result in the ADFLxDAT register is in 12.4 format)       011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format)         011 = 128x (13-bit result in the ADFLxDAT register is in 12.4 format)       010 = 64x (13-bit result in the ADFLxDAT register is in 12.1 format)         011 = 128x       101 = 128x       101 = 128x         100 = 128x       101 = 128x       101 = 128x         101 = 128x       101 = 128x       101 = 128x         101 = 128x       101 = 128x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | —                      | —                                                                                                                                                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FLCHSEL4                                                | FLCHSEL3                 | FLCHSEL2        | FLCHSEL1        | FLCHSEL0  |  |
| R = Readable bit       W = Writable bit       HSC = Hardware Settable/Clearable bit         .n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       FLEN: Filter Enable bit       1       = Filter is enabled       0         0 = Filter is disabled and the RDY bit is cleared       0 = Filter is disabled and the RDY bit is cleared       0         bit 14-13       MODE-1:0>: Filter Mode bits       1       = Reserved       0         0 = Reserved       00 = Oversampling mode       0       = Coresampling mode         0 = Reserved       00 = Oversampling mode       0       = Norsampling mode         bit 12-10       OVRSAM       = Site result in the ADFLxDAT register is in 12.4 format)       110 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format)         101 = 32x (14-bit result in the ADFLxDAT register is in 12.1 format)       100 = 2x (13-bit result in the ADFLxDAT register is in 12.2 format)       001 = 4x (14-bit result in the ADFLxDAT register is in 12.2 format)         001 = 4x (14-bit result in the ADFLxDAT register is in 12.2 format)       001 = 4x (14-bit result in the ADFLxDAT register is in 12.1 format)       111 = 256x         111 = 256x       111 = 256x       111 = 256x       111 = 256x       111 = 256x       111 = 256x         111 = 128x       10 = 32x       111 = 256x       111 = 256x       111 = 256x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bit 7                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                          |                 |                 | bit (     |  |
| -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       FLEN: Filter Enable bit       1 = Filter is enabled       0 = Filter is disabled and the RDY bit is cleared         bit 14-13       MODE<1:0>: Filter Mode bits       1 = Averaging mode       0 = Reserved         01 = Reserved       00 = Oversampling mode       0 = Reserved       0 = Oversampling mode         bit 12-10       OVRSAM       2:0>: Filter Averaging/Oversampling Ratio bits       If MODE         I11 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format)       10 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format)         100 = 2x (15-bit result in the ADFLxDAT register is in 12.4 format)       100 = 2x (14-bit result in the ADFLxDAT register is in 12.4 format)         101 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format)       000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format)         010 = 64x (15-bit result in the ADFLxDAT register is in 12.1 format)       000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format)         011 = 128x       10 = 128x       10 = 64x         100 = 32x       11 = 16x       10 = 8x         011 = 48x       10 = 8x       10 = 8x         010 = 8x       10 = 8x       10 = 8x         011 = 16x       10 = 16x       10 = 8x         011 = 16x       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Legend:                |                                                                                                                                                                                                                                                         | U = Unimpler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mented bit, read                                        | as '0'                   |                 |                 |           |  |
| bit 15       FLEN: Filter Enabled         0 = Filter is enabled         0 = Filter is disabled and the RDY bit is cleared         bit 14-13         MODE<1:0>: Filter Mode bits         11 = Averaging mode         10 = Reserved         01 = Reserved         00 = Oversampling mode         bit 12-10       OVRSAM<2:0>: Filter Averaging/Oversampling Ratio bits         If MODE<1:0> = 00;         111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format)         100 = 32x (15-bit result in the ADFLxDAT register is in 12.4 format)         101 = 8x (14-bit result in the ADFLxDAT register is in 12.4 format)         101 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format)         101 = 2x (14-bit result in the ADFLxDAT register is in 12.4 format)         101 = 25x (16-bit result in the ADFLxDAT register is in 12.4 format)         010 = 64x (15-bit result in the ADFLxDAT register is in 12.1 format)         001 = 64x (15-bit result in the ADFLxDAT register is in 12.1 format)         000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format)         000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format)         011 = 128x         101 = 128x         101 = 64x         100 = 4x         001 = 4x         000 = 2x         bit 9       IE: Filte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R = Readab             | le bit                                                                                                                                                                                                                                                  | W = Writable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bit                                                     | HSC = Hardw              | /are Settable/C | learable bit    |           |  |
| <ul> <li>i = Filter is enabled         <ul> <li>i = Filter is disabled and the RDY bit is cleared</li> <li>bit 14-13</li> <li>MODE</li> <li>i = Averaging mode                  10 = Reserved                  01 = Reserved                  00 = Oversampling mode</li> <li>bit 12-10</li> <li>OVRSAM</li> <li>i = Averaging mode</li> <li>i = Reserved                  00 = Oversampling mode</li> <li>bit 12-10</li> <li>OVRSAM</li> <li>i = Reserved</li> <li>i = Reserved</li> <li>i = 128x (16-bit result in the ADFLxDAT register is in 12.4 format)</li> <li>i = 32x (15-bit result in the ADFLxDAT register is in 12.3 format)</li> <li>i = 8x (14-bit result in the ADFLxDAT register is in 12.4 format)</li> <li>i = 8x (14-bit result in the ADFLxDAT register is in 12.4 format)</li> <li>i = 256x (16-bit result in the ADFLxDAT register is in 12.4 format)</li> <li>i = 26x (16-bit result in the ADFLxDAT register is in 12.4 format)</li> <li>i = 26x (16-bit result in the ADFLxDAT register is in 12.4 format)</li> <li>i = 26x (16-bit result in the ADFLxDAT register is in 12.4 format)</li> <li>i = 128x (14-bit result in the ADFLxDAT register is in 12.4 format)</li> <li>i = 26x</li> <li>i = 11 (12-bit result in the ADFLxDAT register is in 12.1 format)</li> <li>i = 128x</li> <li>i = 128x</li> <li>i = 110 = 128x</li> <li>i = 110 = 128x</li> <li>i = 16x</li> <li>i = 200000000000000000000000000000000000</li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -n = Value a           | It POR                                                                                                                                                                                                                                                  | '1' = Bit is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t                                                       | '0' = Bit is cle         | ared            | x = Bit is unki | nown      |  |
| bit 14-13 MODE<1:0:: Filter Mode bits<br>11 = Averaging mode<br>10 = Reserved<br>01 = Reserved<br>00 = Oversampling mode<br>bit 12-10 OVRSAM<2:0:: Filter Averaging/Oversampling Ratio bits<br><u>If MODE&lt;1:0&gt; = 00</u> :<br>111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format)<br>110 = 32x (15-bit result in the ADFLxDAT register is in 12.2 format)<br>101 = 8x (14-bit result in the ADFLxDAT register is in 12.2 format)<br>102 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format)<br>103 = 64x (15-bit result in the ADFLxDAT register is in 12.4 format)<br>104 = 45x (16-bit result in the ADFLxDAT register is in 12.4 format)<br>105 = 64x (15-bit result in the ADFLxDAT register is in 12.2 format)<br>106 = 4x (13-bit result in the ADFLxDAT register is in 12.2 format)<br>107 = 16x (14-bit result in the ADFLxDAT register is in 12.1 format)<br>111 = 256x<br>110 = 128x<br>101 = 64x<br>100 = 32x<br>011 = 16x<br>000 = 2x<br>bit 9 IE: Filter Common ADC Interrupt Enable bit<br>1 = Common ADC interrupt Will be generated when the filter result will be ready<br>0 = Common ADC interrupt will be generated for the filter<br>bit 8 RDY: Oversampling Filter Data Ready Flag bit<br>This bit is cleared by hardware when the result is read from the ADFLxDAT register.<br>1 = Data in the ADFLxDAT register is read from the ADFLxDAT register.<br>1 = Data in the ADFLxDAT register is read from the ADFLxDAT register.<br>1 = Data in the ADFLxDAT register is read from the ADFLxDAT register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bit 15                 | 1 = Filter is e                                                                                                                                                                                                                                         | nabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                          |                 |                 |           |  |
| <ul> <li>11 = Averaging mode</li> <li>10 = Reserved</li> <li>01 = Reserved</li> <li>00 = Oversampling mode</li> <li>bit 12-10</li> <li>OVRSAM&lt;2:0&gt;: Filter Averaging/Oversampling Ratio bits</li> <li><u>If MODE&lt;1:0&gt; = 00:</u></li> <li>111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format)</li> <li>101 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format)</li> <li>101 = 8x (14-bit result in the ADFLxDAT register is in 12.1 format)</li> <li>101 = 256x (16-bit result in the ADFLxDAT register is in 12.1 format)</li> <li>011 = 256x (16-bit result in the ADFLxDAT register is in 12.1 format)</li> <li>010 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format)</li> <li>001 = 16x (14-bit result in the ADFLxDAT register is in 12.3 format)</li> <li>000 = 4x (13-bit result in the ADFLxDAT register is in 12.3 format)</li> <li>001 = 16x (14-bit result in the ADFLxDAT register is in 12.1 format)</li> <li>111 = 256x</li> <li>110 = 128x</li> <li>100 = 32x</li> <li>111 = 26ax</li> <li>100 = 32x</li> <li>111 = 26ax</li> <li>100 = 32x</li> <li>111 = 18x</li> <li>100 = 32x</li> <li>111 = 16x</li> <li>110 = 128x</li> <li>111 = 100 = 100000000000000000000000000</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | 0 = Filter is d                                                                                                                                                                                                                                         | isabled and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e RDY bit is clea                                       | ared                     |                 |                 |           |  |
| If MODE<1:0> = 00:         111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format)         100 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format)         101 = 8x (14-bit result in the ADFLxDAT register is in 12.2 format)         100 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format)         011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format)         011 = 256x (16-bit result in the ADFLxDAT register is in 12.3 format)         001 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format)         001 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format)         001 = 16x (14-bit result in the ADFLxDAT register is in 12.3 format)         000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format)         If MODE         000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format)         If MODE         110 = 128x         110 = 128x         111 = 256ax         111 = 16x         010 = 8x         011 = 44x         000 = 2x         bit 9         IE: Filter Common ADC Interrupt Enable bit         1 = Common ADC interrupt will be generated when the filter result will be ready         0 = Common ADC interrupt will not be generated for the filter         bit 8       RDY: Oversampling Filter Data Ready Flag bit         This bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bit 1 <del>4</del> -10 | 11 = Averagi<br>10 = Reserve<br>01 = Reserve                                                                                                                                                                                                            | ng mode<br>ed<br>ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                          |                 |                 |           |  |
| 1 = Common ADC interrupt will be generated when the filter result will be ready         0 = Common ADC interrupt will not be generated for the filter         bit 8       RDY: Oversampling Filter Data Ready Flag bit         This bit is cleared by hardware when the result is read from the ADFLxDAT register.         1 = Data in the ADFLxDAT register is ready                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bit 12-10              | If MODE<1:0<br>111 = 128x (<br>110 = 32x (1<br>101 = 8x (14<br>100 = 2x (13<br>011 = 256x (<br>010 = 64x (13<br>001 = 16x (14<br>000 = 4x (13<br>If MODE<1:0<br>111 = 256x<br>110 = 128x<br>101 = 64x<br>100 = 32x<br>011 = 16x<br>010 = 8x<br>001 = 4x | 01 = Reserved<br>00 = Oversampling mode<br><b>OVRSAM&lt;2:0&gt;:</b> Filter Averaging/Oversampling Ratio bits<br><u>If MODE&lt;1:0&gt; = 00:</u><br>111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format)<br>110 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format)<br>101 = 8x (14-bit result in the ADFLxDAT register is in 12.2 format)<br>100 = 2x (13-bit result in the ADFLxDAT register is in 12.1 format)<br>011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format)<br>010 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format)<br>001 = 16x (14-bit result in the ADFLxDAT register is in 12.3 format)<br>001 = 16x (14-bit result in the ADFLxDAT register is in 12.2 format)<br>000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format)<br>If MODE<1:0> = 11 (12-bit result in the ADFLxDAT register is in 12.1 format)<br>111 = 256x<br>110 = 128x<br>101 = 64x<br>100 = 32x<br>011 = 16x<br>010 = 8x |                                                         |                          |                 |                 |           |  |
| bit 8 <b>RDY:</b> Oversampling Filter Data Ready Flag bitThis bit is cleared by hardware when the result is read from the ADFLxDAT register.1 = Data in the ADFLxDAT register is ready                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bit 9                  | 1 = Common                                                                                                                                                                                                                                              | ADC interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | will be generate                                        | ed when the fill         |                 | e ready         |           |  |
| 0 = The ADFLxDAT register has been read and new data in the ADFLxDAT register is not read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bit 8                  | <b>RDY:</b> Oversa<br>This bit is cle<br>1 = Data in th                                                                                                                                                                                                 | mpling Filter D<br>ared by hardwa<br>ne ADFLxDAT i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ata Ready Flag<br>are when the re-<br>register is ready | bit<br>sult is read from | m the ADFLxD    | -               | not readv |  |
| bit 7-5 Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bit 7-5                |                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                          |                 | 3.000. 101      | , J       |  |

| REGISTER              | 23-3. GXVEC                          | J. CAINX IN I                      |          |                  | EN               |                 |         |  |  |  |  |
|-----------------------|--------------------------------------|------------------------------------|----------|------------------|------------------|-----------------|---------|--|--|--|--|
| U-0                   | U-0                                  | U-0                                | R-0      | R-0              | R-0              | R-0             | R-0     |  |  |  |  |
|                       |                                      |                                    | FILHIT4  | FILHIT3          | FILHIT2          | FILHIT1         | FILHIT0 |  |  |  |  |
| bit 15                |                                      |                                    |          |                  |                  |                 | bit 8   |  |  |  |  |
|                       |                                      |                                    |          |                  |                  |                 |         |  |  |  |  |
| U-0                   | R-1                                  | R-0                                | R-0      | R-0              | R-0              | R-0             | R-0     |  |  |  |  |
|                       | ICODE6                               | ICODE5                             | ICODE4   | ICODE3           | ICODE2           | ICODE1          | ICODE0  |  |  |  |  |
| bit 7                 |                                      |                                    |          |                  |                  |                 | bit C   |  |  |  |  |
| Legend:               |                                      |                                    |          |                  |                  |                 |         |  |  |  |  |
| R = Readab            | le bit                               | W = Writable                       | bit      | U = Unimplei     | mented bit, read | d as '0'        |         |  |  |  |  |
| -n = Value a          | t POR                                | '1' = Bit is set                   |          | '0' = Bit is cle | ared             | x = Bit is unkr | nown    |  |  |  |  |
|                       |                                      | (ad. Daad aa (                     | 01       |                  |                  |                 |         |  |  |  |  |
| bit 15-13<br>bit 12-8 | -                                    | ted: Read as '<br>Filter Hit Num   |          |                  |                  |                 |         |  |  |  |  |
|                       | FILHII<4:0>:                         |                                    | Der Dits |                  |                  |                 |         |  |  |  |  |
|                       | 01111 = Filte                        |                                    |          |                  |                  |                 |         |  |  |  |  |
|                       | •                                    |                                    |          |                  |                  |                 |         |  |  |  |  |
|                       | •                                    |                                    |          |                  |                  |                 |         |  |  |  |  |
|                       | •<br>00001 = Filter 1                |                                    |          |                  |                  |                 |         |  |  |  |  |
|                       | 00000 = Filte                        |                                    |          |                  |                  |                 |         |  |  |  |  |
| bit 7                 |                                      | ted: Read as '                     | 0'       |                  |                  |                 |         |  |  |  |  |
| bit 6-0               | ICODE<6:0>: Interrupt Flag Code bits |                                    |          |                  |                  |                 |         |  |  |  |  |
|                       | 1000101-1111111 = Reserved           |                                    |          |                  |                  |                 |         |  |  |  |  |
|                       |                                      | IFO almost full                    |          |                  |                  |                 |         |  |  |  |  |
|                       |                                      | eceiver overflo<br>/ake-up interru |          |                  |                  |                 |         |  |  |  |  |
|                       | 1000001 = E                          |                                    | Pt       |                  |                  |                 |         |  |  |  |  |
|                       | 1000000 = N                          | o interrupt                        |          |                  |                  |                 |         |  |  |  |  |
|                       | •                                    |                                    |          |                  |                  |                 |         |  |  |  |  |
|                       | •                                    |                                    |          |                  |                  |                 |         |  |  |  |  |
|                       | 0010000-011                          | 11111 <b>= Rese</b>                | rved     |                  |                  |                 |         |  |  |  |  |
|                       |                                      | B15 buffer inte                    | errupt   |                  |                  |                 |         |  |  |  |  |
|                       | •                                    | :                                  |          |                  |                  |                 |         |  |  |  |  |
|                       | •                                    |                                    |          |                  |                  |                 |         |  |  |  |  |
|                       |                                      | B9 buffer inter                    |          |                  |                  |                 |         |  |  |  |  |
|                       |                                      | B8 buffer inter                    |          |                  |                  |                 |         |  |  |  |  |
|                       |                                      | RB7 buffer inte<br>RB6 buffer inte |          |                  |                  |                 |         |  |  |  |  |
|                       |                                      | RB5 buffer inte                    |          |                  |                  |                 |         |  |  |  |  |
|                       |                                      | RB4 buffer inte                    | •        |                  |                  |                 |         |  |  |  |  |
|                       |                                      | RB3 buffer inte<br>RB2 buffer inte |          |                  |                  |                 |         |  |  |  |  |
|                       |                                      | RB1 buffer inte                    |          |                  |                  |                 |         |  |  |  |  |
|                       |                                      | RB0 buffer inte                    |          |                  |                  |                 |         |  |  |  |  |
|                       |                                      |                                    |          |                  |                  |                 |         |  |  |  |  |

### REGISTER 23-3: CxVEC: CANx INTERRUPT CODE REGISTER

#### BUFFER 21-7: CANx MESSAGE BUFFER WORD 6

| R/W-x                             | R/W-x | R/W-x            | R/W-x                              | R/W-x            | R/W-x | R/W-x           | R/W-x |
|-----------------------------------|-------|------------------|------------------------------------|------------------|-------|-----------------|-------|
|                                   |       |                  | Byte                               | 7<15:8>          |       |                 |       |
| bit 15                            |       |                  |                                    |                  |       |                 | bit 8 |
|                                   |       |                  |                                    |                  |       |                 |       |
| R/W-x                             | R/W-x | R/W-x            | R/W-x                              | R/W-x            | R/W-x | R/W-x           | R/W-x |
|                                   |       |                  | Byte                               | 6<7:0>           |       |                 |       |
| bit 7                             |       |                  |                                    |                  |       |                 | bit 0 |
|                                   |       |                  |                                    |                  |       |                 |       |
| Legend:                           |       |                  |                                    |                  |       |                 |       |
| R = Readable bit W = Writable bit |       | bit              | U = Unimplemented bit, read as '0' |                  |       |                 |       |
| -n = Value at POR                 |       | '1' = Bit is set |                                    | '0' = Bit is cle | ared  | x = Bit is unki | nown  |

| bit 15-8 | Byte 7<15:8>: CANx Message Byte 7 bits |
|----------|----------------------------------------|
|          | <b></b>                                |

bit 7-0 Byte 6<7:0>: CANx Message Byte 6 bits

### BUFFER 21-8: CANx MESSAGE BUFFER WORD 7

| U-0    | U-0 | U-0 | R/W-x | R/W-x | R/W-x         | R/W-x | R/W-x |
|--------|-----|-----|-------|-------|---------------|-------|-------|
| _      | —   | —   |       |       | FILHIT<4:0>(1 | )     |       |
| bit 15 |     |     |       |       |               |       | bit 8 |

| U-0         | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 |
|-------------|-----|-----|-----|-----|-----|-----|-----|
| —           | —   | —   | _   | —   | —   | —   | —   |
| bit 7 bit 0 |     |     |     |     |     |     |     |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-13 | Unimplemented: Read as '0'                                     |
|-----------|----------------------------------------------------------------|
| bit 12-8  | FILHIT<4:0>: Filter Hit Code bits <sup>(1)</sup>               |
|           | Encodes number of filter that resulted in writing this buffer. |
| bit 7-0   | Unimplemented: Read as '0'                                     |

Note 1: Only written by module for receive buffers, unused for transmit buffers.

### 24.6 Hysteresis

An additional feature of the module is hysteresis control. Hysteresis can be enabled or disabled and its amplitude can be controlled by the HYSSEL<1:0> bits in the CMPxCON register. Three different values are available: 15 mV, 30 mV and 45 mV. It is also possible to select the edge (rising or falling) to which hysteresis is to be applied.

Hysteresis control prevents the comparator output from continuously changing state because of small perturbations (noise) at the input (see Figure 24-2).





### 24.7 Analog Comparator Resources

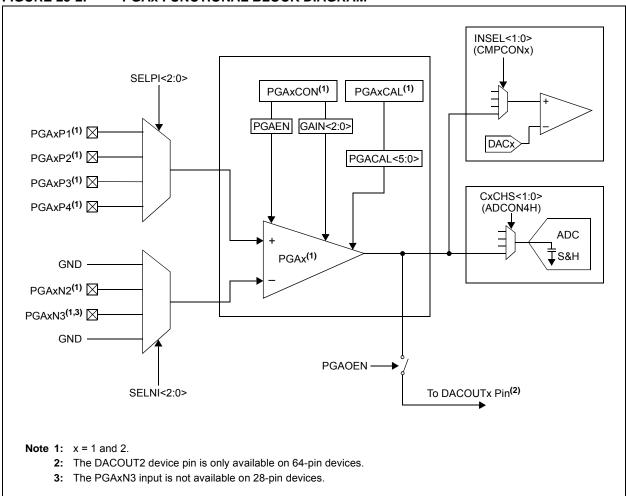
Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

#### 24.7.1 KEY RESOURCES

- "High-Speed Analog Comparator Module" (DS70005128) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

### 25.1 Module Description

The Programmable Gain Amplifiers are used to amplify small voltages (i.e., voltages across burden/shunt resistors) to improve the signal-to-noise ratio of the measured signal. The PGAx output voltage can be read by any of the four dedicated Sample-and-Hold circuits on the ADC module. The output voltage can also be fed to the comparator module for overcurrent/ voltage protection. Figure 25-2 shows a functional block diagram of the PGAx module. Refer to **Section 22.0 "High-Speed, 12-Bit Analog-to-Digital Converter (ADC)"** and **Section 24.0 "High-Speed Analog Comparator"** for more interconnection details.


The gain of the PGAx module is selectable via the GAIN<2:0> bits in the PGAxCON register. There are five selectable gains, ranging from 4x to 64x. The SELPI<2:0> and SELNI<2:0> bits in the PGAxCON register select one of four positive/negative inputs to the PGAx module. For single-ended applications, the SELNI<2:0> bits will select the ground as the negative

input source. To provide an independent ground reference, the PGAxN2 and PGAxN3 pins are available as the negative input source to the PGAx module.

Note 1: Not all PGA positive/negative inputs are available on all devices. Refer to the specific device pinout for available input source pins.

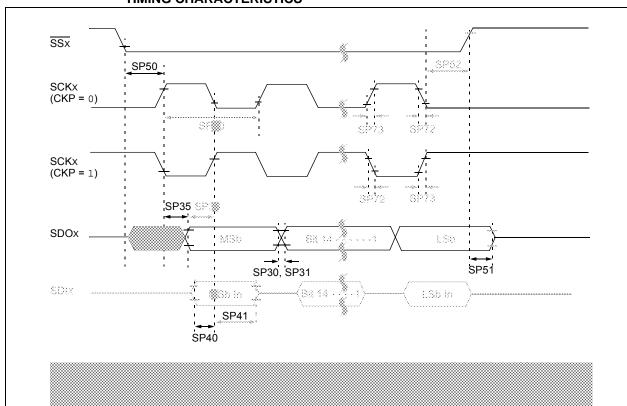
The output voltage of the PGAx module can be connected to the DACOUTx pin by setting the PGAOEN bit in the PGAxCON register. When the PGAOEN bit is enabled, the output voltage of PGA1 is connected to DACOUT1 and PGA2 is connected to DACOUT2. For devices with a single DACOUTx pin, the output voltage of PGA2 can be connected to DACOUT1 by configuring the DBCC Configuration bit in the FDEVOPT register (FDEVOPT<6>).

If both the DACx output voltage and PGAx output voltage are connected to the DACOUTx pin, the resulting output voltage would be a combination of signals. There is no assigned priority between the PGAx module and the DACx module.



#### FIGURE 25-2: PGAx FUNCTIONAL BLOCK DIAGRAM

### 26.3 Current Source Control Register


#### REGISTER 26-1: ISRCCON: CONSTANT-CURRENT SOURCE CONTROL REGISTER

| R/W-0                 | U-0                                             | U-0                             | U-0             | U-0              | R/W-0            | R/W-0                                       | R/W-0    |  |
|-----------------------|-------------------------------------------------|---------------------------------|-----------------|------------------|------------------|---------------------------------------------|----------|--|
| ISRCEN                |                                                 | —                               | —               | _                | OUTSEL2          | OUTSEL1                                     | OUTSEL0  |  |
| bit 15                |                                                 |                                 |                 |                  |                  |                                             | bit 8    |  |
|                       |                                                 |                                 |                 |                  |                  |                                             |          |  |
| U-0                   | U-0                                             | R/W-0                           | R/W-0           | R/W-0            | R/W-0            | R/W-0                                       | R/W-0    |  |
| —                     |                                                 | ISRCCAL5                        | ISRCCAL4        | ISRCCAL3         | ISRCCAL2         | ISRCCAL1                                    | ISRCCAL0 |  |
| bit 7                 |                                                 |                                 |                 |                  |                  |                                             | bit C    |  |
| Legend:               |                                                 |                                 |                 |                  |                  |                                             |          |  |
| R = Readable          | e bit                                           | W = Writable                    | bit             | U = Unimpler     | mented bit, read | d as '0'                                    |          |  |
| -n = Value at         | POR                                             | '1' = Bit is set                |                 | '0' = Bit is cle | ared             | x = Bit is unknown                          |          |  |
| bit 14-11<br>bit 10-8 | -                                               | ted: Read as '<br>>: Output Con |                 | Select bits      |                  |                                             |          |  |
|                       | 011 = Input p<br>010 = Input p<br>001 = Input p | ed                              | 5)<br>6)        |                  |                  |                                             |          |  |
| bit 7-6               | Unimplemen                                      | ted: Read as '                  | 0'              |                  |                  |                                             |          |  |
| bit 5-0               | ISRCCAL<5:                                      | 0>: Constant-C                  | Current Source  | e Calibration bi | ts               |                                             |          |  |
|                       | module is ena                                   |                                 | the calibration |                  |                  | 8, into these b<br>7-3) in <b>Section</b> : |          |  |

#### TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

| Bit Field   | Description                                                                 |
|-------------|-----------------------------------------------------------------------------|
| CTXT4<2:0>  | Alternate Working Register Set 4 Interrupt Priority Level (IPL) Select bits |
|             | 111 = Reserved                                                              |
|             | 110 = Assigned to IPL of 7                                                  |
|             | 101 = Assigned to IPL of 6                                                  |
|             | 100 = Assigned to IPL of 5                                                  |
|             | 011 = Assigned to IPL of 4                                                  |
|             | 010 = Assigned to IPL of 3                                                  |
|             | 001 = Assigned to IPL of 2                                                  |
|             | 000 = Assigned to IPL of 1                                                  |
| BTMODE<1:0> | Boot Mode Configuration bits                                                |
|             | 11 = Single Partition mode                                                  |
|             | 10 = Dual Partition mode                                                    |
|             | 01 = Protected Dual Partition mode                                          |
|             | 00 = Privileged Dual Partition mode                                         |

Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.



### FIGURE 30-17: SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS<sup>(1,2)</sup>

#### TABLE 30-55: DACx MODULE SPECIFICATIONS

|              |        |                                           | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(2)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |      |      |          |                                                                             |
|--------------|--------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------|-----------------------------------------------------------------------------|
| Param<br>No. | Symbol | Characteristic                            | Min. Typ. Max. Units Comme                                                                                                                                                                                                                                                              |      |      | Comments |                                                                             |
| DA01         | EXTREF | External Voltage Reference <sup>(1)</sup> | 1                                                                                                                                                                                                                                                                                       | _    | AVdd | V        |                                                                             |
| DA02         | CVRES  | Resolution                                |                                                                                                                                                                                                                                                                                         | 12   |      | bits     |                                                                             |
| DA03         | INL    | Integral Nonlinearity Error               | -16                                                                                                                                                                                                                                                                                     | -12  | 0    | LSB      |                                                                             |
| DA04         | DNL    | Differential Nonlinearity Error           | -1.8                                                                                                                                                                                                                                                                                    | ±1   | 1.8  | LSB      |                                                                             |
| DA05         | EOFF   | Offset Error                              | -8                                                                                                                                                                                                                                                                                      | 3    | 15   | LSB      |                                                                             |
| DA06         | EG     | Gain Error                                | -1.2                                                                                                                                                                                                                                                                                    | -0.5 | 0    | %        |                                                                             |
| DA07         | TSET   | Settling Time <sup>(1)</sup>              | —                                                                                                                                                                                                                                                                                       | 700  | _    | ns       | Output with 2% of desired<br>output voltage with a<br>10-90% or 90-10% step |

**Note 1:** Parameters are for design guidance only and are not tested in manufacturing.

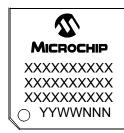
2: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

| DC CHARACTERISTICS |         |                                                                    | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |      |               |       |                                                                                              |
|--------------------|---------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|-------|----------------------------------------------------------------------------------------------|
| Param<br>No.       | Symbol  | Characteristic                                                     | Min.                                                                                                                                                                                                                                                                                        | Тур. | Max.          | Units | Comments                                                                                     |
| DA11               | RLOAD   | Resistive Output Load<br>Impedance                                 | 10K                                                                                                                                                                                                                                                                                         |      | —             | Ohm   |                                                                                              |
| DA11a              | CLOAD   | Output Load<br>Capacitance                                         | _                                                                                                                                                                                                                                                                                           |      | 35            | pF    | Including output pin<br>capacitance                                                          |
| DA12               | Ιουτ    | Output Current Drive<br>Strength                                   | _                                                                                                                                                                                                                                                                                           | 300  | —             | μA    | Sink and source                                                                              |
| DA13               | VRANGE  | Output Drive Voltage<br>Range at Current<br>Drive of 300 µA        | AVss + 250 mV                                                                                                                                                                                                                                                                               |      | AVDD – 900 mV | V     |                                                                                              |
| DA14               | VLRANGE | Output Drive Voltage<br>Range at Reduced<br>Current Drive of 50 µA | AVss + 50 mV                                                                                                                                                                                                                                                                                | _    | AVDD – 500 mV | V     |                                                                                              |
| DA15               | IDD     | Current Consumed<br>when Module is<br>Enabled                      |                                                                                                                                                                                                                                                                                             | _    | 1.3 x IOUT    | μA    | Module will always<br>consume this current,<br>even if no load is<br>connected to the output |
| DA30               | VOFFSET | Input Offset Voltage                                               |                                                                                                                                                                                                                                                                                             | ±5   |               | mV    |                                                                                              |

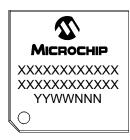
### TABLE 30-56: DACX OUTPUT (DACOUTX PIN) SPECIFICATIONS

**Note 1:** The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

### 32.1 Package Marking Information (Continued)


44-Lead QFN (8x8 mm)




48-Lead TQFP (7x7x1.0 mm)



64-Lead TQFP (10x10x1 mm)



80-Lead TQFP (12x12x1 mm)





Example



Example



Example



NOTES:

## **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

| Microchip Tradema<br>Architecture ———<br>Flash Memory Fami<br>Program Memory S<br>Product Group —<br>Pin Count ——— | Examples:<br>dsPIC33EP64GS804-I/PT:<br>dsPIC33, Enhanced Performance,<br>64-Kbyte Program Memory, SMPS,<br>44-Pin, Industrial Temperature,<br>TQFP Package.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                    | (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Package                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Pattern                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Architecture:                                                                                                      | 33 = 16-Bit Digital Signal Controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Flash Memory Family:                                                                                               | EP = Enhanced Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Product Group:                                                                                                     | GS = SMPS Family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Pin Count:                                                                                                         | 02 = 28-pin<br>04 = 44-pin<br>05 = 48-pin<br>06 = 64-pin<br>08 = 80-pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Temperature Range:                                                                                                 | $ \begin{array}{rcl} I &=& -40^\circ C \text{ to } +85^\circ C \text{ (Industrial)} \\ E &=& -40^\circ C \text{ to } +125^\circ C \text{ (Extended)} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Package:                                                                                                           | ML       =       Plastic Quad, No Lead Package – (44-pin) 8x8 mm body (QFN)         MM       =       Plastic Quad, No Lead Package – (28-pin) 6x6 mm body (QFN-S)         2N       =       Plastic Quad Flat, No Lead Package – (28-pin) 6x6 mm body (UQFN)         PT       =       Plastic Thin Quad Flatpack – (44-pin) 10x10 mm body (TQFP)         PT       =       Plastic Thin Quad Flatpack – (48-pin) 7x7 mm body (TQFP)         PT       =       Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP)         PT       =       Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP)         PT       =       Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP)         PT       =       Plastic Thin Quad Flatpack – (80-pin) 12x12 mm body (TQFP)         SO       =       Plastic Small Outline, Wide – (28-pin) 7.50 mm body (SOIC) |  |