

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	67
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs808-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Communication Interfaces

- Two UART modules (15 Mbps):
 - Supports LIN/J2602 protocols and IrDA®
- Three Variable Width SPI modules with Operating modes:
 - 3-wire SPI
 - 8x16 or 8x8 FIFO mode
 - I²S mode
- Two I²C modules (up to 1 Mbaud) with SMBus Support
- Up to Two CAN modules
- Four-Channel DMA

Input/Output

- Constant-Current Source (10 µA nominal)
- Sink/Source up to 12 mA/15 mA, respectively; Pin-Specific for Standard VOH/VOL
- 5V Tolerant Pins
- · Selectable, Open-Drain Pull-ups and Pull-Downs
- External Interrupts on all I/O Pins
- Peripheral Pin Select (PPS) to allow Function Remap with Six Virtual I/Os

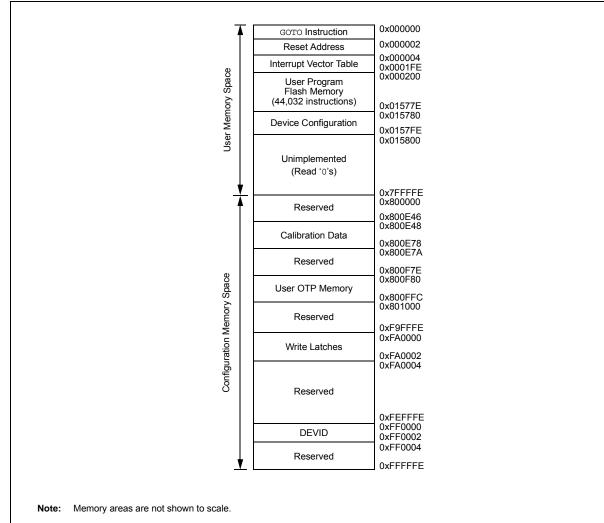
Qualification and Class B Support

- AEC-Q100 REVG (Grade 1, -40°C to +125°C)
- Class B Safety Library, IEC 60730
- The 6x6x0.55 mm UQFN Package is Designed and Optimized to ease IPC9592B 2nd Level Temperature Cycle Qualification

Debugger Development Support

- In-Circuit and In-Application Programming
- Five Program and Three Complex Data Breakpoints
- IEEE 1149.2 Compatible (JTAG) Boundary Scan
- Trace and Run-Time Watch

Digital Peripherals


- Four Configurable Logic Cells
- Peripheral Trigger Generator

		rtes		(GPIO)		Re	ma	ppal	ole F	Perip	hera	als					12- A[-			r		Source	
Device	Pins	Program Memory Bytes	RAM (Bytes)	General Purpose I/O (Timers ⁽¹⁾	Input Capture	Output Compare	UART	IdS	PWM ⁽²⁾	External Interrupts ⁽³⁾	CAN	Reference Clock	1 ² C	CLC	ÐLd	Analog Inputs	S&H Circuits	V9d	AMA	Analog Comparator	DAC Output	Constant-Current Sou	Packages
dsPIC33EP128GS702	28	128K	8K	20	5	4	4	2	3	8x2	4	0	1	2	4	1	11	5	2	0	4	1	1	SOIC, QFN-S, UQFN
dsPIC33EP64GS804	44	64K	8K	33	5	4	4	2	3	8x2	4	2	1	2	4	1	17	5	2	4	4	1	1	
dsPIC33EP128GS704	44	128K	8K	33	5	4	4	2	3	8x2	4	0	1	2	4	1	17	5	2	0	4	1	1	1 QFN, 1 TQFP
dsPIC33EP128GS804	44	128K	8K	33	5	4	4	2	3	8x2	4	2	1	2	4	1	17	5	2	4	4	1	1	i Qi i
dsPIC33EP64GS805	48	64K	8K	33	5	4	4	2	3	8x2	4	2	1	2	4	1	17	5	2	4	4	1	1	
dsPIC33EP128GS705	48	128K	8K	33	5	4	4	2	3	8x2	4	0	1	2	4	1	17	5	2	0	4	1	1	TQFP
dsPIC33EP128GS805	48	128K	8K	33	5	4	4	2	3	8x2	4	2	1	2	4	1	17	5	2	4	4	1	1	
dsPIC33EP64GS806	64	64K	8K	51	5	4	4	2	3	8x2	4	2	1	2	4	1	22	5	2	4	4	2	1	
dsPIC33EP128GS706	64	128K	8K	51	5	4	4	2	3	8x2	4	0	1	2	4	1	22	5	2	0	4	2	1	
dsPIC33EP128GS806	64	128K	8K	51	5	4	4	2	3	8x2	4	2	1	2	4	1	22	5	2	4	4	2	1	
dsPIC33EP64GS708	80	64K	8K	67	5	4	4	2	3	8x2	4	0	1	2	4	1	22	5	2	0	4	2	1	
dsPIC33EP64GS808	80	64K	8K	67	5	4	4	2	3	8x2	4	2	1	2	4	1	22	5	2	4	4	2	1	TQFP
dsPIC33EP128GS708	80	128K	8K	67	5	4	4	2	3	8x2	4	0	1	2	4	1	22	5	2	0	4	2	1	
dsPIC33EP128GS808	80	128K	8K	67	5	4	4	2	3	8x2	4	2	1	2	4	1	22	5	2	4	4	2	1	

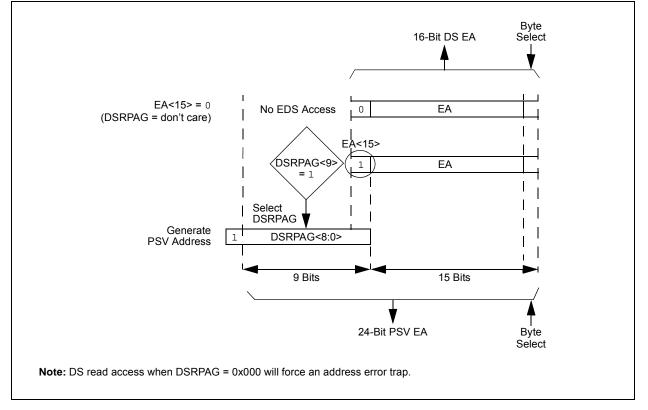
Note 1: The external clock for Timer1, Timer2 and Timer3 is remappable.

2: PWM4 through PWM8 are remappable on 28/44/48-pin devices; on 64-pin devices, only PWM7/PWM8 are remappable.

3: External interrupts, INT0 and INT4, are not remappable.

FIGURE 4-2: PROGRAM MEMORY MAP FOR dsPIC33EP128GS70X/80X DEVICES

4.5.1 PAGED MEMORY SCHEME


The dsPIC33EPXXXGS70X/80X family architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the base Data Space address is used in conjunction with the Data Space Read Page (DSRPAG) register to form the Program Space Visibility (PSV) address.

The Data Space Read Page (DSRPAG) register is located in the SFR space. Construction of the PSV address is shown in Figure 4-7. When DSRPAG<9> = 1 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit PSV read address.

The paged memory scheme provides access to multiple 32-Kbyte windows in the PSV memory. The Data Space Read Page (DSRPAG) register, in combination with the upper half of the Data Space address, can provide up to 8 Mbytes of PSV address space. The paged data memory space is shown in Figure 4-8.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG register.

TABLE 7-1:	INTERRUPT VECTOR DETAILS ((CONTINUED))

Interrupt Source	Vector	IRQ	IVT Address	In	terrupt Bit Lo	ocation
interrupt Source	#	#	IVI Address	Flag	Enable	Priority
T4 – Timer4	35	27	0x00004A	IFS1<11> T4IF	IEC1<11> T4IE	IPC6<14:12> T4IP<2:0>
T5 – Timer5	36	28	0x00004C	IFS1<12> T5IF	IEC1<12> T5IE	IPC7<2:0> T5IP<2:0>
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13> INT2IF	IEC1<13> INT2IE	IPC7<6:4> INT2IP<2:0>
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14> U2RXIF	IEC1<14> U2RXIE	IPC7<10:8> U2RXIP<2:0>
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15> U2TXIF	IEC1<15> U2TXIE	IPC7<14:12> U2TXIP<2:0>
SPI2TX – SPI2 Transfer Done	40	32	0x000054	IFS2<0> SPI2TXIF	IEC2<0> SPI2TXIE	IPC8<2:0> SPI2TXIP<2:0>
SPI2RX – SPI2 Receive Done	41	33	0x000056	IFS2<1> SPI2RXIF	IEC2<1> SPI2RXIE	IPC8<6:4> SPI2RXIP<2:0>
C1RX – CAN1 RX Data Ready	42	34	0x000058	IFS2<2> C1RXIF	IEC2<2> C1RXIE	IPC8<10:8> C1RXIP<2:0>
C1 – CAN1 Combined Error	43	35	0x000059	IFS2<3> C1IF	IEC2<3> C1IE	IPC8<14:12> C1IP<2:0>
DMA3 – DMA Channel 3	44	36	0x00005A	IFS2<4> DMA3IF	IEC2<4> DMA3IE	IPC9<2:0> DMA3IP<2:0>
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5> IC3IF	IEC2<5> IC3IE	IPC9<6:4> IC3IP<2:0>
IC4 – Input Capture 4	46	38	0x000060	IFS2<6> IC4IF	IEC2<6> IC4IE	IPC9<10:8> IC4IP<2:0>
Reserved	47-56	39-48	0x000062-0x000074	_	_	_
SI2C2 – I2C2 Slave Event	57	49	0x000076	IFS3<1> SI2C2IF	IEC3<1> SI2C2IE	IPC12<6:4> SI2C2IP<2:0>
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3<2> MI2C2IF	IEC3<2> MI2C2IE	IPC12<10:8> MI2C2IP<2:0>
Reserved	59-61	51-53	0x00007A-0x00007E	_	—	_
INT4 – External Interrupt 4	62	54	0x000080	IFS3<6> INT4IF	IEC3<6> INT4IE	IPC13<10:8> INT4IP<2:0>
C2RX – CAN2 RX Data Ready	63	55	0x000082	IFS3<7> C2RXIF	IEC3<7> C2RXIE	IPC13<14:12> C2RXIP<2:0>
C2 – CAN 2 Combined Error	64	56	0x000083	IFS3<8> C2IF	IEC3<8> C2IE	IPC14<2:0> C2IP<2:0>
PSEM – PWM Special Event Match	65	57	0x000086	IFS3<9> PSEMIF	IEC3<9> PSEMIE	IPC14<6:4> PSEMIP<2:0>
Reserved	66-72	58-64	0x000088-0x000094	_	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1> U1EIF	IEC4<1> U1EIE	IPC16<6:4> U1EIP<2:0>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2> U2EIF	IEC4<2> U2EIE	IPC16<10:8> U2EIP<2:0>
Reserved	75-77	67-69	0x00009A-0x0000A2	_	_	_
C1TX – CAN1 TX Data Request	78	70	0x0000A0	IFS4<6> C1TXIF	IEC4<6> C1TXIE	IPC17<10:8> C1TXIP<2:0>
C2TX – CAN2 TX Data Request	79	71	0x0000A	IFS4<7> C2TXIF	IEC4<7> C2TXIE	IPC17<14:12> C2TXIP<2:0>
Reserved	80	72	0x0000A4	_	_	_

REGISTER 7-2: CORC	ON: CORE CONTROL REGISTER ⁽¹⁾
--------------------	--

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15	·						bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0

R/W-U	R/W-U	R/ VV- I	R/W-U	R/C-0	R-0	R/W-U	R/VV-U
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

1 = Variable exception processing is enabled

0 = Fixed exception processing is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

8.1 DMA Controller Registers

Each DMA Controller Channel x (where x = 0 through 3) contains the following registers:

- 16-Bit DMA Channel x Control Register (DMAxCON)
- 16-Bit DMA Channel x IRQ Select Register (DMAxREQ)
- 32-Bit DMA Channel x Start Address Register A (DMAxSTAL/H)
- 32-Bit DMA Channel x Start Address Register B (DMAxSTBL/H)
- 16-Bit DMA Channel x Peripheral Address Register (DMAxPAD)
- 14-Bit DMA Channel x Transfer Count Register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADRL/H) are common to all DMA Controller channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	—	AMODE1	AMODE0	—	—	MODE1	MODE0
bit 7							bit 0

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CHEN: DMA Channel Enable bit
	1 = Channel is enabled
	0 = Channel is disabled
bit 14	SIZE: DMA Data Transfer Size bit
	1 = Byte 0 = Word
bit 13	DIR: Transfer Direction bit (source/destination bus select)
	 1 = Reads from RAM address, writes to peripheral address 0 = Reads from peripheral address, writes to RAM address
bit 12	HALF: Block Transfer Interrupt Select bit
	 1 = Initiates interrupt when half of the data has been moved 0 = Initiates interrupt when all of the data has been moved
bit 11	NULLW: Null Data Peripheral Write Mode Select bit
	 1 = Null data write to peripheral in addition to RAM write (DIR bit must also be clear) 0 = Normal operation
bit 10-6	Unimplemented: Read as '0'
bit 5-4	AMODE<1:0>: DMA Channel Addressing Mode Select bits
	11 = Reserved
	10 = Peripheral Indirect mode
	01 = Register Indirect without Post-Increment mode00 = Register Indirect with Post-Increment mode
bit 3-2	Unimplemented: Read as '0'
bit 1-0	MODE<1:0>: DMA Channel Operating Mode Select bits
	11 = One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer)
	10 = Continuous, Ping-Pong modes are enabled 01 = One-Shot, Ping-Pong modes are disabled
	00 = Continuous, Ping-Pong modes are disabled

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral (for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0

- **SYNCSEL<4:0>:** Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾ 11111 = No sync or trigger source for ICx
- 11110 = Reserved
- 11101 = Reserved
- 11100 = Reserved
- 11011 = CMP4 module synchronizes or triggers $ICx^{(5)}_{(5)}$
- 11010 = CMP3 module synchronizes or triggers $ICx^{(5)}$
- 11001 = CMP2 module synchronizes or triggers ICx⁽⁵⁾
- 11000 = CMP1 module synchronizes or triggers ICx⁽⁵⁾
- 10111 = Reserved
- 10110 = Reserved
- 10101 = Reserved
- 10100 = Reserved
- 10011 = IC4 module interrupt synchronizes or triggers ICx
- 10010 = IC3 module interrupt synchronizes or triggers ICx
- 10001 = IC2 module interrupt synchronizes or triggers ICx
- 10000 = IC1 module interrupt synchronizes or triggers ICx
- 01111 = Timer5 synchronizes or triggers ICx
- 01110 = Timer4 synchronizes or triggers ICx
- 01101 = Timer3 synchronizes or triggers ICx (default)
- 01100 = Timer2 synchronizes or triggers ICx
- 01011 = Timer1 synchronizes or triggers ICx
- 01010 = Reserved
- 01001 = Reserved
- 01000 = IC4 module synchronizes or triggers ICx
- 00111 = IC3 module synchronizes or triggers ICx
- 00110 = IC2 module synchronizes or triggers ICx
- 00101 = IC1 module synchronizes or triggers ICx
- 00100 = OC4 module synchronizes or triggers ICx
- 00011 = OC3 module synchronizes or triggers ICx
- 00010 = OC2 module synchronizes or triggers ICx
- 00001 = OC1 module synchronizes or triggers ICx
- 00000 = No sync or trigger source for ICx
- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.

REGISTER 16-22: FCLCONX: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

	(X = 1	to 8)					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽¹⁾	CLMOD
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 IFLTMOD: Independent Fault Mode Enable bit

- I = Independent Fault mode: Current-limit input maps FLTDAT1 to the PWMxH output and the Fault input maps FLTDAT0 to the PWMxL output; the CLDAT<1:0> bits are not used for override functions
 0 = Normal Fault mode: Current-Limit mode maps CLDAT<1:0> bits to the PWMxH and PWMxL
- outputs; the PWM Fault mode maps FLTDAT<1:0> to the PWMxH and PWMxL outputs

bit 14-10 CLSRC<4:0>: Current-Limit Control Signal Source Select for PWMx Generator bits

- 10001 = Reserved
- 10000 = Analog Comparator 4
- 01111 = Analog Comparator 3
- 01110 = Analog Comparator 2 01101 = Analog Comparator 1
- 01101 = Analog Com
- 01100 Fault 12 01011 = Fault 11
- 01010 = Fault 10
- 01001 = Fault 9
- 01000 = Fault 8
- 00111 = Fault 7
- 00110 = Fault 6
- 00110 = Fault 0
- 00100 = Fault 4
- 00011 = Fault 3
- 00010 = Fault 2
- 00001 = Fault 1
- 00000 = Reserved

bit 9

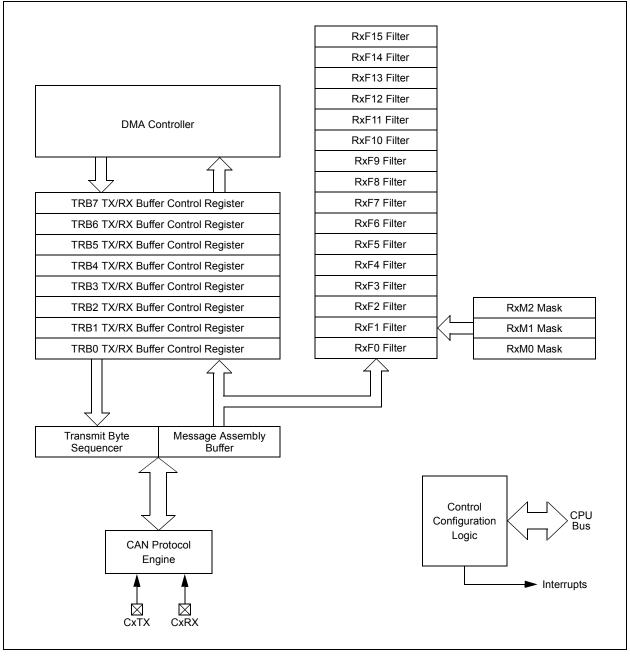
- CLPOL: Current-Limit Polarity for PWMx Generator bit⁽¹⁾
 - 1 = The selected current-limit source is active-low
 - 0 = The selected current-limit source is active-high
- bit 8 **CLMOD:** Current-Limit Mode Enable for PWMx Generator bit
 - 1 = Current-Limit mode is enabled
 - 0 = Current-Limit mode is disabled
- Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

REGISTER 18-7: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RXWIEN	—	RXMSK5 ⁽¹⁾	RXMSK4 ^(1,4)	RXMSK3 ^(1,3)	RXMSK2 ^(1,2)	RXMSK1 ⁽¹⁾	RXMSK0 ⁽¹⁾
bit 15							bit 8

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXWIEN	—	TXMSK5 ⁽¹⁾	TXMSK4 ^(1,4)	TXMSK3 ^(1,3)	TXMSK2 ^(1,2)	TXMSK1 ⁽¹⁾	TXMSK0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15	RXWIEN: Receive Watermark Interrupt Enable bit
	1 = Triggers receive buffer element watermark interrupt when RXMSK<5:0> \leq RXELM<5:0> 0 = Disables receive buffer element watermark interrupt
bit 14	Unimplemented: Read as '0'
bit 13-8	RXMSK<5:0>: RX Buffer Mask bits ^(1,2,3,4)
	RX mask bits; used in conjunction with the RXWIEN bit.
bit 7	TXWIEN: Transmit Watermark Interrupt Enable bit
	 1 = Triggers transmit buffer element watermark interrupt when TXMSK<5:0> = TXELM<5:0> 0 = Disables transmit buffer element watermark interrupt
bit 6	Unimplemented: Read as '0'
bit 5-0	TXMSK<5:0>: TX Buffer Mask bits ^(1,2,3,4)
	TX mask bits; used in conjunction with the TXWIEN bit.

- **Note 1:** Mask values higher than FIFODEPTH are not valid. The module will not trigger a match for any value in this case.
 - 2: RXMSK2 and TXMSK2 bits are only present when FIFODEPTH = 8 or higher.
 - 3: RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher.
 - 4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.

REGISTER 22-8:	ADCON4H: ADC CONTROL REGISTER 4 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—		—		—			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
C3CHS1	C3CHS0	C2CHS1	C2CHS0	C1CHS1	C1CHS0	C0CHS1	C0CHS0		
bit 7							bit (
Legend:									
R = Readab	le hit	W = Writable	hit	LI = Unimplen	nented bit, read	las 'N'			
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr			
		1 Dit lo bet		Bit lo bio			lown		
bit 5-4	00 = AN3 C2CHS<1:0> 11 = Reserve 10 = VREF ba		C Core 2 Inpu	it Channel Sele	ction bits				
bit 3-2	11 = AN1ALT 10 = PGA2	C1CHS<1:0>: Dedicated ADC Core 1 Input Channel Selection bits 11 = AN1ALT 10 = PGA2 01 = AN18 (differential negative input when DIFF1 (ADMOD0L<3>) = 1)							
bit 1-0									

FIGURE 23-1: CANX MODULE BLOCK DIAGRAM

23.2 Modes of Operation

The CANx module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- · Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-12	F15BP<3:0>	5BP<3:0>: RX Buffer Mask for Filter 15 bits								
	1111 = Filter hits received in RX FIFO buffer									
	1110 = Filter hits received in RX Buffer 14									
	•									
	•									
	0001 = Filter	hits received in	n RX Buffer 1							
	0000 = Filte r	hits received in	n RX Buffer 0							
bit 11-8	F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bits 15-12)									
bit 7-4	F13BP<3:0>: RX Buffer Mask for Filter 13 bits (same values as bits 15-12)									
bit 7-4	F13BP<3:0>: RX Buffer Mask for Filter 13 bits (same values as bits 15-12)									

REGISTER 23-15: CxBUFPNT4: CANx FILTERS 12-15 BUFFER POINTER REGISTER 4

bit 3-0 F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits 15-12)

26.3 Current Source Control Register

REGISTER 26-1: ISRCCON: CONSTANT-CURRENT SOURCE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ISRCEN	_	—	_	_	OUTSEL2	OUTSEL1	OUTSEL0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-11 bit 10-8	-	ted: Read as ' >: Output Con		Select bits			
	111 = Reserv 110 = Reserv 101 = Reserv 100 = Input p 011 = Input p 010 = Input p 001 = Input p	red red	4) 5) 6)				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	ISRCCAL<5:	0>: Constant-C	Current Source	e Calibration bi	ts		
	module is ena		the calibration			8, into these b 7-3) in Section	

27.2 Device Calibration and Identification

The PGAx and current source modules on the dsPIC33EPXXXGS70X/80X family devices require Calibration Data registers to improve performance of the module over a wide operating range. These Calibration registers are read-only and are stored in configuration memory space. Prior to enabling the module, the calibration data must be read (TBLPAG and Table Read instruction) and loaded into its respective SFR registers. The device calibration addresses are shown in Table 27-3.

The dsPIC33EPXXXGS70X/80X devices have two Identification registers near the end of configuration memory space that store the Device ID (DEVID) and Device Revision (DEVREV). These registers are used to determine the mask, variant and manufacturing information about the device. These registers are read-only and are shown in Register 27-1 and Register 27-2.

Calibration Name	Address	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PGA1CAL	800E48	_	_	_		_	_	_	_	_	_	_		PGA	1 Calib	ration [Data	
PGA2CAL	800E4C	_	-	—	—	_	_	_	_	-	_	-		PGA	2 Calib	ration I	Data	
ISRCCAL	800E78	_	_	_		_			_	_	_	_	Cu	rrent S	ource (Calibra	tion Da	ata

Note 1: The calibration data must be copied into its respective SFR registers prior to enabling the module.

30.1 DC Characteristics

TABLE 30-1: OPERATING MIPS vs. VOLTAGE

Characteristic	VDD Range	Temperature Range	Maximum MIPS
Characteristic	(in Volts)	(in °C)	dsPIC33EPXXXGS70X/80X Family
_	3.0V to 3.6V ⁽¹⁾ -40°C to +85°C		70
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, PGAs and comparators) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range		-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/O			W
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 80-Pin TQFP 12x12x1 mm	θJA	53.0	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10x1 mm	θJA	49.0	-	°C/W	1
Package Thermal Resistance, 48-Pin TQFP 7x7x1 mm	θJA	63.0	_	°C/W	1
Package Thermal Resistance, 44-Pin QFN 8x8 mm	θJA	29.0	_	°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10x1 mm	θJA	50.0	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S 6x6x0.9 mm	θJA	30.0	_	°C/W	1
Package Thermal Resistance, 28-Pin UQFN 6x6x0.55 mm	θJA	26.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC 7.50 mm	θJA	70.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 30-4:	DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
Operati	Operating Voltage								
DC10	Vdd	Supply Voltage	3.0	_	3.6	V			
DC12	Vdr	RAM Retention Voltage ⁽²⁾	_		1.95	V	+25°C, +85°C, +125°C		
				_	2.0	V	-40°C		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	-	_	Vss	V			
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	—	—	V/ms	0V-3V in 3 ms		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, PGAs and comparators) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: This is the limit to which VDD may be lowered and the RAM contents will always be retained.

TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	_	10	μF	Capacitor must have a low series resistance (<1 Ohm)

Note 1: Typical VCAP Voltage = 1.8 volts when VDD \ge VDDMIN.

TABLE 30-45:SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK3 Input Frequency	—	_	25	MHz	(Note 3)	
SP72	TscF	SCK3 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK3 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO3 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO3 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO3 Data Output Valid after SCK3 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO3 Data Output Setup to First SCK3 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI3 Data Input to SCK3 Edge	20	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI3 Data Input to SCK3 Edge	15	—	—	ns		
SP50	TssL2scH, TssL2scL	SS3 ↓ to SCK3 ↑ or SCK3 ↓ Input	120	—	_	ns		
SP51	TssH2doZ	SS3 ↑ to SDO3 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS3 ↑ after SCK3 Edge	1.5 TCY + 40	—		ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK3 is 66.7 ns. Therefore, the SCK3 clock generated by the master must not violate this specification.

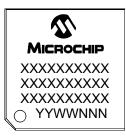
4: Assumes 50 pF load on all SPI3 pins.

5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.

32.0 PACKAGING INFORMATION

32.1 Package Marking Information

28-Lead SOIC (7.50 mm)


28-Lead UQFN (6x6x0.55 mm)

28-Lead QFN-S (6x6x0.9 mm)

44-Lead TQFP (10x10x1 mm)

Example

Example

Example

Example

Legei	nd: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

APPENDIX A: REVISION HISTORY

Revision A (May 2016)

This is the initial version of the document.

Revision B (January 2017)

- Sections:
 - Updates Note 1 in Section 5.0 "Flash Program Memory".
- Tables:
 - Updates the device description table on page 2.
 - Updates Table 1-1, Table 4-2, Table 4-11, Table 7-1, Table 8-1, Table 11-11, Table 11-13, Table 17-1, Table 30-3, Table 30-4, Table 30-6, Table 30-7, Table 30-8, Table 30-9, Table 30-10, Table 30-11, Table 30-52, Table 30-54 and Table 30-55.
 - Adds Table 11-6, Table 11-7, Table 11-8, Table 11-9 and Table 11-10.
- Figures:
 - Updates the Pin Function tables in the Pin Diagram figures on pages 5 through 8.
 - Updates Figure 4-1, Figure 17-1, Figure 18-1 and Figure 18-2.
- Registers:
 - Updates Register 3-3, Register 16-5, Register 17-11, Register 18-1 and Register 19-2.
 - Adds Register 11-1, Register 11-2, Register 11-3, Register 11-4, Register 11-5, Register 11-6, Register 11-7 and Register 11-8.