

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

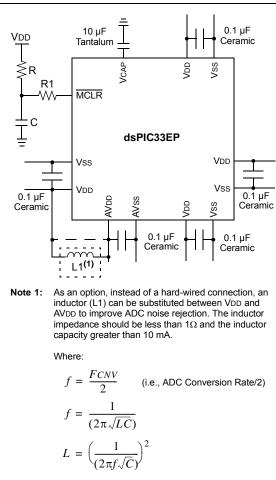
E·XFl

Detuns	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	67
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64gs808-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description				
AN0-AN21		Analog	No	Analog input channels.				
AN0ALT-AN1ALT	I	Analog	No	Alternate analog input channels.				
C1RXR	I	ST	Yes	CAN1 receive.				
C2RXR	I	ST	Yes	CAN2 receive.				
C1TX	0	ST	Yes	CAN1 transmit.				
C2TX	0	ST	Yes	CAN2 transmit.				
CLKI	I	ST/	No	External clock source input. Always associated with OSC1 pin				
		CMOS		function.				
CLKO	0	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.				
OSC1	I	ST/ CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.				
OSC2	I/O		No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.				
CLC1OUT	0	DIG	Yes	CLC1 output.				
CLC2OUT	0	DIG	Yes	CLC2 output.				
CLC3OUT	0	DIG	No ⁽⁴⁾	CLC3 output.				
CLC4OUT	0	DIG	No ⁽⁴⁾	CLC4 output.				
REFCLKO	0	—	Yes	Reference clock output.				
IC1-IC4	I	ST	Yes	Capture Inputs 1 through 4.				
OCFA	I	ST	Yes	Compare Fault A input (for compare channels).				
OC1-OC4	0		Yes	Compare Outputs 1 through 4.				
INT0	I	ST	No	External Interrupt 0.				
INT1	I	ST	Yes	External Interrupt 1.				
INT2	I	ST	Yes	External Interrupt 2.				
INT4	Ι	ST	Yes	External Interrupt 4.				
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.				
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.				
RC0-RC15	I/O	ST	No	PORTC is a bidirectional I/O port.				
RD0-RD15	I/O	ST	No	PORTD is a bidirectional I/O port.				
RE0-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.				
T1CK	I	ST	Yes	Timer1 external clock input.				
T2CK	I	ST	Yes	Timer2 external clock input.				
T3CK	I	ST	Yes	Timer3 external clock input.				
T4CK		ST	No	Timer4 external clock input.				
T5CK		ST	No	Timer5 external clock input.				
U1CTS	I	ST	Yes	UART1 Clear-to-Send.				
U1RTS	0	_	Yes	UART1 Ready-to-Send.				
U1RX		ST	Yes	UART1 receive.				
U1TX	0		Yes	UART1 transmit.				
BCLK1	0	ST	Yes	UART1 IrDA [®] baud clock output.				
Legend: CMOS = C								
				IOS levels O = Output I = Input				
PPS = Per	ripneral	Pin Selec	л Л	TTL = TTL input buffer				


1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

2: PWM4H/L through PWM8H/L are fixed on dsPIC33EPXXXGS708/808 devices. PWM4H/L through PWM6H/L are fixed on dsPIC33EPXXXGS706/806 devices.

3: The SCK3 pin is fixed on dsPIC33EPXXXGS706/806 and dsPIC33EPXXXGS708/808 devices.

4: PPS is available on dsPIC33EPXXXGS702 devices only.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

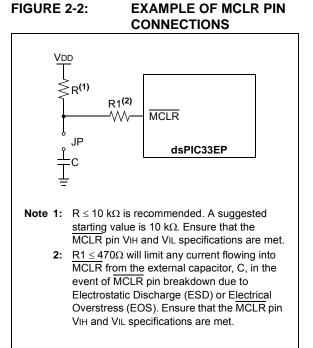
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including DSCs, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 0.5 Ω) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 30.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 27.4 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the \overline{MCLR} pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2, within one-quarter inch (6 mm) from the MCLR pin.

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < FIN < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings, after a POR with an oscillator frequency outside this range, will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

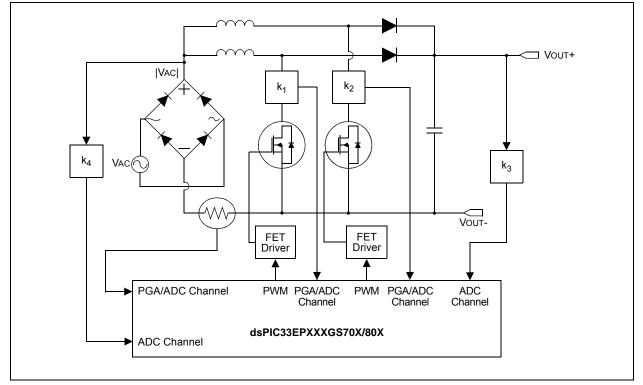
2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

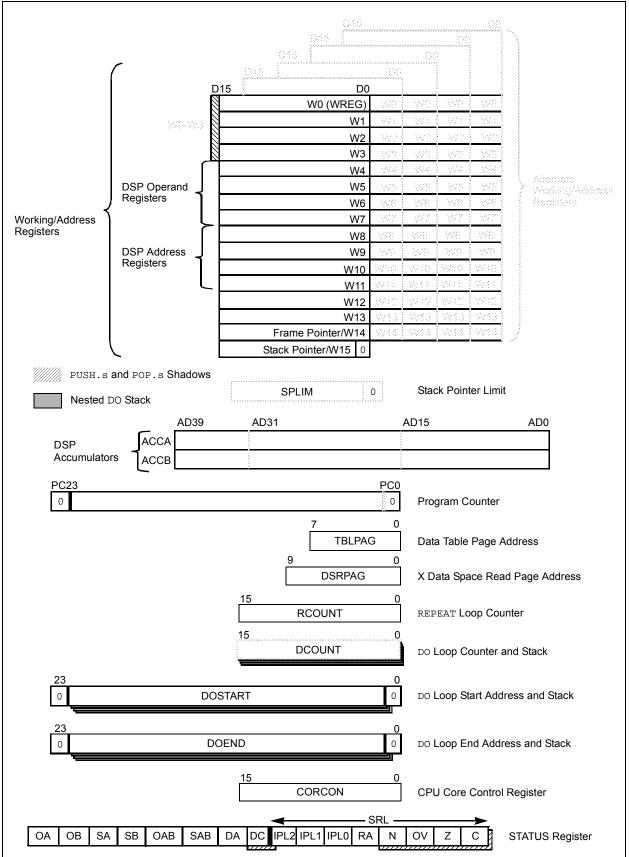
Power Factor Correction (PFC)

- Interleaved PFC
- Interneaved FFC
- Critical Conduction PFC
- Bridgeless PFC
- DC/DC Converters
 - Buck, Boost, Forward, Flyback, Push-Pull


Targeted Applications

- Half/Full-Bridge
- Phase-Shift Full-Bridge
- Resonant Converters
- DC/AC

2.9


- Half/Full-Bridge Inverter
- Resonant Inverter

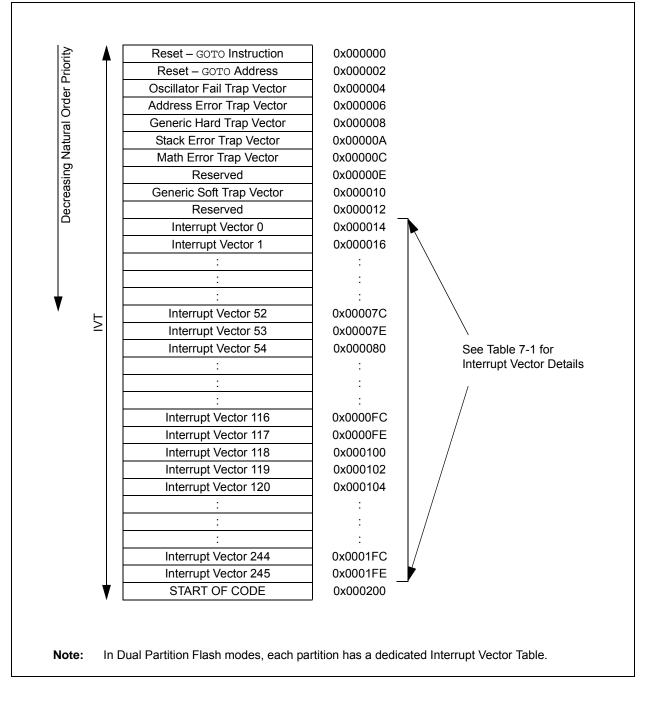
Examples of typical application connections are shown in Figure 2-4 through Figure 2-6.

FIGURE 2-4: INTERLEAVED PFC

3.7 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0			
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC			
bit 15			•				bit 8			
D 444 0(2)		D (A) (2)		D 444 0	DAMA	D /// 0				
R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
IPL2 ⁽¹⁾	IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	RA	Ν	OV	Z	C			
bit 7							bit (
Legend:		C = Clearable	e bit							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at	POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	OA: Accumu	lator A Overflov	v Status bit							
		ator A has over ator A has not c								
bit 14		lator B Overflov								
		ator B has over								
		ator B has not c								
bit 13	SA: Accumul	SA: Accumulator A Saturation 'Sticky' Status bit ⁽³⁾								
		 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated 								
bit 12	SB: Accumul	SB: Accumulator B Saturation 'Sticky' Status bit ⁽³⁾								
		ator B is saturat ator B is not sat		en saturated at	some time					
bit 11				Verflow Status	bit					
	1 = Accumula	ator A or B has	overflowed							
		ccumulator A o								
bit 10				ticky' Status bit						
		ator A or B is sa accumulator A c		is been saturate ed	ed at some tim	e				
bit 9	DA: DO Loop	Active bit								
	1 = DO loop is	s in progress								
		s not in progres								
bit 8		U Half Carry/Bo								
		out from the 4th sult occurred	low-order bit	(for byte-sized c	lata) or 8th low	-order bit (for wo	ord-sized data			
	0 = No carry			bit (for byte-size	ed data) or 8th	n low-order bit (for word-sized			
Note 1: T	he IPL<2:0> bits	are concatenat	ted with the IF	PL<3> bit (COR	CON<3>) to fo	orm the CPU Int	errupt Priority			
	evel. The value in PL<3> = 1.	n parentheses i	ndicates the	IPL, if IPL<3> =	1. User interro	upts are disable	d when			
2 : T	he IPL<2:0> Stat	us bits are read	d-only when t	he NSTDIS bit ((INTCON1<15	>)=1.				
~ .										


3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

h:+ 7 C	$ \mathbf{p} \sim 2 \cdot \mathbf{p} \sim C \mathbf{p} $ Interment Driver in Level Contraction hits (1.2)
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress
	0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative
	0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that
	causes the sign bit to change state.
	1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
	0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	1 = An operation that affects the Z bit has set it at some time in the past
	0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority

- Iote 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

FIGURE 7-1: dsPIC33EPXXXGS70X/80X FAMILY INTERRUPT VECTOR TABLE

Function	RPnR<6:0>	Output Name
Default PORT	0000000	RPn tied to Default Pin
U1TX	0000001	RPn tied to UART1 Transmit
U1RTS	0000010	RPn tied to UART1 Request-to-Send
U2TX	0000011	RPn tied to UART2 Transmit
U2RTS	0000100	RPn tied to UART2 Request-to-Send
SDO1	0000101	RPn tied to SPI1 Data Output
SCK1	0000110	RPn tied to SPI1 Clock Output
SS1	0000111	RPn tied to SPI1 Slave Select
SDO2	0001000	RPn tied to SPI2 Data Output
SCK2	0001001	RPn tied to SPI2 Clock Output
SS2	0001010	RPn tied to SPI2 Slave Select
C1TX	0001110	RPn tied to CAN1 Transmit
C2TX	0001111	RPn tied to CAN2 Transmit
OC1	0010000	RPn tied to Output Compare 1 Output
OC2	0010001	RPn tied to Output Compare 2 Output
OC3	0010010	RPn tied to Output Compare 3 Output
OC4	0010011	RPn tied to Output Compare 4 Output
ACMP1	0011000	RPn tied to Analog Comparator 1 Output
ACMP2	0011001	RPn tied to Analog Comparator 2 Output
ACMP3	0011010	RPn tied to Analog Comparator 3 Output
SDO3	0011111	RPn tied to SPI3 Data Output
SCK3	0100000	RPn tied to SPI3 Clock Output
SS3	0100001	RPn tied to SPI3 Slave Select
SYNCO1	0101101	RPn tied to PWM Primary Master Time Base Sync Output
SYNCO2	0101110	RPn tied to PWM Secondary Master Time Base Sync Output
REFCLKO	0110001	RPn tied to Reference Clock Output
ACMP4	0110010	RPn tied to Analog Comparator 4 Output
PWM4H	0110011	RPn tied to PWM Output Pins Associated with PWM Generator 4
PWM4L	0110100	RPn tied to PWM Output Pins Associated with PWM Generator 4
PWM5H	0110101	RPn tied to PWM Output Pins Associated with PWM Generator 5
PWM5L	0110110	RPn tied to PWM Output Pins Associated with PWM Generator 5
PWM6H	0111001	RPn tied to PWM Output Pins Associated with PWM Generator 6
PWM6L	0111010	RPn tied to PWM Output Pins Associated with PWM Generator 6
PWM7H	0111011	RPn tied to PWM Output Pins Associated with PWM Generator 7
PWM7L	0111100	RPn tied to PWM Output Pins Associated with PWM Generator 7
PWM8H	0111101	RPn tied to PWM Output Pins Associated with PWM Generator 8
PWM8L	0111110	RPn tied to PWM Output Pins Associated with PWM Generator 8
CLC1OUT	0111111	RPn tied to CLC1 Output
CLC2OUT	1000000	RPn tied to CLC2 Output
CLC3OUT ⁽¹⁾	1000001	RPn tied to CLC3 Output
CLC4OUT ⁽¹⁾	1000010	RPn tied to CLC4 Output

Note 1: PPS outputs are only available on dsPIC33EPXXXGS702 (28-pin) devices.

U-0	R/W-0						
_	RP45R6	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0
bit 15	·	•		•		•	bit

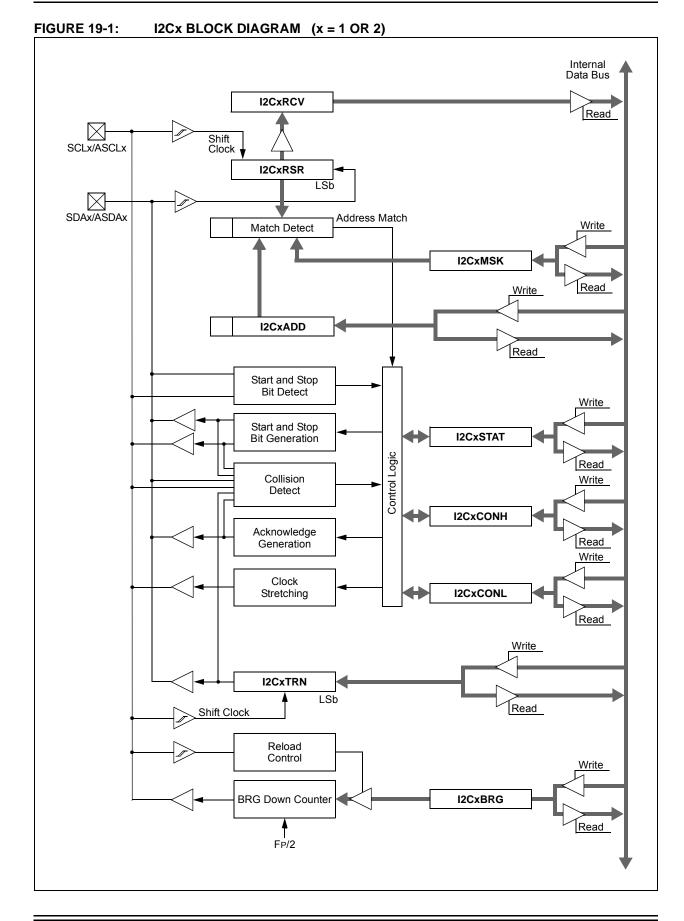
REGISTER 11-41: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	R/W-0						
—	RP44R6	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-8	RP45R<6:0>: Peripheral Output Function is Assigned to RP45 Output Pin bits (see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'
bit 6-0	RP44R<6:0>: Peripheral Output Function is Assigned to RP44 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-42: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9


U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	RP47R6	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP46R6	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
<u>.</u>								
bit 15	Unimplemented: Read as '0'							
bit 14-8	RP47R<6:0>: Peripheral Output Function is Assigned to RP47 Output Pin bits							

bit 14-8 **RP47R<6:0>:** Peripheral Output Function is Assigned to RP47 Output Pin bits (see Table 11-13 for peripheral function numbers)

bit 7 Unimplemented: Read as '0'

bit 6-0 RP46R<6:0>: Peripheral Output Function is Assigned to RP46 Output Pin bits (see Table 11-13 for peripheral function numbers)

bit 8

BUFFER 21-7: CANx MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Byte	7<15:8>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Byte	6<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unki	nown	

bit 15-8	Byte 7<15:8>: CANx Message Byte 7 bits

bit 7-0 Byte 6<7:0>: CANx Message Byte 6 bits

BUFFER 21-8: CANx MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—			FILHIT<4:0>(1)	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT<4:0>: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.
bit 7-0	Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

25.2 PGA Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

25.2.1 KEY RESOURCES

- "Programmable Gain Amplifier (PGA)" (DS70005146) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 25-1: PGAxCON: PGAx CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PGAEN	PGAOEN	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0	
bit 15						<u>.</u>	bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_	_	_	_	_	GAIN2	GAIN1	GAIN0	
bit 7		•					bit C	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'		
-n = Value at	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unknown		
bit 15	PGAEN: PGA	Ax Enable bit						
	1 = PGAx mo	dule is enable	d					
	0 = PGAx mo	odule is disable	d (reduces po	wer consumpt	ion)			
bit 14	PGAOEN: PO	GAx Output En	able bit					
	1 = PGAx out	tput is connect	ed to the DAC	OUTx pin				
	0 = PGAx out	tput is not conr	nected to the I	DACOUTx pin				
bit 13-11	SELPI<2:0>:	PGAx Positive	e Input Selecti	on bits				
	111 = Reserv	ved						
	110 = Reserv	ved						
	101 = Reserv	ved						
	100 = Reserv	ved						
	011 = PGAxF	-						
	010 = PGAxF	>3						
		22						

001 = PGAxP2 000 = PGAxP1

bit 10-8 **SELNI<2:0>:** PGAx Negative Input Selection bits

- 111 = Reserved 110 = Reserved
 - 101 = Reserved
 - 100 = Reserved
 - 011 = Ground (Single-Ended mode)
 - 010 = PGAxN3
 - 001 = PGAxN2
 - 000 = Ground (Single-Ended mode)
- bit 7-3 Unimplemented: Read as '0'

Bit Field	Description
WDTWIN<1:0>	Watchdog Timer Window Select bits
	11 = WDT window is 25% of the WDT period
	10 = WDT window is 37.5% of the WDT period
	01 = WDT window is 50% of the WDT period
	00 = WDT window is 75% of the WDT period
ALTI2C1	Alternate I2C1 Pin bit
	1 = I2C1 is mapped to the SDA1/SCL1 pins
	0 = I2C1 is mapped to the ASDA1/ASCL1 pins
ALTI2C2	Alternate I2C2 Pin bit
	1 = I2C2 is mapped to the SDA2/SCL2 pins
	0 = I2C2 is mapped to the ASDA2/ASCL2 pins
JTAGEN	JTAG Enable bit
	1 = JTAG is enabled
	0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicates on PGEC1 and PGED1
	10 = Communicates on PGEC2 and PGED2
	01 = Communicates on PGEC3 and PGED3
	00 = Reserved, do not use
DBCC	DACx Output Cross Connection Select bit
	1 = No cross connection between DAC outputs
	0 = Interconnects DACOUT1 and DACOUT2
CTXT1<2:0>	Alternate Working Register Set 1 Interrupt Priority Level (IPL) Select bits
	111 = Reserved
	110 = Assigned to IPL of 7
	101 = Assigned to IPL of 6
	100 = Assigned to IPL of 5
	011 = Assigned to IPL of 4
	010 = Assigned to IPL of 3 001 = Assigned to IPL of 2
	000 = Assigned to IPL of 1
CTXT2<2:0>	Alternate Working Register Set 2 Interrupt Priority Level (IPL) Select bits
01/12/2.0/	111 = Reserved
	110 = Assigned to IPL of 7
	101 = Assigned to IPL of 6
	100 = Assigned to IPL of 5
	011 = Assigned to IPL of 4
	010 = Assigned to IPL of 3
	001 = Assigned to IPL of 2
	000 = Assigned to IPL of 1
CTXT3<2:0>	Alternate Working Register Set 3 Interrupt Priority Level (IPL) Select bits
	111 = Reserved
	110 = Assigned to IPL of 7
	101 = Assigned to IPL of 6
	100 = Assigned to IPL of 5
	011 = Assigned to IPL of 4
	010 = Assigned to IPL of 3 001 = Assigned to IPL of 2
	000 = Assigned to IPL of 1
L	

TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.

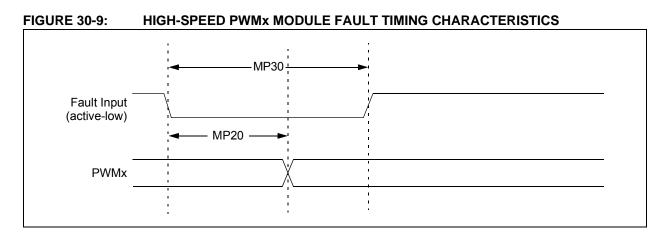
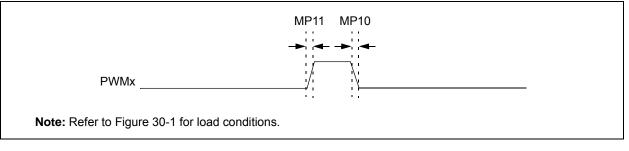

DC CHARACTERISTICS			Standard Operating Co (unless otherwise state Operating temperature					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	3.0	—	3.6	V		
D132b	VPEW	VDD for Self-Timed Write	3.0	—	3.6	V		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current during Programming ⁽²⁾	_	10	—	mA		
D136	IPEAK	Instantaneous Peak Current During Start-up	_	—	150	mA		
D137a	TPE	Page Erase Time	19.7	—	20.1	ms	TPE = 146893 FRC cycles, TA = +85°C (Note 3)	
D137b	TPE	Page Erase Time	19.5	—	20.3	ms	TPE = 146893 FRC cycles, Ta = +125°C (Note 3)	
D138a	Tww	Word Write Cycle Time	46.5	—	47.3	μs	Tww = 346 FRC cycles, Ta = +85°C (Note 3)	
D138b	Tww	Word Write Cycle Time	46.0	—	47.9	μs	Tww = 346 FRC cycles, Ta = +125°C (Note 3)	
D139a	Trw	Row Write Time	667	-	679	μs	Trw = 4965 FRC cycles, Ta = +85°C (Note 3)	
D139b	Trw	Row Write Time	660	-	687	μs	Trw = 4965 FRC cycles, Ta = +125°C (Note 3)	

TABLE 30-14: DC CHARACTERISTICS: PROGRAM MEMORY


Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Parameter characterized but not tested in manufacturing.

3: Other conditions: FRC = 7.37 MHz, TUN<5:0> = 011111 (for Minimum), TUN<5:0> = 100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 30-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

FIGURE 30-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-30: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions					
MP10	TFPWM	PWMx Output Fall Time	_	_	—	ns	See Parameter DO32	
MP11	TRPWM	PWMx Output Rise Time	—	_	—	ns	See Parameter DO31	
MP20	Tfd	Fault Input ↓ to PWMx I/O Change	_	_	15	ns		
MP30	Tfh	Fault Input Pulse Width	15	—	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-38:SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency	—	_	11	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	—	—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	—		ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with a remappable SCK3 pin.

TABLE 30-43:SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extende} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK3 Input Frequency	—	—	25	MHz	(Note 3)	
SP72	TscF	SCK3 Input Fall Time				ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK3 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO3 Data Output Fall Time	—	-	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO3 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO3 Data Output Valid after SCK3 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO3 Data Output Setup to First SCK3 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI3 Data Input to SCK3 Edge	20	—		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI3 Data Input to SCK3 Edge	15	_		ns		
SP50	TssL2scH, TssL2scL	SS3 ↓ to SCK3 ↑ or SCK3 ↓ Input	120	—	_	ns		
SP51	TssH2doZ	SS3 ↑ to SDO3 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SS3 ↑ after SCK3 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)	
SP60	TssL2doV	SDO3 Data Output Valid after SS3 Edge	—	—	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK3 is 66.7 ns. Therefore, the SCK3 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI3 pins.

5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.

TABLE 30-52: ADC MODULE SPECIFICATIONS

		STICS	Standard Op (unless othe	erwise stat	ted) ⁽⁵⁾		
			$\begin{array}{ll} \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
	•		Device	Supply	·		·
AD01	AVdd	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	_	Lesser of: VDD + 0.3 or 3.6	V	Within 300 mV of VDD at all times, including device power-up
AD02	AVss	Module Vss Supply	Vss	—	Vss + 0.3	V	
			Reference	e Inputs			
AD06	VREFL	Reference Voltage Low	_	AVss	—	V	(Note 1)
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.7	—	AVdd	V	(Note 3)
AD08	IREF	Reference Input Current	_	5	10	μA	ADC operating or in standby
	-		Analog	g Input		-	
AD12	VINH-VINL	Full-Scale Input Span	AVss		AVdd	V	
AD14	Vin	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V	
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	100	_	Ω	For minimum sampling time (Note 1)
AD66	Vbg	Internal Voltage Reference Source	—	1.2	—	V	
		ADC Ac	curacy: Pseu	udodiffere	ntial Input		
AD20a	Nr	Resolution		12		bits	
AD21a	INL	Integral Nonlinearity	> -3		< 3	LSb	AVss = 0V, AVDD = 3.3V
AD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	AVss = 0V, AVDD = 3.3V (Note 2)
AD23a	Gerr	Gain Error (Dedicated Core)	> 0	8	< 15	LSb	AVss = 0V, AVDD = 3.3V
		Gain Error (Shared Core)	> 5	15	< 22	LSb	
AD24a	EOFF	Offset Error (Dedicated Core)	> 0	5	< 10	LSb	AVss = 0V, AVDD = 3.3V
		Offset Error (Shared Core)	> 2	8	< 13	LSb	
AD25a	_	Monotonicity	_	_			Guaranteed

Note 1: These parameters are not characterized or tested in manufacturing.

2: No missing codes, limits based on characterization results.

3: These parameters are characterized but not tested in manufacturing.

4: Characterized with a 15 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

Oscillator	
Control Registers	
Resources	
Oscillator Configuration	103
Output Compare	
Control Registers	
Resources	
P	
Packaging	

Packaging	439
Details	441
Marking	439
Peripheral Module Disable (PMD)	117
Peripheral Pin Select (PPS)	
Available Peripherals	
Available Pins	
Control	135
Control Registers	
Input Mapping	136
Output Mapping	
Output Selection for Remappable Pins	
Selectable Input Sources	
Peripheral Trigger Generator (PTG) Module	
Peripheral Trigger Generator. See PTG.	
Pinout I/O Descriptions (table)	12
Power-Saving Features	
Clock Frequency and Switching	
Resources	
Program Address Space	
Construction	
Data Access from Program Memory Using	
Table Instructions	50
Memory Map (dsPIC33EP128GS70X/80X Device	
Dual Partition)	
Memory Map (dsPIC33EP128GS70X/80X	
Devices)	33
Memory Map (dsPIC33EP64GS70X/80X Devices	
Dual Partition)	
Memory Map (dsPIC33EP64GS70X/80X	
Devices)	32
Table Read High Instructions (TBLRDH)	
Table Read Low Instructions (TBLRDL)	
Program Memory	
Interfacing with Data Memory Spaces	58
Organization	
Reset Vector	
Programmable Gain Amplifier (PGA)	
Description	
Resources	
Programmable Gain Amplifier. See PGA.	
Programmer's Model	23
Register Descriptions	
PTG	
Control Registers	215
Introduction	
Output Descriptions	
Step Commands and Format	
Pulse-Width Modulator. See PWM.	223

R Reg

jisters
ACLKCON (Auxiliary Clock Divisor Control) 112
ADCAL0L (ADC Calibration 0 High) 300
ADCAL0L (ADC Calibration 0 Low)
ADCAL1H (ADC Calibration 1 High) 301
ADCMPxCON (ADC Digital Comparator x
Control)
ADCMPxENH (ADC Digital Comparator x
Channel Enable High)
ADCMPxENL (ADC Digital Comparator x
Channel Enable Low)
ADCON1H (ADC Control 1 High)277
ADCON1L (ADC Control 1 Low)
ADCON2H (ADC Control 2 High)
ADCON2L (ADC Control 2 Low)
ADCON3H (ADC Control 3 High)
ADCON3L (ADC Control 3 Low)
ADCON4H (ADC Control 4 High)
ADCON4L (ADC Control 4 Low)
ADCON5H (ADC Control 5 High) 285
ADCON5L (ADC Control 5 Low) 284
ADCORExH (Dedicated ADC Core x
Control High) 287
ADCORExL (Dedicated ADC Core x
Control Low) 286
ADEIEH (ADC Early Interrupt Enable High) 289
ADEIEL (ADC Early Interrupt Enable Low) 289
ADEISTATH (ADC Early Interrupt Status High) 290
ADEISTATL (ADC Early Interrupt Status Low) 290
ADFLxCON (ADC Digital Filter x Control) 304
ADIEH (ADC Interrupt Enable High) 293
ADIEL (ADC Interrupt Enable Low) 293
ADLVLTRGH (ADC Level-Sensitive Trigger
Control High)
ADLVLTRGL (ADC Level-Sensitive Trigger
Control Low)
ADMOD0H (ADC Input Mode Control 0 High)
ADMODOL (ADC Input Mode Control 0 Low)
ADMOD1L (ADC Input Mode Control 1 Low)
ADSTATH (ADC Data Ready Status High)
ADSTATL (ADC Data Ready Status High)
ADTRIGXH (ADC Channel Trigger x
Selection High)
ADTRIGxL (ADC Channel Trigger x
Selection Low)
ALTDTRx (PWMx Alternate Dead-Time)
ANSELx (Analog Select Control x)
AUXCONx (PWMx Auxiliary Control) 211
CHOP (PWMx Chop Clock Generator) 196
CLCxCONH (CLCx Control High) 263
CLCxCONL (CLCx Control Low) 262
CLCxGLSH (CLCx Gate Logic Input Select High) 271
CLCxGLSL (CLCx Gate Logic Input Select Low) 269
CLCxSEL (CLCx Input MUX Select) 264
CLKDIV (Clock Divisor) 109
CMPxCON (Comparator x Control)
CMPxDAC (Comparator x DAC Control)
CNENx (Input Change Notification
Interrupt Enable x) 133
· · ·

NOTES: