
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-HUQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl27z128vfm4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	—
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	 Level 1 falling (LVWV = 00) 	2.62	2.70	2.78	v	
V_{LVW2H}	 Level 2 falling (LVWV = 01) 	2.72	2.80	2.88	v	
V_{LVW3H}	 Level 3 falling (LVWV = 10) 	2.82	2.90	2.98	v	
$V_{\rm LVW4H}$	• Level 4 falling (LVWV = 11)	2.92	3.00	3.08	v	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	—	±60	—	mV	_
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	_
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	 Level 1 falling (LVWV = 00) 	1.74	1.80	1.86	v	
V_{LVW2L}	 Level 2 falling (LVWV = 01) 	1.84	1.90	1.96	v	
V_{LVW3L}	 Level 3 falling (LVWV = 10) 	1.94	2.00	2.06	v	
V_{LVW4L}	• Level 4 falling (LVWV = 11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range		±40	_	mV	_
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	—
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	-

Table 6. V_{DD} supply LVD and POR operating requirements (continued)

1. Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors Table 7. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -1.5 mA	V _{DD} – 0.5	_	V	
V _{OH}	Output high voltage — high drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -18 mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -6 \text{ mA}$	$V_{DD} - 0.5$	—	V	
I _{OHT}	Output high current total for all ports	—	100	mA	
V _{OL}	Output low voltage — normal drive pad	_	0.5	V	1

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• LLS → RUN					
		_	7.5	8	μs	
	 VLPS → RUN 					
		—	7.5	8	μs	
	• STOP \rightarrow RUN					
		—	7.5	8	μs	

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_FOPT[LPBOOT]=11)

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

NOTE

The while (1) test is executed with flash cache enabled.

 Table 9. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	—	See note	mA	1
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V_{DD} = 3.0 V					2
	• at 25 °C	—	5.76	6.40	mA	
	• at 105 °C	—	6.04	6.68		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	—	3.21	3.85	mA	
	• at 105 °C	—	3.49	4.13		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V_{DD} = 3.0 V					2
	• at 25 °C	—	6.45	7.09	mA	
	• at 105 °C	—	6.75	7.39		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V_{DD} = 3.0 V					2
		—	3.95	4.59		
		—	4.23	4.87	mA	

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	50	131	μΑ	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	208	289	μΑ	
I _{DD_WAIT}	Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.81	1.89	mA	
I _{DD_WAIT}	Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V		1.22	1.39	mA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0$ V	—	172	182	μA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0 V$	_	69	76	μΑ	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, V_{DD} = 3.0 V	—	36	40	μΑ	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, V_{DD} = 3.0 V					
		—	1.81	2.06	mA	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, V_{DD} = 3.0 V					
		_	1.00	1.25	mA	
I _{DD_STOP}	Stop mode current at 3.0 V • at 25 °C and below	_	161.93	171.82		
	• at 50 °C	_	181.45	191.96		
	• at 85 °C	_	236.29	271.17	μA	
	• at 105 °C	_	390.33	465.58	·	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V • at 25 °C and below		3.31	5.14		
	• at 50 °C	_	10.43	17.68		
	• at 85 °C	_	34.14	61.06	μA	
	• at 105 °C	_	104.38	164.44	۳A	
I _{DD_VLPS}	Very-low-power stop mode current at 1.8 V • at 25 °C and below	_	3.21	5.22		

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• at 50 °C		10.26	17.62		
	• at 85 °C	—	33.49	60.19	μA	
	• at 105 °C	—	102.92	162.20		
I _{DD_LLS}	Low-leakage stop mode current, all peripheral disable, at 3.0 V		2.06	3.33	μA	
	 at 25 °C and below 	—				
	• at 50 °C	_	4.72	6.85		
	• at 70 °C		8.13	13.30		
	• at 85 °C	—	13.34	24.70		
	• at 105 °C	—	41.08	52.43		
I _{DD_LLS}	Low-leakage stop mode current with RTC current,					
	at 3.0 V • at 25 °C and below		2.46	3.73	μA	
		_	5.12	7.25		
	• at 50 °C		8.53	11.78		
	• at 70 °C	_	13.74	18.91		
	• at 85 °C		41.48	52.83		
	• at 105 °C		11.10	02.00		
I _{DD_LLS}	Low-leakage stop mode current with RTC current,					3
	at 1.8 V • at 25 °C and below	—	2.35	2.70	μA	
	• at 50 °C	_	4.91	6.75		
	• at 70 °C		8.32	11.78		
	• at 85 °C	_	13.44	18.21		
	• at 105 °C		40.47	51.85		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V			1.05	μA	
	 at 25 °C and below 	_	1.45	1.85		
	• at 50 °C	—	3.37	4.39		
	• at 70 °C	—	5.76	8.48		
	● at 85 °C	_	9.72	14.30		
	• at 105 °C	—	30.41	37.50		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC					3
	current, at 3.0 V	_	2.05	2.45	μA	
	• at 25 °C and below		3.97	4.99		
	• at 50 °C		6.36	9.08		
	• at 70 °C	_	10.32	14.73		
	• at 85 °C					
	• at 105 °C	_	31.01	38.10		

 Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC				_	3
	current, at 1.8 V • at 25 °C and below	—	1.96	2.36	μA	
	• at 50 °C	—	3.86	5.67		
	• at 70 °C	—	6.23	8.53		
	• at 85 °C	—	10.21	13.37		
		_	30.25	37.02		
	• at 105 °C					
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current all peripheral disabled at 3.0 V					
	 at 25 °C and below 	—	0.66	0.80		
	• at 50°C	—	1.78	3.87		
	• at 70°C	—	2.55	4.26	μA	
	• at 85°C	—	4.83	6.64		
	• at 105 °C	—	16.42	20.49		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC enabled at 3.0 V					3
	• at 25 °C and below	—	1.26	1.40		
	• at 50°C	—	2.38	4.47		
	• at 70°C	—	3.15	4.86	μA	
	● at 85°C	—	5.43	7.24		
	• at 105 °C	—	17.02	21.09		
IDD_VLLS1	Very-low-leakage stop mode 1 current RTC					3
	enabled at 1.8 V	_	1.16	1.30		
	• at 25 °C and below	_	1.96	2.28		
	• at 50°C	_	2.78	3.37	μA	
	• at 70°C	_	4.85	6.88		
	• at 85°C	_	15.78	18.81		
	• at 105 °C		10.70	10.01		
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all					
	peripheral disabled (SMC_STOPCTRL[PORPO] = 0) at 3.0 V					
	• at 25 °C and below	—	0.35	0.47	μA	
	• at 50 °C	_	1.25	1.44		
	• at 70 °C	_	2.53	3.24		
	• at 85 °C	_	4.40	5.24		
	• at 105 °C	—	16.09	19.29		
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO] = 1) at 3 V					

Table 9.	Power consumption operating behaviors (continued)
----------	---	------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	at 25 °C and below	—	0.18	0.28		
	• at 50 °C	—	1.09	1.31	μA	
	• at 70 °C	—	2.25	2.94		
	• at 85 °C	—	4.25	5.10		
	• at 105 °C	_	15.95	19.10		

Table 9. Power consumption operating behaviors

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced.
- 3. RTC uses external 32 kHz crystal as clock source, and the current includes ERCLK32K power consumption.

Table 10. Low power mode peripheral adders — typical value

Symbol	Description	Temperature (°C)					Unit	
		-40	25	50	70	85	105	
I _{IRC8MHz}	8 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 8 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	93	93	93	93	93	93	μA
I _{IRC2MHz}	2 MHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 2 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	29	29	29	29	29	29	μA
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	224	230	238	245	253	μA
EREFSTEN32KHz	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled.							
	• VLLS1	440	490	540	560	570	580	
	• VLLS3	440	490	540	560	570	580	
	• LLS	490	490	540	560	570	680	
	• VLPS	510	560	560	560	610	680	nA
	• STOP	510	560	560	560	610	680	
I _{LPTMR}	LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO.	30	30	30	85	100	200	
	Table continues on the							

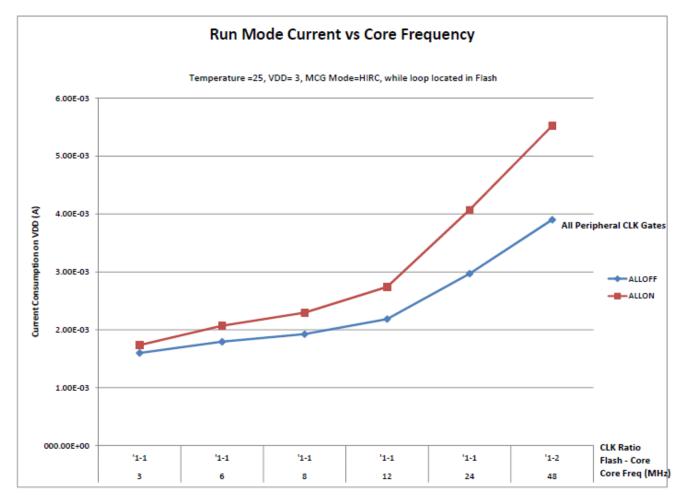
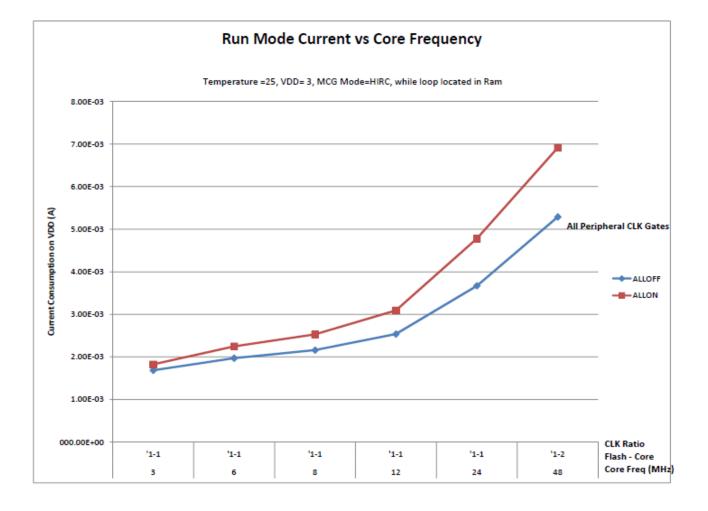



Figure 2. Run mode supply current vs. core frequency

Peripheral operating requirements and behaviors

- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).
- 5. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 17. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1		ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times		3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	—	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	—	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5		ns

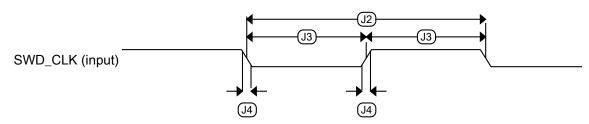


Figure 4. Serial wire clock input timing

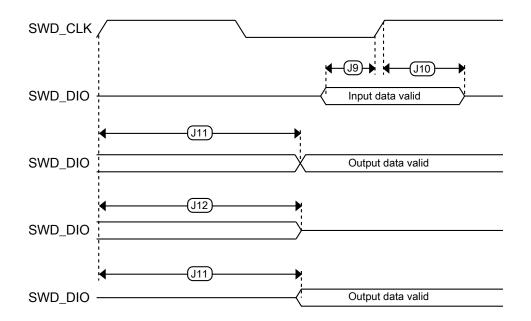


Figure 5. Serial wire data timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG-Lite specifications

Table 18.	IRC48M	specification
-----------	--------	---------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD}	Supply current	—	400	500	μA	—
f _{IRC}	Output frequency	—	48	—	MHz	—
Δf _{irc48m_ol_lv}	Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature		± 0.5	± 1.5	%f _{irc48m}	1
$\Delta f_{irc48m_ol_hv}$	Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature	_	± 0.5	± 1.0	%f _{irc48m}	1

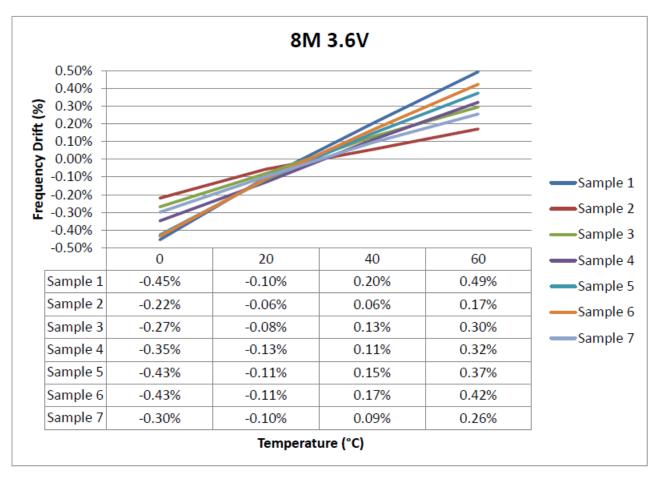


Figure 6. IRC8M Frequency Drift vs Temperature curve

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 20. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
		_	1.2	_	mA	

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 24 MHz		1.5	—	mA	
	• 32 MHz					
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz		25	_	μA	
	• 4 MHz	—	400	_	μA	
	• 8 MHz (RANGE=01)	—	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance		_	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	_		MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	-
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_			MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	-
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	—			kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_			kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)		V _{DD}	—	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

Table 20.	Oscillator DC electrical s	pecifications	(continued)
		poonioationo	

V_{DD}=3.3 V, Temperature =25 °C
 See crystal or resonator manufacturer's recommendation

28

Peripheral operating requirements and behaviors

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		 <12-bit modes 	—	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	_	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization	16-bit modes	_	-1 to 0	—	LSB ⁴	
	error	• ≤13-bit modes	—	_	±0.5		
ENOB	Effective	16-bit differential mode				bits	6
	number of bits	• Avg = 32	12.8	14.5		bits	
		• Avg = 4	11.9	13.8	_	Dito	
					_	bits	
		16-bit single-ended mode				bits	
		• Avg = 32	12.2	13.9	_		
		• Avg = 4	11.4	13.1	—		
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	—	-94	—		
		16-bit single-ended mode				dB	
		-	—	-85	—		
		• Avg = 32					
SFDR	Spurious free dynamic range	16-bit differential mode	82	95	_	dB	7
	dynamic range	• Avg = 32	02	33		dB	
		16-bit single-ended mode	78	90		UD	
		• Avg = 32	70				
EIL	Input leakage error			$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to
							the MCU's voltage
							and current
							operating
	Tomp opposi	A proposition full to represent una version	1.55	1.00	1.00	m\//90	ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 27. 16-bit ADC characteristics (V _{REFH} = V _{DDA} , V _{REFL} = V _{SSA}) (cont	nued)
---	-------

1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}

Peripheral operating requirements and behaviors

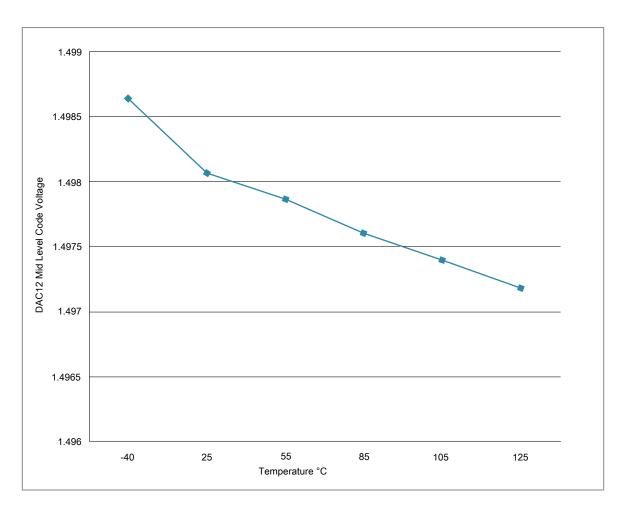


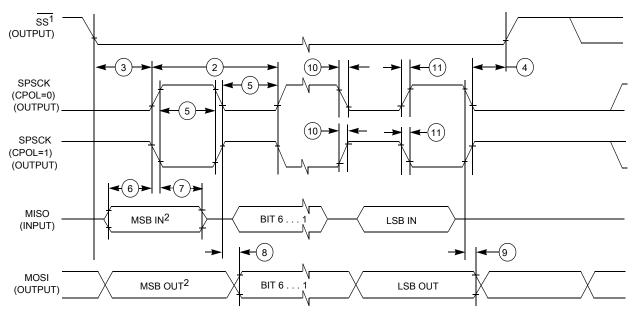
Figure 13. Offset at half scale vs. temperature

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

3.8.1 USB electrical specifications


The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit usb.org.

Num.	Symbol	Description	Min.	Max.	Unit	Note
8	t _v	Data valid (after SPSCK edge)	—	52	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	—
10	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	36	ns	—
	t _{FO}	Fall time output				

Table 37. SPI master mode timing on slew rate enabled pads (continued)

- 1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).
- 2. $t_{periph} = 1/f_{periph}$

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA = 0)

- 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the high drive pins across the full voltage range and when using the normal drive pins and VDD ≥ 2.7 V.
- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and
 SCL lines.
- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 7. C_b = total capacitance of the one bus line in pF.

To achieve 1MHz I2C clock rates, consider the following recommendations:

- To counter the effects of clock stretching, the I2C baud Rate select bits can be configured for faster than desired baud rate.
- Use high drive pad and DSE bit should be set in PORTx_PCRn register.
- Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for the SCL line to avoid clock stretching.
- Use smaller pull up resistors on SDA and SCL to reduce the RC time constant.

Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1 ¹	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26		μs
LOW period of the SCL clock	t _{LOW}	0.5	—	μs
HIGH period of the SCL clock	t _{HIGH}	0.26		μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26		μs
Data hold time for I ₂ C bus devices	t _{HD} ; DAT	0	—	μs
Data set-up time	t _{SU} ; DAT	50	—	ns
Rise time of SDA and SCL signals	t _r	20 +0.1C _b	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	—	μs
Bus free time between STOP and START condition	t _{BUF}	0.5		μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

 Table 41.
 I ²C 1Mbit/s timing

1. The maximum SCL clock frequency of 1 Mbit/s can support maximum bus loading when using the high drive pins across the full voltage range.

2. C_b = total capacitance of the one bus line in pF.

5 Pinouts and Packaging

5.1 KL27 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

VREFH can act as VREF_OUT when VREFV1 module is enabled.

NOTE

It is prohibited to set VREFEN in 32 QFN pin package as 1.2 V on-chip voltage is not available in this package.

32 QFN	48 QFN	64 MAP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
-	-	BGA B1	2	PTE1	DISABLED		PTE1	SPI1_MOSI	LPUART1_ RX		SPI1_MISO	I2C1_SCL	
	1	_	3	VDD	VDD	VDD			нх				
_	7	G1	9	PTE20	ADC0_DP0/ ADC0_SE0	ADC0_DP0/ ADC0_SE0	PTE20		TPM1_CH0	LPUARTO_ TX		FXI00_D4	
_	8	F1	10	PTE21	ADC0_DM0/ ADC0_SE4a	ADC0_DM0/ ADC0_SE4a	PTE21		TPM1_CH1	LPUART0_ RX		FXIO0_D5	
_	-	G2	11	PTE22	ADC0_DP3/ ADC0_SE3	ADC0_DP3/ ADC0_SE3	PTE22		TPM2_CH0	UART2_TX		FXIO0_D6	
_	-	F2	12	PTE23	ADC0_DM3/ ADC0_SE7a	ADC0_DM3/ ADC0_SE7a	PTE23		TPM2_CH1	UART2_RX		FXIO0_D7	
-	10	G4	14	VREFH	VREFH	VREFH							
—	11	G3	15	VREFL	VREFL	VREFL							
-	13	H1	17	PTE29	CMP0_IN5/ ADC0_SE4b	CMP0_IN5/ ADC0_SE4b	PTE29		TPM0_CH2	TPM_ CLKIN0			
_	_	H3	19	PTE31	DISABLED		PTE31		TPM0_CH4				
_	15	H4	20	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
_	16	H5	21	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
Ι	1	F5	27	PTA5	DISABLED		PTA5	USB_CLKIN	TPM0_CH2			I2S0_TX_ BCLK	
_	-	H6	28	PTA12	DISABLED		PTA12		TPM1_CH0			I2S0_TXD0	
_	_	G6	29	PTA13	DISABLED		PTA13		TPM1_CH1			I2S0_TX_FS	
-	29	E7	37	PTB2	ADC0_SE12	ADC0_SE12	PTB2	I2C0_SCL	TPM2_CH0				
-	30	E8	38	PTB3	ADC0_SE13	ADC0_SE13	PTB3	I2C0_SDA	TPM2_CH1				

Kinetis KL27 Microcontroller, Rev.5, 08/2015.

55

	1	2	3	4	5	6	7	8	
A	PTE0	PTD7	PTD4/ LLWU_P14	PTD1	PTC11	PTC8	PTC6/ LLWU_P10	PTC5/ LLWU_P9	A
в	PTE1	PTD6/ LLWU_P15	PTD3	PTC10	PTC9	PTC7	PTC2	PTC4/ LLWU_P8	в
С	PTD5	PTD2	PTD0	VSS	NC	PTC1/ LLWU_P6/ RTC_CLKIN	PTB19	PTC3/ LLWU_P7	С
D	USB0_DM	VREGIN	PTA0	PTA1	PTA3	PTB18	PTB17	PTC0	D
E	USB0_DP	VOUT33	VSS	VDD	PTA2	PTB16	PTB2	PTB3	E
F	PTE21	PTE23	VSSA	VDDA	PTA5	PTB1	PTB0/ LLWU_P5	PTA20	F
G	PTE20	PTE22	VREFL	VREFH	PTA4	PTA13	VDD	PTA19	G
н	PTE29	PTE30	PTE31	PTE24	PTE25	PTA12	VSS	PTA18	н
1	1	2	3	4	5	6	7	8	1

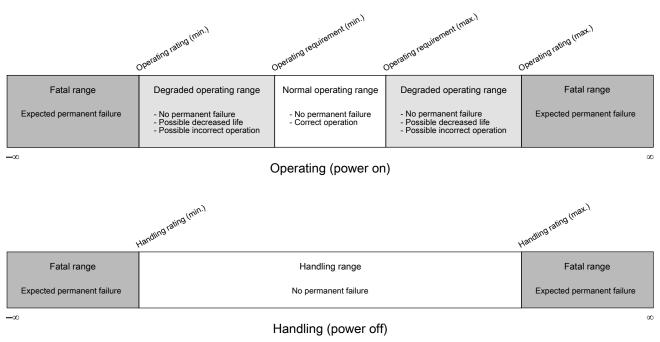
Figure 26. 64 MAPBGA Pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the Web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers:

7 Part identification


8 Terminology and guidelines

8.1 Definitions

Key terms are defined in the following table:

Term	Definition	
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:	
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered. 	
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.	
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip	
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions	
Typical value	A specified value for a technical characteristic that:	
	 Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions 	
	NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.	

8.4 Relationship between ratings and operating requirements

8.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

9 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
3	09 August 2014	 Initial Public release Updated Table 9 - Power consumption operating behaviors. Added a note related to 32 QFN pin package in Pinouts topic.
4	03 March 2015	Updated the features and completed the ordering information.Removed thickness dimension from package diagrams.

Table 47. Revision History