# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                |
|----------------------------|-----------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0+                                                      |
| Core Size                  | 32-Bit Single-Core                                                    |
| Speed                      | 48MHz                                                                 |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART, USB                                |
| Peripherals                | DMA, I <sup>2</sup> S, LVD, POR, PWM, WDT                             |
| Number of I/O              | 36                                                                    |
| Program Memory Size        | 128KB (128K x 8)                                                      |
| Program Memory Type        | FLASH                                                                 |
| EEPROM Size                |                                                                       |
| RAM Size                   | 32K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                          |
| Data Converters            | A/D 16x16b; D/A 1x12b                                                 |
| Oscillator Type            | Internal                                                              |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                    |
| Mounting Type              | Surface Mount                                                         |
| Package / Case             | 48-VFQFN Exposed Pad                                                  |
| Supplier Device Package    | 48-QFN (7x7)                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl27z128vft4 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



#### **Operating Characteristics**

- Voltage range: 1.71 to 3.6 V
- Flash write voltage range: 1.71 to 3.6 V
- Temperature range: –40 to 105 °C

#### Packages

- 64 LQFP 10mm x 10mm, 0.5mm pitch, 1.6mm thickness
- 64 MAPBGA 5mm x 5mm, 0.5mm pitch, 1.23mm thickness
- 48 QFN 7mm x 7mm, 0.5mm pitch, 0.65mm thickness
- 32 QFN 5mm x 5mm, 0.5mm pitch, 0.65mm thickness

#### Security and Integrity

- 80-bit unique identification number per chip
- Advanced flash security

#### I/O

• Up to 50 general-purpose input/output pins (GPIO) and 6 high-drive pad

#### Low Power

- Down to 54uA/MHz in very low power run mode
- Down to 1.96uA in VLLS3 mode (RAM + RTC
- retained)
- · Six flexible static modes

| Pro           | duct                      | Memory        |              | Package      |         | IO and ADC channel |                                |                            |
|---------------|---------------------------|---------------|--------------|--------------|---------|--------------------|--------------------------------|----------------------------|
| Part number   | Marking (Line1/<br>Line2) | Flash<br>(KB) | SRAM<br>(KB) | Pin<br>count | Package | GPIOs              | GPIOs<br>(INT/HD) <sup>1</sup> | ADC<br>channels<br>(SE/DP) |
| MKL27Z128VFM4 | M27P7V                    | 128           | 32           | 32           | QFN     | 23                 | 19/6                           | 7/0                        |
| MKL27Z256VFM4 | M27P8V                    | 256           | 32           | 32           | QFN     | 23                 | 19/6                           | 7/0                        |
| MKL27Z128VFT4 | M27P7V                    | 128           | 32           | 48           | QFN     | 36                 | 24/6                           | 14/1                       |
| MKL27Z256VFT4 | M27P8V                    | 256           | 32           | 48           | QFN     | 36                 | 24/6                           | 14/1                       |
| MKL27Z128VLH4 | MKL27Z128V//LH4           | 128           | 32           | 64           | LQFP    | 50                 | 31/6                           | 16/2                       |
| MKL27Z256VLH4 | MKL27Z256V//LH4           | 256           | 32           | 64           | LQFP    | 50                 | 31/6                           | 16/2                       |
| MKL27Z128VMP4 | M27P7V                    | 128           | 32           | 64           | MAPBGA  | 50                 | 31/6                           | 16/2                       |
| MKL27Z256VMP4 | M27P8V                    | 256           | 32           | 64           | MAPBGA  | 50                 | 31/6                           | 16/2                       |

#### **Ordering Information**

1. INT: interrupt pin numbers; HD: high drive pin numbers

#### **Related Resources**

| Туре                | Description                                                                                                                      | Resource                                                                                                                                         |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Selector<br>Guide   | The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector. | Solution Advisor                                                                                                                                 |
| Product Brief       | The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.   | KL2XPB <sup>1</sup>                                                                                                                              |
| Reference<br>Manual | The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.                 | KL27P64M48SF6RM <sup>1</sup>                                                                                                                     |
| Data Sheet          | The Data Sheet includes electrical characteristics and signal connections.                                                       | This document.                                                                                                                                   |
| Chip Errata         | The chip mask set Errata provides additional or corrective information for a particular device mask set.                         | KINETIS_L_1N71K <sup>1</sup>                                                                                                                     |
| Package<br>drawing  | Package dimensions are provided in package drawings.                                                                             | 64-LQFP: 98ASS23234W <sup>1</sup> 64<br>MAPBGA: 98ASA00420D <sup>1</sup> 32<br>QFN: 98ASA00615D <sup>1</sup> 48 QFN:<br>98ASA00616D <sup>1</sup> |

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.





# **Table of Contents**

| 1 | Rati | ngs      | 5                                                           |
|---|------|----------|-------------------------------------------------------------|
|   | 1.1  | Therma   | al handling ratings5                                        |
|   | 1.2  | Moistu   | re handling ratings5                                        |
|   | 1.3  | ESD ha   | andling ratings5                                            |
|   | 1.4  | Voltage  | e and current operating ratings5                            |
| 2 | Gen  | eral     |                                                             |
|   | 2.1  | AC ele   | ctrical characteristics6                                    |
|   | 2.2  | Nonsw    | itching electrical specifications7                          |
|   |      | 2.2.1    | Voltage and current operating requirements7                 |
|   |      | 2.2.2    | LVD and POR operating requirements7                         |
|   |      | 2.2.3    | Voltage and current operating behaviors8                    |
|   |      | 2.2.4    | Power mode transition operating behaviors9                  |
|   |      | 2.2.5    | Power consumption operating behaviors 10                    |
|   |      | 2.2.6    | $\ensuremath{EMC}$ radiated emissions operating behaviors20 |
|   |      | 2.2.7    | Designing with radiated emissions in mind21                 |
|   |      | 2.2.8    | Capacitance attributes21                                    |
|   | 2.3  | Switchi  | ing specifications21                                        |
|   |      | 2.3.1    | Device clock specifications21                               |
|   |      | 2.3.2    | General switching specifications                            |
|   | 2.4  | Therma   | al specifications22                                         |
|   |      | 2.4.1    | Thermal operating requirements                              |
|   |      | 2.4.2    | Thermal attributes23                                        |
| 3 | Peri | pheral c | operating requirements and behaviors24                      |
|   | 3.1  | Core m   | nodules                                                     |
|   |      | 3.1.1    | SWD electricals                                             |
|   | 3.2  | System   | n modules25                                                 |
|   | 3.3  | Clock r  | nodules25                                                   |
|   |      | 3.3.1    | MCG-Lite specifications25                                   |
|   |      | 3.3.2    | Oscillator electrical specifications27                      |
|   | 3.4  | Memor    | ies and memory interfaces29                                 |
|   |      | 3.4.1    | Flash electrical specifications29                           |
|   | 3.5  | Securit  | y and integrity modules 31                                  |
|   | 3.6  | Analog   |                                                             |

|       | 3.6.1     | ADC electrical specifications                  | 1 |
|-------|-----------|------------------------------------------------|---|
|       | 3.6.2     | Voltage reference electrical specifications    | 6 |
|       | 3.6.3     | CMP and 6-bit DAC electrical specifications 37 | 7 |
|       | 3.6.4     | 12-bit DAC electrical characteristics          | 9 |
| 3.7   | Timers    | s42                                            | 2 |
| 3.8   | Comm      | nunication interfaces42                        | 2 |
|       | 3.8.1     | USB electrical specifications                  | 2 |
|       | 3.8.2     | USB VREG electrical specifications43           | 3 |
|       | 3.8.3     | SPI switching specifications                   | 3 |
|       | 3.8.4     | I2C48                                          | 3 |
|       | 3.8.5     | UART50                                         | ) |
|       | 3.8.6     | I2S/SAI switching specifications50             | ) |
| 4 Dim | nension   | s54                                            | 4 |
| 4.1   | Obtair    | ning package dimensions54                      | 4 |
| 5 Pin | outs an   | d Packaging55                                  | 5 |
| 5.1   | KL27      | Signal Multiplexing and Pin Assignments55      | 5 |
| 5.2   | KL27      | Family Pinouts57                               | 7 |
| 6 Ord | lering p  | arts61                                         | 1 |
| 6.1   | Deterr    | mining valid orderable parts61                 | 1 |
| 7 Par | t identif | ication61                                      | 1 |
| 7.1   | Descri    | iption61                                       | 1 |
| 7.2   | Forma     | at62                                           | 2 |
| 7.3   | Fields    |                                                | 2 |
| 7.4   | Exam      | ple62                                          | 2 |
| 8 Ter | minolog   | gy and guidelines63                            | 3 |
| 8.1   | Definit   | tions63                                        | 3 |
| 8.2   | Exam      | ples63                                         | 3 |
| 8.3   | Typica    | al-value conditions64                          | 1 |
| 8.4   | Relation  | onship between ratings and operating           |   |
|       | require   | ements64                                       | 4 |
| 8.5   | Guide     | lines for ratings and operating requirements65 | 5 |
| 9 Rev | ision H   | listory65                                      | 5 |
|       |           |                                                |   |



# 1 Ratings

# 1.1 Thermal handling ratings

#### Table 1. Thermal handling ratings

| Symbol           | Description                   | Min. | Max. | Unit | Notes |
|------------------|-------------------------------|------|------|------|-------|
| T <sub>STG</sub> | Storage temperature           | -55  | 150  | °C   | 1     |
| T <sub>SDR</sub> | Solder temperature, lead-free | _    | 260  | °C   | 2     |

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

# **1.2 Moisture handling ratings**

#### Table 2. Moisture handling ratings

| Symbol | Description                | Min. | Max. | Unit | Notes |
|--------|----------------------------|------|------|------|-------|
| MSL    | Moisture sensitivity level | —    | 3    |      | 1     |

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

# 1.3 ESD handling ratings

#### Table 3. ESD handling ratings

| Symbol           | Description                                           | Min.  | Max.  | Unit | Notes |
|------------------|-------------------------------------------------------|-------|-------|------|-------|
| V <sub>HBM</sub> | Electrostatic discharge voltage, human body model     | -2000 | +2000 | V    | 1     |
| V <sub>CDM</sub> | Electrostatic discharge voltage, charged-device model | -500  | +500  | V    | 2     |
| I <sub>LAT</sub> | Latch-up current at ambient temperature of 105 °C     | -100  | +100  | mA   | 3     |

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

 Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.



# 2.2 Nonswitching electrical specifications

### 2.2.1 Voltage and current operating requirements Table 5. Voltage and current operating requirements

| Symbol              | Description                                                                                                                                                  | Min.                 | Max.                 | Unit | Notes |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|------|-------|
| V <sub>DD</sub>     | Supply voltage                                                                                                                                               | 1.71                 | 3.6                  | V    |       |
| V <sub>DDA</sub>    | Analog supply voltage                                                                                                                                        | 1.71                 | 3.6                  | V    |       |
| $V_{DD} - V_{DDA}$  | V <sub>DD</sub> -to-V <sub>DDA</sub> differential voltage                                                                                                    | -0.1                 | 0.1                  | V    |       |
| $V_{SS} - V_{SSA}$  | V <sub>SS</sub> -to-V <sub>SSA</sub> differential voltage                                                                                                    | -0.1                 | 0.1                  | V    |       |
| VIH                 | Input high voltage                                                                                                                                           |                      |                      |      |       |
|                     | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V                                                                                                                  | $0.7 \times V_{DD}$  | —                    | V    |       |
|                     | • $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$                                                                                                 | $0.75 \times V_{DD}$ | _                    | V    |       |
| V <sub>IL</sub>     | Input low voltage                                                                                                                                            |                      |                      |      |       |
|                     | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V                                                                                                                  | _                    | $0.35 \times V_{DD}$ | V    |       |
|                     | • $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$                                                                                                 |                      | $0.3 \times V_{DD}$  | V    |       |
| V <sub>HYS</sub>    | Input hysteresis                                                                                                                                             | $0.06 \times V_{DD}$ | _                    | V    |       |
| l <sub>icio</sub>   | IO pin negative DC injection current — single pin<br>• V <sub>IN</sub> < V <sub>SS</sub> -0.3V                                                               | -3                   | _                    | mA   | 1     |
| I <sub>ICcont</sub> | Contiguous pin DC injection current —regional limit,<br>includes sum of negative injection currents of 16<br>contiguous pins<br>• Negative current injection | -25                  | _                    | mA   |       |
| V <sub>ODPU</sub>   | Open drain pullup voltage level                                                                                                                              | V <sub>DD</sub>      | V <sub>DD</sub>      | V    | 2     |
| V <sub>RAM</sub>    | V <sub>DD</sub> voltage required to retain RAM                                                                                                               | 1.2                  | —                    | V    |       |

1. All I/O pins are internally clamped to  $V_{SS}$  through a ESD protection diode. There is no diode connection to  $V_{DD}$ . If  $V_{IN}$  greater than  $V_{IO\_MIN}$  (=  $V_{SS}$ -0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = ( $V_{IO\_MIN} - V_{IN}$ )/II<sub>CIO</sub>I.

2. Open drain outputs must be pulled to  $V_{DD}$ .

### 2.2.2 LVD and POR operating requirements Table 6. V<sub>DD</sub> supply LVD and POR operating requirements

| Symbol           | Description                                | Min. | Тур. | Max. | Unit | Notes |
|------------------|--------------------------------------------|------|------|------|------|-------|
| V <sub>POR</sub> | Falling V <sub>DD</sub> POR detect voltage | 0.8  | 1.1  | 1.5  | V    | —     |

Table continues on the next page ...



| Symbol             | Description                                                   | Min. | Тур. | Max. | Unit | Notes |
|--------------------|---------------------------------------------------------------|------|------|------|------|-------|
| V <sub>LVDH</sub>  | Falling low-voltage detect threshold — high range (LVDV = 01) | 2.48 | 2.56 | 2.64 | V    |       |
|                    | Low-voltage warning thresholds — high range                   |      |      |      |      | 1     |
| V <sub>LVW1H</sub> | <ul> <li>Level 1 falling (LVWV = 00)</li> </ul>               | 2.62 | 2.70 | 2.78 | v    |       |
| V <sub>LVW2H</sub> | <ul> <li>Level 2 falling (LVWV = 01)</li> </ul>               | 2.72 | 2.80 | 2.88 | v    |       |
| V <sub>LVW3H</sub> | <ul> <li>Level 3 falling (LVWV = 10)</li> </ul>               | 2.82 | 2.90 | 2.98 | v    |       |
| V <sub>LVW4H</sub> | • Level 4 falling (LVWV = 11)                                 | 2.92 | 3.00 | 3.08 | v    |       |
| V <sub>HYSH</sub>  | Low-voltage inhibit reset/recover hysteresis — high range     |      | ±60  | _    | mV   | _     |
| V <sub>LVDL</sub>  | Falling low-voltage detect threshold — low range (LVDV=00)    | 1.54 | 1.60 | 1.66 | V    | _     |
|                    | Low-voltage warning thresholds — low range                    |      |      |      |      | 1     |
| V <sub>LVW1L</sub> | <ul> <li>Level 1 falling (LVWV = 00)</li> </ul>               | 1.74 | 1.80 | 1.86 | v    |       |
| V <sub>LVW2L</sub> | <ul> <li>Level 2 falling (LVWV = 01)</li> </ul>               | 1.84 | 1.90 | 1.96 | v    |       |
| V <sub>LVW3L</sub> | <ul> <li>Level 3 falling (LVWV = 10)</li> </ul>               | 1.94 | 2.00 | 2.06 | v    |       |
| V <sub>LVW4L</sub> | • Level 4 falling (LVWV = 11)                                 | 2.04 | 2.10 | 2.16 | v    |       |
| V <sub>HYSL</sub>  | Low-voltage inhibit reset/recover hysteresis — low range      |      | ±40  | _    | mV   | _     |
| V <sub>BG</sub>    | Bandgap voltage reference                                     | 0.97 | 1.00 | 1.03 | V    |       |
| t <sub>LPO</sub>   | Internal low power oscillator period — factory trimmed        | 900  | 1000 | 1100 | μs   |       |

### Table 6. V<sub>DD</sub> supply LVD and POR operating requirements (continued)

1. Rising thresholds are falling threshold + hysteresis voltage

### 2.2.3 Voltage and current operating behaviors Table 7. Voltage and current operating behaviors

| Symbol           | Description                                                                                            | Min.                  | Max. | Unit | Notes |
|------------------|--------------------------------------------------------------------------------------------------------|-----------------------|------|------|-------|
| V <sub>OH</sub>  | Output high voltage — normal drive pad                                                                 |                       |      |      | 1     |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = -5 mA                                   | V <sub>DD</sub> – 0.5 | _    | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -1.5 \text{ mA}$ | $V_{DD} - 0.5$        | —    | V    |       |
| V <sub>OH</sub>  | Output high voltage — high drive pad                                                                   |                       |      |      | 1     |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = -18 mA                                  | V <sub>DD</sub> – 0.5 | —    | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -6 \text{ mA}$   | $V_{DD} - 0.5$        | —    | V    |       |
| I <sub>OHT</sub> | Output high current total for all ports                                                                | —                     | 100  | mA   |       |
| V <sub>OL</sub>  | Output low voltage — normal drive pad                                                                  | _                     | 0.5  | V    | 1     |

Table continues on the next page...



| Symbol           | Description                                                                                                                                   | Min. | Max.  | Unit | Notes |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------|-------|
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OL</sub> = 5 mA<br>• 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OL</sub> = 1.5 mA | —    | 0.5   | V    |       |
| V <sub>OL</sub>  | Output low voltage — high drive pad                                                                                                           |      |       |      | 1     |
|                  | • 2.7 V $\leq$ V_{DD} $\leq$ 3.6 V, I_{OL} = 18 mA                                                                                            | —    | 0.5   | V    |       |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OL</sub> = 6 mA                                                                          | _    | 0.5   | V    |       |
| I <sub>OLT</sub> | Output low current total for all ports                                                                                                        | —    | 100   | mA   |       |
| I <sub>IN</sub>  | Input leakage current (per pin) for full temperature range                                                                                    | _    | 1     | μA   | 2     |
| I <sub>IN</sub>  | Input leakage current (per pin) at 25 °C                                                                                                      | —    | 0.025 | μA   | 2     |
| I <sub>IN</sub>  | Input leakage current (total all pins) for full temperature range                                                                             | _    | 64    | μA   | 2     |
| I <sub>OZ</sub>  | Hi-Z (off-state) leakage current (per pin)                                                                                                    | —    | 1     | μA   |       |
| R <sub>PU</sub>  | Internal pullup resistors                                                                                                                     | 20   | 50    | kΩ   | 3     |

1. PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx\_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2. Measured at  $V_{DD} = 3.6$  V

3. Measured at  $V_{DD}$  supply voltage =  $V_{DD}$  min and Vinput =  $V_{SS}$ 

### 2.2.4 Power mode transition operating behaviors

All specifications except  $t_{POR}$  and VLLSx $\rightarrow$ RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- HIRC clock mode

#### Table 8. Power mode transition operating behaviors

| Symbol           | Description                                                                                                                                                       | Min. | Тур. | Max. | Unit | Notes |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| t <sub>POR</sub> | After a POR event, amount of time from the point $V_{DD}$ reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip. | _    | _    | 300  | μs   | 1     |
|                  | • VLLS0 $\rightarrow$ RUN                                                                                                                                         | _    | 152  | 166  | μs   |       |
|                  | • VLLS1 → RUN                                                                                                                                                     | _    | 152  | 166  | μs   |       |
|                  | • VLLS3 → RUN                                                                                                                                                     | _    | 93   | 104  | μs   |       |

Table continues on the next page ...



| Symbol                | Description                                                                                                                                                                                                                                                     | Min. | Тур.                                                           | Max.                                                            | Unit | Notes |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------|-----------------------------------------------------------------|------|-------|
|                       | • at 50 °C                                                                                                                                                                                                                                                      | —    | 10.26                                                          | 17.62                                                           |      |       |
|                       | • at 85 °C                                                                                                                                                                                                                                                      | —    | 33.49                                                          | 60.19                                                           | μA   |       |
|                       | • at 105 °C                                                                                                                                                                                                                                                     | —    | 102.92                                                         | 162.20                                                          |      |       |
| I <sub>DD_LLS</sub>   | Low-leakage stop mode current, all peripheral disable, at 3.0 V                                                                                                                                                                                                 |      | 2.06                                                           | 3.33                                                            | μA   |       |
|                       |                                                                                                                                                                                                                                                                 | —    | 4.72                                                           | 6.85                                                            |      |       |
|                       | • at 50 C                                                                                                                                                                                                                                                       | _    | 8.13                                                           | 13.30                                                           |      |       |
|                       |                                                                                                                                                                                                                                                                 | _    | 13.34                                                          | 24.70                                                           |      |       |
|                       | • at 105 °C                                                                                                                                                                                                                                                     | —    | 41.08                                                          | 52.43                                                           |      |       |
| I <sub>DD_LLS</sub>   | Low-leakage stop mode current with RTC current,<br>at 3.0 V<br>• at 25 °C and below                                                                                                                                                                             |      | 2.46                                                           | 3.73                                                            | μΑ   |       |
|                       | • at 50 °C                                                                                                                                                                                                                                                      | _    | 5.12                                                           | 7.25                                                            |      |       |
|                       | • at 70 °C                                                                                                                                                                                                                                                      | _    | 8.53                                                           | 11.78                                                           |      |       |
|                       | • at 85 °C                                                                                                                                                                                                                                                      |      | 13.74                                                          | 18.91                                                           |      |       |
|                       | • at 105 °C                                                                                                                                                                                                                                                     |      | 41.48                                                          | 52.83                                                           |      |       |
| I <sub>DD_LLS</sub>   | Low-leakage stop mode current with RTC current,<br>at 1.8 V<br>• at 25 °C and below<br>• at 50 °C<br>• at 70 °C<br>• at 85 °C<br>• at 105 °C<br>Very-low-leakage stop mode 3 current, all<br>peripheral disable, at 3.0 V<br>• at 25 °C and below<br>• at 50 °C |      | 2.35<br>4.91<br>8.32<br>13.44<br>40.47<br>1.45<br>3.37<br>5.76 | 2.70<br>6.75<br>11.78<br>18.21<br>51.85<br>1.85<br>4.39<br>8.48 | μΑ   | 3     |
|                       | • at 70 °C                                                                                                                                                                                                                                                      |      | 0.70                                                           | 0.40                                                            |      |       |
|                       | • at 85 °C                                                                                                                                                                                                                                                      | _    | 3.72                                                           | 27.50                                                           |      |       |
|                       | • at 105 °C                                                                                                                                                                                                                                                     | _    | 30.41                                                          | 37.50                                                           |      |       |
| I <sub>DD_VLLS3</sub> | Very-low-leakage stop mode 3 current with RTC<br>current, at 3.0 V<br>• at 25 °C and below<br>• at 50 °C<br>• at 70 °C<br>• at 85 °C<br>• at 105 °C                                                                                                             |      | 2.05<br>3.97<br>6.36<br>10.32<br>31.01                         | 2.45<br>4.99<br>9.08<br>14.73<br>38.10                          | μΑ   | 3     |
|                       |                                                                                                                                                                                                                                                                 |      |                                                                |                                                                 |      |       |

 Table 9. Power consumption operating behaviors (continued)

Table continues on the next page...



| Symbol            | Description                                                                                                                                                                                                                                                                                                                                                                                                | Temperature (°C) |           |           |           | Unit      |           |    |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|-----------|-----------|-----------|-----------|----|
|                   |                                                                                                                                                                                                                                                                                                                                                                                                            | -40              | 25        | 50        | 70        | 85        | 105       |    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                            |                  |           |           |           |           |           | nA |
| I <sub>CMP</sub>  | CMP peripheral adder measured by<br>placing the device in VLLS1 mode with<br>CMP enabled using the 6-bit DAC and a<br>single external input for compare. Includes<br>6-bit DAC power consumption.                                                                                                                                                                                                          | 22               | 22        | 22        | 22        | 22        | 22        | μA |
| I <sub>UART</sub> | <ul> <li>UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.</li> <li>IRC8M (8 MHz internal reference clock)</li> <li>IRC2M (2 MHz internal reference clock)</li> </ul>                                                                                        | 114<br>34        | 114<br>34 | 114<br>34 | 114<br>34 | 114<br>34 | 114<br>34 | μΑ |
| I <sub>TPM</sub>  | <ul> <li>TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents.</li> <li>IRC8M (8 MHz internal reference clock)</li> <li>IRC2M (2 MHz internal reference clock)</li> </ul> | 147<br>42        | 147<br>42 | 147<br>42 | 147<br>42 | 147<br>42 | 147<br>42 | μΑ |
| I <sub>BG</sub>   | Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode.                                                                                                                                                                                                                                                                                                                             | 45               | 45        | 45        | 45        | 45        | 45        | μA |
| I <sub>ADC</sub>  | ADC peripheral adder combining the measured values at $V_{DD}$ and $V_{DDA}$ by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.                                                                                                                                                                                         | 330              | 330       | 330       | 330       | 330       | 330       | μA |

### 2.2.5.1 Diagram: Typical IDD\_RUN operating behavior

The following data was measured under these conditions:

- MCG-Lite in HIRC for run mode, and LIRC for VLPR mode
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA



of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2.  $V_{DD} = 3.3 \text{ V}, \text{ T}_{A} = 25 \text{ °C}, \text{ } f_{OSC} = IRC48M, \text{ } f_{SYS} = 48 \text{ } \text{MHz}, \text{ } f_{BUS} = 24 \text{ } \text{MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

### 2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

### 2.2.8 Capacitance attributes

#### Table 12. Capacitance attributes

| Symbol          | Description       | Min. | Max. | Unit |
|-----------------|-------------------|------|------|------|
| C <sub>IN</sub> | Input capacitance | —    | 7    | pF   |

# 2.3 Switching specifications

### 2.3.1 Device clock specifications

#### Table 13. Device clock specifications

| Symbol               | Description                                            | Min. | Max. | Unit |
|----------------------|--------------------------------------------------------|------|------|------|
|                      | Normal run mode                                        |      |      |      |
| f <sub>SYS</sub>     | System and core clock <sup>1</sup>                     | _    | 48   | MHz  |
| f <sub>BUS</sub>     | Bus clock <sup>1</sup>                                 | _    | 24   | MHz  |
| f <sub>FLASH</sub>   | Flash clock <sup>1</sup>                               | _    | 24   | MHz  |
| f <sub>SYS_USB</sub> | System and core clock when Full Speed USB in operation | 20   | —    | MHz  |
| f <sub>LPTMR</sub>   | LPTMR clock                                            | _    | 24   | MHz  |
|                      | VLPR and VLPS modes <sup>2</sup>                       |      |      | •    |
| f <sub>SYS</sub>     | System and core clock                                  | —    | 4    | MHz  |
| f <sub>BUS</sub>     | Bus clock                                              | _    | 1    | MHz  |
| f <sub>FLASH</sub>   | Flash clock                                            | _    | 1    | MHz  |

Table continues on the next page...



| Symbol                   | Description                                                                                     | Min. | Max. | Unit |
|--------------------------|-------------------------------------------------------------------------------------------------|------|------|------|
| f <sub>LPTMR</sub>       | LPTMR clock <sup>3</sup>                                                                        | —    | 24   | MHz  |
| f <sub>LPTMR_ERCLK</sub> | LPTMR external reference clock                                                                  | —    | 16   | MHz  |
| f <sub>osc_hi_2</sub>    | Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) | —    | 16   | MHz  |
| f <sub>TPM</sub>         | TPM asynchronous clock                                                                          | —    | 8    | MHz  |
| f <sub>LPUART0/1</sub>   | LPUART0/1 asynchronous clock                                                                    |      | 8    | MHz  |

#### Table 13. Device clock specifications (continued)

1. The maximum value of system clock, core clock, bus clock, and flash clock under normal run mode can be 3% higher than the specified maximum frequency when IRC 48MHz is used as the clock source.

 The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.

3. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

### 2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

 Table 14.
 General switching specifications

| Description                                                                        | Min. | Max. | Unit                | Notes |
|------------------------------------------------------------------------------------|------|------|---------------------|-------|
| GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path | 1.5  | —    | Bus clock<br>cycles | 1     |
| External RESET and NMI pin interrupt pulse width — Asynchronous path               | 100  |      | ns                  | 2     |
| GPIO pin interrupt pulse width — Asynchronous path                                 | 16   |      | ns                  | 2     |
| Port rise and fall time                                                            |      | 36   | ns                  | 3     |

1. The synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

# 2.4 Thermal specifications



Peripheral operating requirements and behaviors

### 3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

| Table 22. | NVM program/erase timing spec | cifications |
|-----------|-------------------------------|-------------|
|-----------|-------------------------------|-------------|

| Symbol                    | Description                              | Min. | Тур. | Max. | Unit | Notes |
|---------------------------|------------------------------------------|------|------|------|------|-------|
| t <sub>hvpgm4</sub>       | Longword Program high-voltage time       | —    | 7.5  | 18   | μs   | —     |
| t <sub>hversscr</sub>     | Sector Erase high-voltage time           | —    | 13   | 113  | ms   | 1     |
| t <sub>hversblk128k</sub> | Erase Block high-voltage time for 128 KB | —    | 52   | 452  | ms   | 1     |

1. Maximum time based on expectations at cycling end-of-life.

#### 3.4.1.2 Flash timing specifications — commands Table 23. Flash command timing specifications

| Symbol                  | Description                                   | Min. | Тур. | Max. | Unit | Notes |
|-------------------------|-----------------------------------------------|------|------|------|------|-------|
|                         | Read 1s Block execution time                  |      |      |      |      | 1     |
| t <sub>rd1blk128k</sub> | • 128 KB program flash                        | _    | _    | 1.7  | ms   |       |
| t <sub>rd1sec1k</sub>   | Read 1s Section execution time (flash sector) | —    | —    | 60   | μs   | 1     |
| t <sub>pgmchk</sub>     | Program Check execution time                  | —    | —    | 45   | μs   | 1     |
| t <sub>rdrsrc</sub>     | Read Resource execution time                  | —    | —    | 30   | μs   | 1     |
| t <sub>pgm4</sub>       | Program Longword execution time               | —    | 65   | 145  | μs   | —     |
|                         | Erase Flash Block execution time              |      |      |      |      | 2     |
| t <sub>ersblk128k</sub> | 128 KB program flash                          | _    | 88   | 600  | ms   |       |
| t <sub>ersscr</sub>     | Erase Flash Sector execution time             | —    | 14   | 114  | ms   | 2     |
| t <sub>rd1all</sub>     | Read 1s All Blocks execution time             | —    | —    | 1.8  | ms   | 1     |
| t <sub>rdonce</sub>     | Read Once execution time                      | —    | —    | 25   | μs   | 1     |
| t <sub>pgmonce</sub>    | Program Once execution time                   | —    | 65   | —    | μs   | —     |
| t <sub>ersall</sub>     | Erase All Blocks execution time               | —    | 175  | 1300 | ms   | 2     |
| t <sub>vfykey</sub>     | Verify Backdoor Access Key execution time     | —    | —    | 30   | μs   | 1     |
| t <sub>ersallu</sub>    | Erase All Blocks Unsecure execution time      | —    | 175  | 1300 | ms   | 2     |

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.



#### 3.4.1.3 Flash high voltage current behaviors Table 24. Flash high voltage current behaviors

| Symbol              | Description                                                           | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------------------------------------------|------|------|------|------|
| I <sub>DD_PGM</sub> | Average current adder during high voltage flash programming operation |      | 2.5  | 6.0  | mA   |
| I <sub>DD_ERS</sub> | Average current adder during high voltage flash erase operation       |      | 1.5  | 4.0  | mA   |

## 3.4.1.4 Reliability specifications

#### Table 25. NVM reliability specifications

| Symbol                  | Description                            | Min. | Typ. <sup>1</sup> | Max. | Unit   | Notes |  |
|-------------------------|----------------------------------------|------|-------------------|------|--------|-------|--|
| Program Flash           |                                        |      |                   |      |        |       |  |
| t <sub>nvmretp10k</sub> | Data retention after up to 10 K cycles | 5    | 50                | —    | years  | _     |  |
| t <sub>nvmretp1k</sub>  | Data retention after up to 1 K cycles  | 20   | 100               | _    | years  |       |  |
| n <sub>nvmcycp</sub>    | Cycling endurance                      | 10 K | 50 K              |      | cycles | 2     |  |

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C  $\leq$  T<sub>i</sub>  $\leq$  125 °C.

# 3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

# 3.6 Analog

### 3.6.1 ADC electrical specifications

Using differential inputs can achieve better system accuracy than using single-end inputs.



Peripheral operating requirements and behaviors

### 3.6.4.2 12-bit DAC operating behaviors Table 34. 12-bit DAC operating behaviors

| Symbol                     | Description                                                                            | Min.                      | Тур.     | Max.              | Unit   | Notes |
|----------------------------|----------------------------------------------------------------------------------------|---------------------------|----------|-------------------|--------|-------|
| I <sub>DDA_DACL</sub><br>P | Supply current — low-power mode                                                        |                           | —        | 250               | μΑ     |       |
| I <sub>DDA_DACH</sub>      | Supply current — high-speed mode                                                       | _                         | —        | 900               | μΑ     |       |
| t <sub>DACLP</sub>         | Full-scale settling time (0x080 to 0xF7F) — low-power mode                             | _                         | 100      | 200               | μs     | 1     |
| t <sub>DACHP</sub>         | Full-scale settling time (0x080 to 0xF7F) — high-power mode                            | _                         | 15       | 30                | μs     | 1     |
| t <sub>CCDACLP</sub>       | Code-to-code settling time (0xBF8 to<br>0xC08) — low-power mode and high-speed<br>mode | _                         | 0.7      | 1                 | μs     | 1     |
| V <sub>dacoutl</sub>       | DAC output voltage range low — high-<br>speed mode, no load, DAC set to 0x000          | _                         | —        | 100               | mV     |       |
| V <sub>dacouth</sub>       | DAC output voltage range high — high-<br>speed mode, no load, DAC set to 0xFFF         | V <sub>DACR</sub><br>-100 | -        | V <sub>DACR</sub> | mV     |       |
| INL                        | Integral non-linearity error — high speed mode                                         | _                         | —        | ±8                | LSB    | 2     |
| DNL                        | Differential non-linearity error — $V_{DACR} > 2$<br>V                                 | _                         | _        | ±1                | LSB    | 3     |
| DNL                        | Differential non-linearity error — V <sub>DACR</sub> = VREF_OUT                        | _                         | _        | ±1                | LSB    | 4     |
| VOFFSET                    | Offset error                                                                           | —                         | ±0.4     | ±0.8              | %FSR   | 5     |
| E <sub>G</sub>             | Gain error                                                                             | _                         | ±0.1     | ±0.6              | %FSR   | 5     |
| PSRR                       | Power supply rejection ratio, $V_{DDA} \ge 2.4 V$                                      | 60                        | —        | 90                | dB     |       |
| T <sub>CO</sub>            | Temperature coefficient offset voltage                                                 | —                         | 3.7      | —                 | μV/C   | 6     |
| T <sub>GE</sub>            | Temperature coefficient gain error                                                     | —                         | 0.000421 | —                 | %FSR/C |       |
| Rop                        | Output resistance (load = $3 \text{ k}\Omega$ )                                        | —                         | —        | 250               | Ω      |       |
| SR                         | Slew rate -80h $\rightarrow$ F7Fh $\rightarrow$ 80h                                    |                           |          |                   | V/µs   |       |
|                            | <ul> <li>High power (SP<sub>HP</sub>)</li> </ul>                                       | 1.2                       | 1.7      | —                 |        |       |
|                            | • Low power (SP <sub>LP</sub> )                                                        | 0.05                      | 0.12     | —                 |        |       |
| BW                         | 3dB bandwidth                                                                          |                           |          |                   | kHz    |       |
|                            | • High power (SP <sub>HP</sub> )                                                       | 550                       | _        | _                 |        |       |
|                            | <ul> <li>Low power (SP<sub>LP</sub>)</li> </ul>                                        | 40                        | -        | —                 |        |       |

1. Settling within  $\pm 1$  LSB

2. The INL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV

3. The DNL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV

4. The DNL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV with  $V_{DDA}$  > 2.4 V 5. Calculated by a best fit curve from  $V_{SS}$  + 100 mV to  $V_{DACR}$  – 100 mV

6. V<sub>DDA</sub> = 3.0 V, reference select set for V<sub>DDA</sub> (DACx\_CO:DACRFS = 1), high power mode (DACx\_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device



| Num. | Symbol          | Description                   | Min. | Max.                     | Unit | Note |
|------|-----------------|-------------------------------|------|--------------------------|------|------|
| 8    | t <sub>v</sub>  | Data valid (after SPSCK edge) | —    | 52                       | ns   | —    |
| 9    | t <sub>HO</sub> | Data hold time (outputs)      | 0    | _                        | ns   |      |
| 10   | t <sub>RI</sub> | Rise time input               | —    | t <sub>periph</sub> - 25 | ns   |      |
|      | t <sub>FI</sub> | Fall time input               |      |                          |      |      |
| 11   | t <sub>RO</sub> | Rise time output              | —    | 36                       | ns   |      |
|      | t <sub>FO</sub> | Fall time output              |      |                          |      |      |

Table 37. SPI master mode timing on slew rate enabled pads (continued)

- 1. For SPI0  $f_{periph}$  is the bus clock ( $f_{BUS}$ ). For SPI1  $f_{periph}$  is the system clock ( $f_{SYS}$ ).
- 2.  $t_{periph} = 1/f_{periph}$



1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

#### Figure 14. SPI master mode timing (CPHA = 0)



| Num. | Characteristic                                                    | Min. | Max. | Unit |
|------|-------------------------------------------------------------------|------|------|------|
| S6   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output invalid | 0    | _    | ns   |
| S7   | I2S_TX_BCLK to I2S_TXD valid                                      | —    | 19   | ns   |
| S8   | I2S_TX_BCLK to I2S_TXD invalid                                    | 0    | —    | ns   |
| S9   | I2S_RXD/I2S_RX_FS input setup before<br>I2S_RX_BCLK               | 26   | _    | ns   |
| S10  | I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK                    | 0    | _    | ns   |

| Table 42. | I2S/SAI | master | mode | timing | (continued) | ) |
|-----------|---------|--------|------|--------|-------------|---|
|-----------|---------|--------|------|--------|-------------|---|



#### Figure 19. I2S/SAI timing — master modes

| Num. | Characteristic                                                    | Min. | Max. | Unit        |
|------|-------------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                                 | 1.71 | 3.6  | V           |
| S11  | I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)                        | 80   | _    | ns          |
| S12  | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)              |      | 55%  | MCLK period |
| S13  | I2S_TX_FS/I2S_RX_FS input setup before<br>I2S_TX_BCLK/I2S_RX_BCLK | 10   | —    | ns          |
| S14  | I2S_TX_FS/I2S_RX_FS input hold after<br>I2S_TX_BCLK/I2S_RX_BCLK   | 2    | —    | ns          |
| S15  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid                     | _    | 33   | ns          |
| S16  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid                   | 0    | —    | ns          |
| S17  | I2S_RXD setup before I2S_RX_BCLK                                  | 10   | _    | ns          |

### Table 43. I2S/SAI slave mode timing

Table continues on the next page ...



|   | 1       | 2                 | 3                 | 4     | 5     | 6                              | 7                 | 8                |   |
|---|---------|-------------------|-------------------|-------|-------|--------------------------------|-------------------|------------------|---|
| A | PTE0    | PTD7              | PTD4/<br>LLWU_P14 | PTD1  | PTC11 | PTC8                           | PTC6/<br>LLWU_P10 | PTC5/<br>LLWU_P9 | A |
| в | PTE1    | PTD6/<br>LLWU_P15 | PTD3              | PTC10 | PTC9  | PTC7                           | PTC2              | PTC4/<br>LLWU_P8 | в |
| С | PTD5    | PTD2              | PTD0              | VSS   | NC    | PTC1/<br>LLWU_P6/<br>RTC_CLKIN | PTB19             | PTC3/<br>LLWU_P7 | с |
| D | USB0_DM | VREGIN            | PTA0              | PTA1  | PTA3  | PTB18                          | PTB17             | PTC0             | D |
| Е | USB0_DP | VOUT33            | VSS               | VDD   | PTA2  | PTB16                          | PTB2              | PTB3             | E |
| F | PTE21   | PTE23             | VSSA              | VDDA  | PTA5  | PTB1                           | PTB0/<br>LLWU_P5  | PTA20            | F |
| G | PTE20   | PTE22             | VREFL             | VREFH | PTA4  | PTA13                          | VDD               | PTA19            | G |
| н | PTE29   | PTE30             | PTE31             | PTE24 | PTE25 | PTA12                          | VSS               | PTA18            | н |
|   | 1       | 2                 | 3                 | 4     | 5     | 6                              | 7                 | 8                | • |

Figure 26. 64 MAPBGA Pinout diagram

# 6 Ordering parts

## 6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the Web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers:

# 7 Part identification



# 8 Terminology and guidelines

# 8.1 Definitions

Key terms are defined in the following table:

| Term                  | Definition                                                                                                                                                                                                                          |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Rating                | A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:                                                                                                                       |  |  |  |
|                       | <ul> <li>Operating ratings apply during operation of the chip.</li> <li>Handling ratings apply when the chip is not powered.</li> </ul>                                                                                             |  |  |  |
|                       | <b>NOTE:</b> The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.                                                                                  |  |  |  |
| Operating requirement | A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip                                       |  |  |  |
| Operating behavior    | A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions                                                  |  |  |  |
| Typical value         | A specified value for a technical characteristic that:                                                                                                                                                                              |  |  |  |
|                       | <ul> <li>Lies within the range of values specified by the operating behavior</li> <li>Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions</li> </ul> |  |  |  |
|                       | <b>NOTE:</b> Typical values are provided as design guidelines and are neither tested nor guaranteed.                                                                                                                                |  |  |  |



Terminology and guidelines

#### Examples 8.2

#### Operating rating:

|                 |                              | <u>_</u> |      |      |
|-----------------|------------------------------|----------|------|------|
| Symbol          | Description                  | Min.     | Max. | Unit |
| V <sub>DD</sub> | 1.0 V core supply<br>voltage | -0.3 LAM | 1.2  | V    |
|                 |                              |          |      |      |

### Operating requirement:

| Operating require | ment.                        |      |      |      |
|-------------------|------------------------------|------|------|------|
| Symbol            | Description                  | Min. | Max. | Unit |
| V <sub>DD</sub>   | 1.0 V core supply<br>voltage | 0.9  | 1.1  | V    |
|                   |                              |      |      |      |

### Operating behavior that includes a typical value:

| Symbol          | Description                                    | Min.  | Тур. | Max. | Unit |
|-----------------|------------------------------------------------|-------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak<br>pullup/pulldown<br>current | 10 AM | 70   | 130  | μA   |

#### **Typical-value conditions** 8.3

Typical values assume you meet the following conditions (or other conditions as specified):

| Symbol          | Description          | Value | Unit |
|-----------------|----------------------|-------|------|
| T <sub>A</sub>  | Ambient temperature  | 25    | °C   |
| V <sub>DD</sub> | 3.3 V supply voltage | 3.3   | V    |





# 8.4 Relationship between ratings and operating requirements

# 8.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

# 9 Revision History

The following table provides a revision history for this document.

| Rev. No. | Date              | Substantial Changes                                                                                                                                                                |
|----------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | 09 August<br>2014 | <ul> <li>Initial Public release</li> <li>Updated Table 9 - Power consumption operating behaviors.</li> <li>Added a note related to 32 QFN pin package in Pinouts topic.</li> </ul> |
| 4        | 03 March<br>2015  | <ul><li>Updated the features and completed the ordering information.</li><li>Removed thickness dimension from package diagrams.</li></ul>                                          |

#### Table 47. Revision History

Table continues on the next page ...