

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl27z256vfm4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min.	Max.	Unit	Notes
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA • 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 1.5 mA	—	0.5	V	
V _{OL}	Output low voltage — high drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 18 mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 6 \text{ mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μΑ	2
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	2
I _{IN}	Input leakage current (total all pins) for full temperature range	-	64	μΑ	2
l _{oz}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	3

Table 7.	Voltage and current	operating behaviors	(continued)
			(••••••••••••••••••••••••••••••••••••••

1. PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2. Measured at $V_{DD} = 3.6$ V

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- HIRC clock mode

Table 8. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 \rightarrow RUN		152	166	μs	
	• VLLS1 \rightarrow RUN	_	152	166	μs	
	• VLLS3 → RUN	_	93	104	μs	

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• at 50 °C		10.26	17.62		
	• at 85 °C	—	33.49	60.19	μA	
	• at 105 °C	—	102.92	162.20		
I _{DD_LLS}	Low-leakage stop mode current, all peripheral disable, at 3.0 V		2.06	3.33	μA	
	 at 25 °C and below 	—				
	• at 50 °C	_	4.72	6.85		
	• at 70 °C		8.13	13.30		
	• at 85 °C	—	13.34	24.70		
	• at 105 °C	—	41.08	52.43		
I _{DD_LLS}	Low-leakage stop mode current with RTC current,					
	at 3.0 V • at 25 °C and below		2.46	3.73	μA	
		_	5.12	7.25		
	• at 50 °C		8.53	11.78		
	• at 70 °C	_	13.74	18.91		
	• at 85 °C		41.48	52.83		
	• at 105 °C		11.10	02.00		
I _{DD_LLS}	Low-leakage stop mode current with RTC current,					3
	at 1.8 V • at 25 °C and below	—	2.35	2.70	μA	
	• at 50 °C	_	4.91	6.75		
	• at 70 °C		8.32	11.78		
	• at 85 °C	_	13.44	18.21		
	• at 105 °C		40.47	51.85		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V			1.05	μA	
	 at 25 °C and below 	_	1.45	1.85		
	• at 50 °C	—	3.37	4.39		
	• at 70 °C	—	5.76	8.48		
	● at 85 °C	_	9.72	14.30		
	• at 105 °C	—	30.41	37.50		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC					3
	current, at 3.0 V	_	2.05	2.45	μA	
	• at 25 °C and below		3.97	4.99		
	• at 50 °C		6.36	9.08		
	• at 70 °C	_	10.32	14.73		
	• at 85 °C					
	• at 105 °C	_	31.01	38.10		

 Table 9. Power consumption operating behaviors (continued)

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	at 25 °C and below	—	0.18	0.28		
	• at 50 °C	—	1.09	1.31	μA	
	• at 70 °C	—	2.25	2.94		
	• at 85 °C	—	4.25	5.10		
	• at 105 °C	_	15.95	19.10		

Table 9. Power consumption operating behaviors

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced.
- 3. RTC uses external 32 kHz crystal as clock source, and the current includes ERCLK32K power consumption.

Table 10. Low power mode peripheral adders — typical value

Symbol	Description		1	Tempera	ature (°C)		Unit
		-40	25	50	70	85	105	
I _{IRC8MHz}	8 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 8 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	93	93	93	93	93	93	μA
I _{IRC2MHz}	2 MHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 2 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	29	29	29	29	29	29	μA
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	224	230	238	245	253	μA
EREFSTEN32KHz	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled.							
	• VLLS1	440	490	540	560	570	580	
	• VLLS3	440	490	540	560	570	580	
	• LLS	490	490	540	560	570	680	
	• VLPS	510	560	560	560	610	680	nA
	• STOP	510	560	560	560	610	680	
I _{LPTMR}	LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO.	30	30	30	85	100	200	
	Table continues on the							

Table continues on the next page...

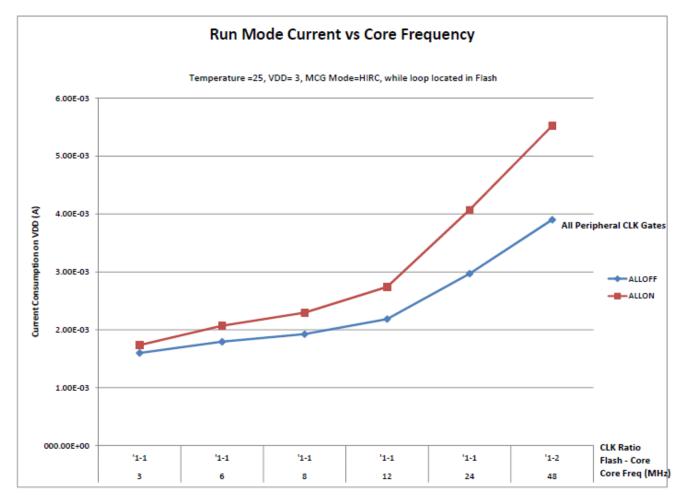


Figure 2. Run mode supply current vs. core frequency

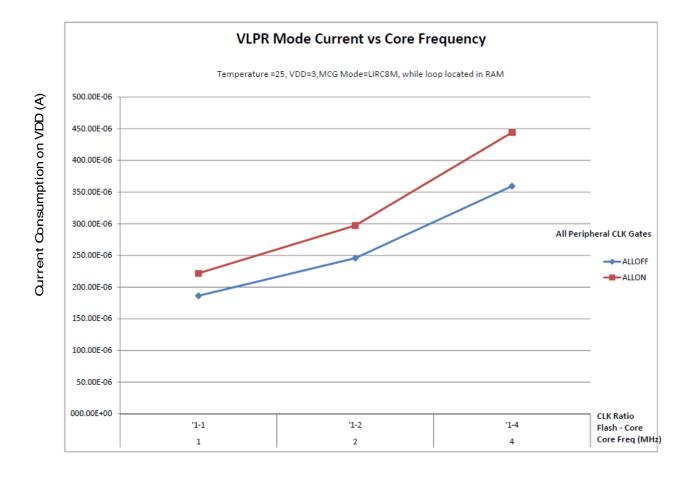


Figure 3. VLPR mode current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors

Table 11. EMC radiated emissions operating behaviors for 64-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	11	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	12	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	10	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	6	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	Ν		2, 3

1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement

of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. $V_{DD} = 3.3 \text{ V}, \text{ T}_{A} = 25 \text{ °C}, \text{ } f_{OSC} = IRC48M, \text{ } f_{SYS} = 48 \text{ } \text{MHz}, \text{ } f_{BUS} = 24 \text{ } \text{MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 12. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	—	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 13. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode			•
f _{SYS}	System and core clock ¹	—	48	MHz
f _{BUS}	Bus clock ¹	_	24	MHz
f _{FLASH}	Flash clock ¹	_	24	MHz
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	_	MHz
f _{LPTMR}	LPTMR clock	_	24	MHz
	VLPR and VLPS modes ²			
f _{SYS}	System and core clock	—	4	MHz
f _{BUS}	Bus clock	_	1	MHz
f _{FLASH}	Flash clock	_	1	MHz

Table continues on the next page...

Peripheral operating requirements and behaviors

- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).
- 5. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 17. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1		ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times		3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	—	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	—	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5		ns

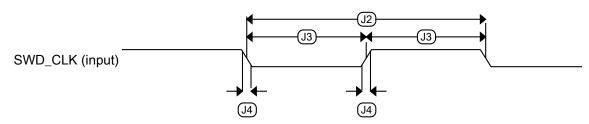


Figure 4. Serial wire clock input timing

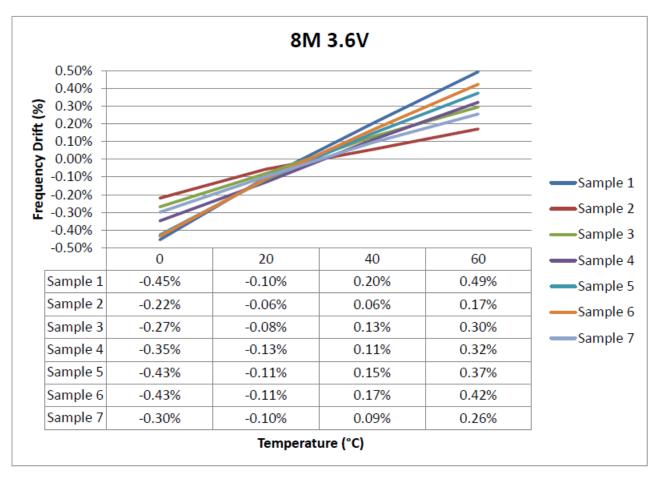


Figure 6. IRC8M Frequency Drift vs Temperature curve

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 20. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
		_	1.2	_	mA	

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 24 MHz		1.5	—	mA	
	• 32 MHz					
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	—	25	—	μA	
	• 4 MHz	—	400	—	μA	
	• 8 MHz (RANGE=01)	—	500	—	μA	
	• 16 MHz	—	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_	—	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	_	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	—			MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_			kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_			kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)		0.6		V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)		V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)		0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)		V _{DD}	_	V	

Table 20. Oscillator DC electrical specifications (continued)

V_{DD}=3.3 V, Temperature =25 °C
 See crystal or resonator manufacturer's recommendation

28

Peripheral operating requirements and behaviors

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 22.	NVM program/erase timing specifications	
-----------	---	--

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversblk128k}	Erase Block high-voltage time for 128 KB	—	52	452	ms	1

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 23. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					1
t _{rd1blk128k}	128 KB program flash	_	-	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	—	60	μs	1
t _{pgmchk}	Program Check execution time	_	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	—	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	
	Erase Flash Block execution time					2
t _{ersblk128k}	• 128 KB program flash	_	88	600	ms	
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	_	1.8	ms	1
t _{rdonce}	Read Once execution time	_	—	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	—	μs	
t _{ersall}	Erase All Blocks execution time	_	175	1300	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	—	30	μs	1
t _{ersallu}	Erase All Blocks Unsecure execution time	_	175	1300	ms	2

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

Peripheral operating requirements and behaviors

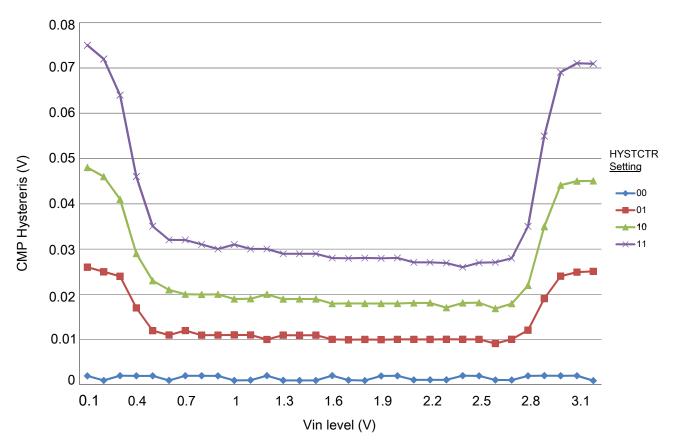


Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

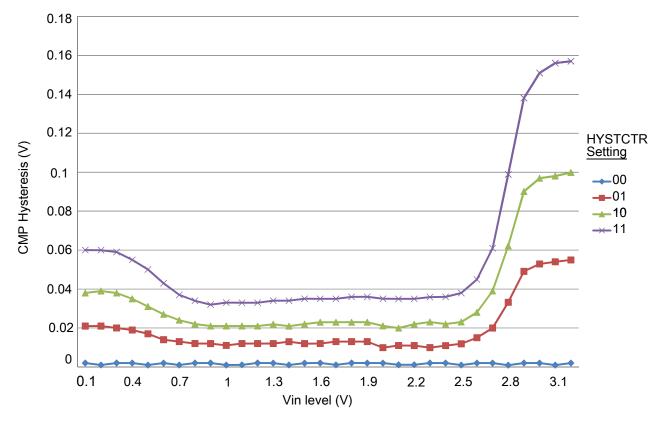


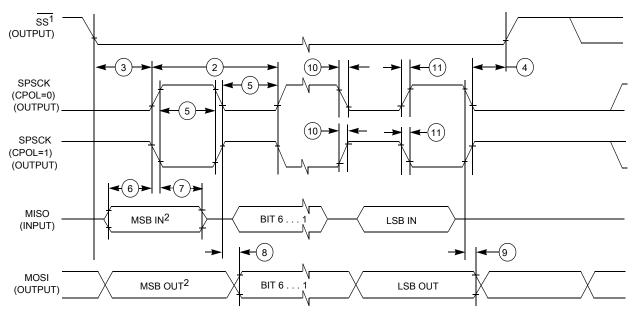
Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.4 12-bit DAC electrical characteristics

3.6.4.1 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage		3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
CL	Output load capacitance	—	100	pF	2
١L	Output load current	—	1	mA	

1. The DAC reference can be selected to be V_{DDA} or $V_{\text{REFH}}.$


2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

Num.	Symbol	Description	Min.	Max.	Unit	Note
8	t _v	Data valid (after SPSCK edge)	—	52	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	—
10	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	36	ns	—
	t _{FO}	Fall time output				

Table 37. SPI master mode timing on slew rate enabled pads (continued)

- 1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).
- 2. $t_{periph} = 1/f_{periph}$

1. If configured as an output.

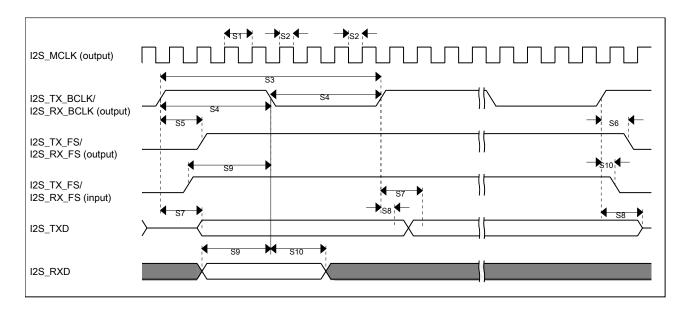

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA = 0)

Num.	Characteristic	Min.	Max.	Unit
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	—	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	19	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	26	—	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

Table 42. I2S/SAI master mode timing (continued)	Table 42.	12S/SAI r	master	mode	timing	(continued)
--	-----------	-----------	--------	------	--------	-------------

Figure 19. I2S/SAI timing — master modes

			-	
Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	10	—	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	-	33	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	-	ns
S17	I2S_RXD setup before I2S_RX_BCLK	10	_	ns

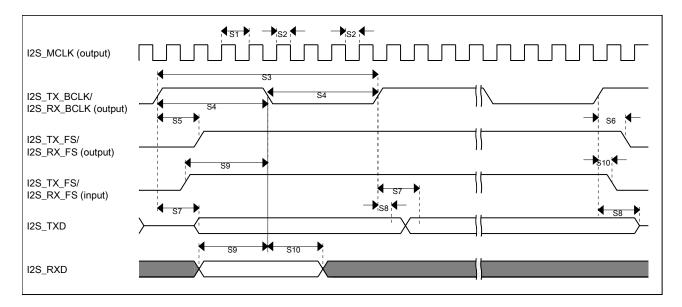

Table 43. I2S/SAI slave mode timing

Table continues on the next page ...

Table 44. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK			ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 21. I2S/SAI timing — master modes

Table 45. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	-	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	87	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	72	ns

5 Pinouts and Packaging

5.1 KL27 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

VREFH can act as VREF_OUT when VREFV1 module is enabled.

NOTE

It is prohibited to set VREFEN in 32 QFN pin package as 1.2 V on-chip voltage is not available in this package.

32 QFN	48 QFN	64 MAP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
-	-	BGA B1	2	PTE1	DISABLED		PTE1	SPI1_MOSI	LPUART1_ RX		SPI1_MISO	I2C1_SCL	
	1	_	3	VDD	VDD	VDD			нх				
_	7	G1	9	PTE20	ADC0_DP0/ ADC0_SE0	ADC0_DP0/ ADC0_SE0	PTE20		TPM1_CH0	LPUARTO_ TX		FXI00_D4	
_	8	F1	10	PTE21	ADC0_DM0/ ADC0_SE4a	ADC0_DM0/ ADC0_SE4a	PTE21		TPM1_CH1	LPUART0_ RX		FXIO0_D5	
_	-	G2	11	PTE22	ADC0_DP3/ ADC0_SE3	ADC0_DP3/ ADC0_SE3	PTE22		TPM2_CH0	UART2_TX		FXIO0_D6	
_	-	F2	12	PTE23	ADC0_DM3/ ADC0_SE7a	ADC0_DM3/ ADC0_SE7a	PTE23		TPM2_CH1	UART2_RX		FXIO0_D7	
-	10	G4	14	VREFH	VREFH	VREFH							
—	11	G3	15	VREFL	VREFL	VREFL							
-	13	H1	17	PTE29	CMP0_IN5/ ADC0_SE4b	CMP0_IN5/ ADC0_SE4b	PTE29		TPM0_CH2	TPM_ CLKIN0			
_	_	H3	19	PTE31	DISABLED		PTE31		TPM0_CH4				
_	15	H4	20	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
_	16	H5	21	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
Ι	1	F5	27	PTA5	DISABLED		PTA5	USB_CLKIN	TPM0_CH2			I2S0_TX_ BCLK	
_	-	H6	28	PTA12	DISABLED		PTA12		TPM1_CH0			I2S0_TXD0	
_	_	G6	29	PTA13	DISABLED		PTA13		TPM1_CH1			I2S0_TX_FS	
-	29	E7	37	PTB2	ADC0_SE12	ADC0_SE12	PTB2	I2C0_SCL	TPM2_CH0				
-	30	E8	38	PTB3	ADC0_SE13	ADC0_SE13	PTB3	I2C0_SDA	TPM2_CH1				

Kinetis KL27 Microcontroller, Rev.5, 08/2015.

55

Pinouts and Packaging

32 QFN	48 QFN	64 MAP BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
-	31	E6	39	PTB16	DISABLED		PTB16	SPI1_MOSI	LPUARTO_ RX	TPM_ CLKIN0	SPI1_MISO		
Ι	32	D7	40	PTB17	DISABLED		PTB17	SPI1_MISO	LPUART0_ TX	TPM_ CLKIN1	SPI1_MOSI		
-	_	D6	41	PTB18	DISABLED		PTB18		TPM2_CH0	I2S0_TX_ BCLK			
-	-	C7	42	PTB19	DISABLED		PTB19		TPM2_CH1	I2S0_TX_FS			
-	33	D8	43	PTC0	ADC0_SE14	ADC0_SE14	PTC0		EXTRG_IN	audioUSB_ SOF_OUT	CMP0_OUT	I2S0_TXD0	
-	-	E3	47	VSS	VSS	VSS							
-	_	E4	48	VDD	VDD	VDD							
-	_	A6	53	PTC8	CMP0_IN2	CMP0_IN2	PTC8	I2C0_SCL	TPM0_CH4	I2S0_MCLK			
-	-	B5	54	PTC9	CMP0_IN3	CMP0_IN3	PTC9	I2C0_SDA	TPM0_CH5	I2S0_RX_ BCLK			
-	_	B4	55	PTC10	DISABLED		PTC10	I2C1_SCL		I2S0_RX_FS			
-	-	A5	56	PTC11	DISABLED		PTC11	I2C1_SDA		I2S0_RXD0			
-	41	C3	57	PTD0	DISABLED		PTD0	SPI0_SS		TPM0_CH0		FXI00_D0	
-	42	A4	58	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1		FXIO0_D1	
-	43	C2	59	PTD2	DISABLED		PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO	FXIO0_D2	
-	44	B3	60	PTD3	DISABLED		PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI	FXIO0_D3	
-	-	C5	_	NC	NC	NC							
1	-	A1	1	PTE0	DISABLED		PTE0/ CLKOUT32K	SPI1_MISO	LPUART1_ TX	RTC_ CLKOUT	CMP0_OUT	I2C1_SDA	
2	2	C4	4	VSS	VSS	VSS							
3	3	E1	5	USB0_DP	USB0_DP	USB0_DP							
4	4	D1	6	USB0_DM	USB0_DM	USB0_DM							
5	5	E2	7	VOUT33	VOUT33	VOUT33							
6	6	D2	8	VREGIN	VREGIN	VREGIN							
7	9	F4	13	VDDA	VDDA	VDDA							
8	12	F3	16	VSSA	VSSA	VSSA							
9	14	H2	18	PTE30	DAC0_OUT/ ADC0_SE23/ CMP0_IN4	DAC0_OUT/ ADC0_SE23/ CMP0_IN4	PTE30		TPM0_CH3	TPM_ CLKIN1	LPUART1_ TX	LPTMR0_ ALT1	
10	17	D3	22	PTA0	SWD_CLK		PTA0		TPM0_CH5				SWD_CLK
11	18	D4	23	PTA1	DISABLED		PTA1	LPUART0_ RX	TPM2_CH0				
12	19	E5	24	PTA2	DISABLED		PTA2	LPUART0_ TX	TPM2_CH1				
13	20	D5	25	PTA3	SWD_DIO		PTA3	I2C1_SCL	TPM0_CH0				SWD_DIO
14	21	G5	26	PTA4	NMI_b		PTA4	I2C1_SDA	TPM0_CH1				NMI_b
15	22	G7	30	VDD	VDD	VDD							
16	23	H7	31	VSS	VSS	VSS							

56

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL27
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
N	Packaging type	• R = Tape and reel

Table 46. Part number fields descriptions

7.4 Example

This is an example part number:

MKL27Z256VFT4

8 Terminology and guidelines

8.1 Definitions

Key terms are defined in the following table:

Term	Definition						
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:						
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered. 						
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.						
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip						
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions						
Typical value	A specified value for a technical characteristic that:						
	 Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions 						
	NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.						

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2014-2015 Freescale Semiconductor, Inc.

Document Number KL27P64M48SF6 Revision 5, 08/2015

