

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	18
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-WFQFN Exposed Pad
Supplier Device Package	40-HWQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f213m8qnnp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Block Diagram

Figure 1.2 shows a Block Diagram.

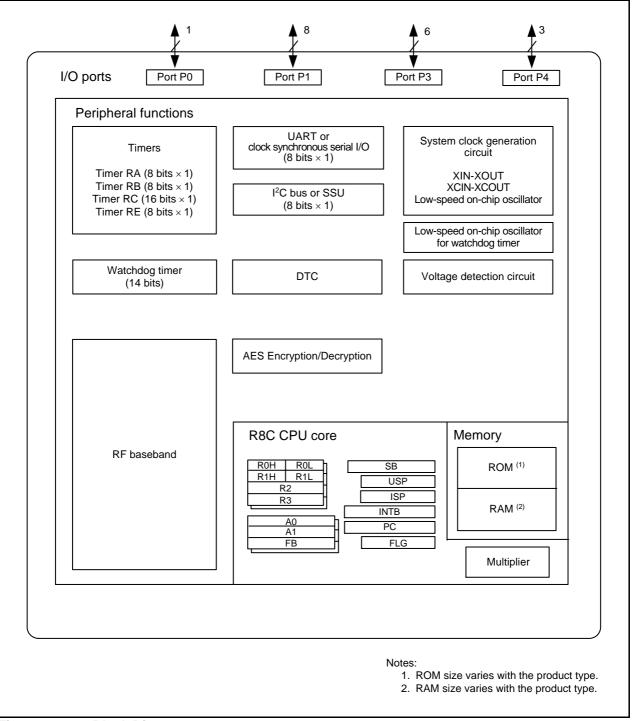
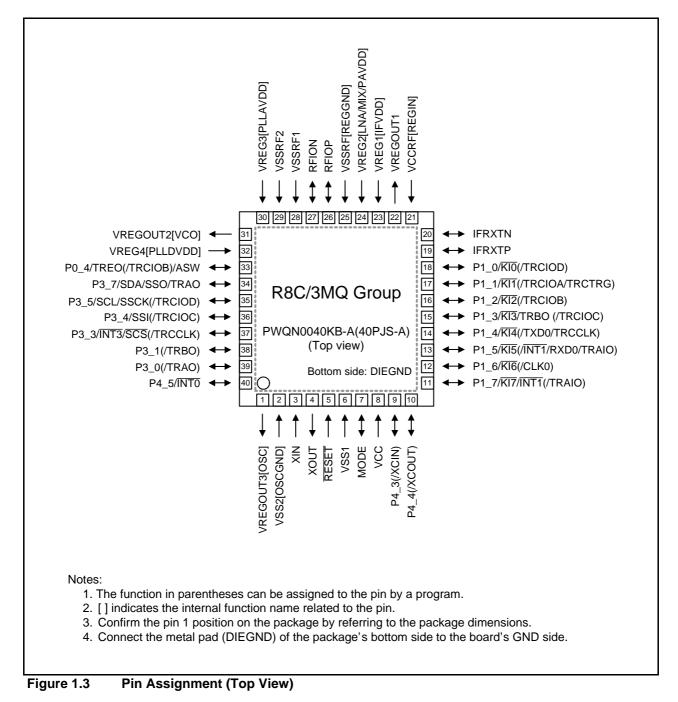



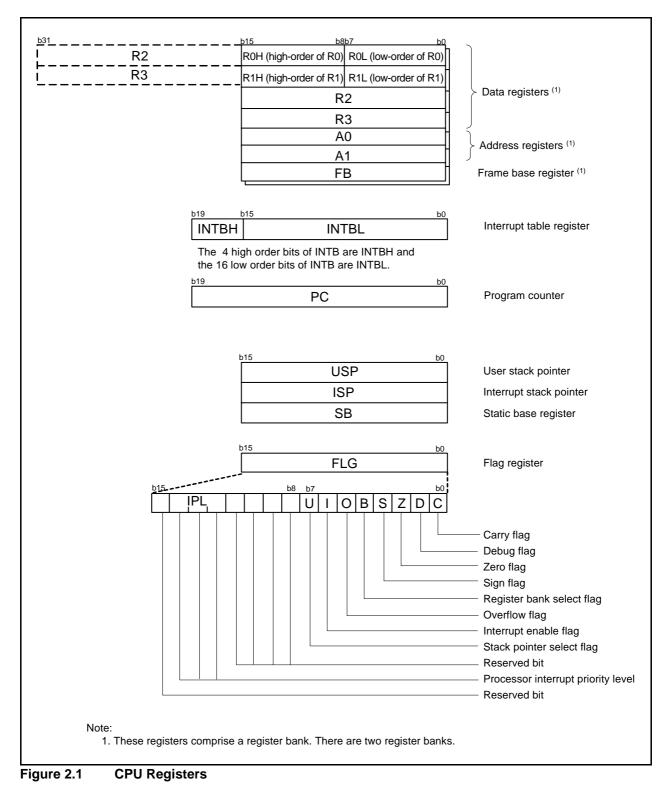
Figure 1.2 Block Diagram

1.4 Pin Assignment

Figure 1.3 shows Pin Assignment (Top View). Table 1.5 outlines Pin Name Information by Pin Number.

R01DS0044EJ0200 Rev.2.00 Jun 29, 2012

Pin			I/O Pin Functions for Peripheral Modules					
Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	I ² C bus	RF Pin Other
1	VREGOUT3							
2	VSS2							
3	XIN							
4	XOUT							
5	RESET							
6	VSS1							
7	MODE							
8	VCC							
9	(XCIN)	P4_3						
10	(XCOUT)	P4_4						
11		P1_7	KI7/INT1	(TRAIO)				
12		P1_6	KI6		(CLK0)			
13		P1_5	KI5(/INT1)	(TRAIO)	(RXD0)			
14		P1_4	KI4	(TRCCLK)	(TXD0)			
15		P1_3	KI3	TRBO(/TRCIOC)				
16		P1_2	KI2	(TRCIOB)				
17		P1_1	KI1	(TRCIOA/TRCTRG)				
18		P1_0	KI0	(TRCIOD)				
19								IFRXTP
20								IFRXTN
21	VCCRF							
22	VREGOUT1							
23	VREG1							
24	VREG2							
25	VSSRF							
26								RFIOP
27								RFION
28	VSSRF1							
29	VSSRF2							
30	VREG3							
31	VREGOUT2							
32	VREG4							4.0147
33		P0_4		TREO(/TRCIOB)		000	0.5.4	ASW
34		P3_7		TRAO		SSO	SDA	
35		P3_5		(TRCIOD)		SSCK	SCL	
36 37		P3_4		(TRCIOC)		SSI		
37 38		P3_3 P3_1	INT3	(TRCCLK) (TRBO)		SCS		
30		P3_1 P3_0		(TRAO)				
40		P4_5	INTO					
Bottom	DIEGND							
side								


 Table 1.5
 Pin Name Information by Pin Number

Note:

1. The function in parentheses can be assigned to the pin by a program.

2. Central Processing Unit (CPU)

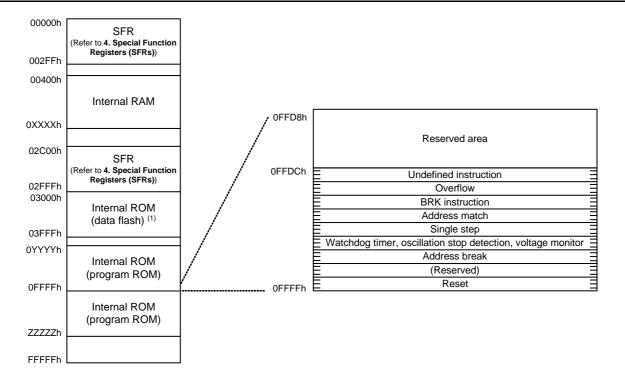
Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

RENESAS

3. Memory

3.1 R8C/3MQ Group

Figure 3.1 is a Memory Map of R8C/3MQ Group. The R8C/3MQ Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. However, for products with internal ROM (program ROM) capacity of 64 Kbytes or more, the internal ROM is also allocated higher addresses, beginning with address 0FFFFh.


For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh, and a 96-Kbyte internal ROM is allocated addresses 04000h to 1BFFFh.

The fixed interrupt vector table is allocated addresses 08000h to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

Notes:

1. The data flash indicates block A (1 Kbyte), block B (1 Kbyte), block C (1 Kbyte), and block D (1 Kbyte).

2. The blank areas are reserved and cannot be accessed by users. Do not use the data flash as a program area.

Part Number		Internal ROM		Inter	nal RAM
Fait Number	Size	Address 0YYYYh	Address ZZZZZh	Size	Address 0XXXXh
R5F213M6QNNP	32 Kbytes	08000h	-	2.5 Kbytes	00DFFh
R5F213M7QNNP	48 Kbytes	04000h	-	4 Kbytes	013FFh
R5F213M8QNNP	64 Kbytes	04000h	13FFFh	6 Kbytes	01BFFh
R5F213MAQNNP	96 Kbytes	04000h	1BFFFh	7 Kbytes	01FFFh
R5F213MCQNNP	112 Kbytes	04000h	1FFFFh	7.5 Kbytes	021FFh

Figure 3.1 Memory Map of R8C/3MQ Group

Address	Register	Symbol	After Reset
01A0h			
:			
01B0h			
01B1h	Flash Manager Otatus Danistan	FOT	400001/005
01B2h	Flash Memory Status Register	FST	10000X00b
01B3h		END 0	
01B4h	Flash Memory Control Register 0	FMR0	00h
01B5h	Flash Memory Control Register 1	FMR1	00h
01B6h	Flash Memory Control Register 2	FMR2	00h
01B7h			
01B8h			
01B9h			
01BAh			
01BBh			
01BCh			
01BDh			
01BEh			
01BFh			
01C0h	Address Match Interrupt Register 0	RMAD0	XXh
01C1h			XXh
01C2h			0000XXXXb
01C3h	Address Match Interrupt Enable Register 0	AIER0	00h
01C4h	Address Match Interrupt Register 1	RMAD1	XXh
01C5h			XXh
01C6h			0000XXXXb
01C7h	Address Match Interrupt Enable Register 1	AIER1	00h
01C8h		7.121(1	0011
01DFh			
01E0h	Pull-Up Control Register 0	PUR0	00h
01E1h	Pull-Up Control Register 0	PUR1	00h
01E111 01E2h		FURI	0011
01E3h			
01E4h			
01E5h			
01E6h			
01E7h			
01E8h			
01E9h			
01EAh			
01EBh			
01ECh			
01EDh			
01EEh			
01EFh			
01F0h	Port P1 Drive Capacity Control Register	P1DRR	00h
01F1h			
01F2h	Drive Capacity Control Register 0	DRR0	00h
01F3h	Drive Capacity Control Register 1	DRR1	00h
01F4h			
01F5h	Input Threshold Control Register 0	VLTO	00h
01F6h	Input Threshold Control Register 1	VLT1	00h
01F7h			
01F8h			
01F9h			
01FAh	External Input Enable Register 0	INTEN	00h
01FBh			0011
01FCh	INT Input Filter Select Register 0	INTF	00h
01FDh			0011
	Koy Input Epoble Register 0		looh
01FEh	Key Input Enable Register 0	KIEN	00h
01FFh	Key Input Enable Register 1	KI1EN	00h
			1
0200h :			

SFR Information (6) (01A0h to 02FFh) (1) Table 4.6

X: Undefined

Address	Register	Symbol	After Reset
2C00h	DTC Transfer Vector Area		XXh
2C01h	DTC Transfer Vector Area		XXh
2C02h 2C03h	DTC Transfer Vector Area		XXh XXh
2C03h	DTC Transfer Vector Area DTC Transfer Vector Area		XXh
2C04h	DTC Transfer Vector Area		XXh
2C06h	DTC Transfer Vector Area		XXh
2C07h	DTC Transfer Vector Area		XXh
2C08h	DTC Transfer Vector Area		XXh
2C09h	DTC Transfer Vector Area		XXh
2C0Ah	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh XXh
2C3Ah	DTC Transfer Vector Area DTC Transfer Vector Area		XXh
2C3Bh	DTC Transfer Vector Area		XXh
2C3Ch	DTC Transfer Vector Area		XXh
2C3Dh	DTC Transfer Vector Area		XXh
2C3Eh	DTC Transfer Vector Area		XXh
2C3Fh	DTC Transfer Vector Area		XXh
2C40h	DTC Control Data 0	DTCD0	XXh
2C41h 2C42h			XXh XXh
2C42h 2C43h	4		XXn XXh
2C431	4		XXh
2C45h			XXh
2C46h			XXh
2C47h			XXh
2C48h	DTC Control Data 1	DTCD1	XXh
2C49h			XXh
2C4Ah 2C4Bh			XXh XXh
2C4Bn 2C4Ch			XXh
2C4Dh			XXh
2C4Eh			XXh
2C4Fh			XXh
2C50h	DTC Control Data 2	DTCD2	XXh
2C51h			XXh
2C52h			XXh
2C53h 2C54h			XXh XXh
2C55h			XXh
2C56h			XXh
2C57h			XXh
2C58h	DTC Control Data 3	DTCD3	XXh
2C59h			XXh
2C5Ah	•		XXh
2C5Bh 2C5Ch			XXh XXh
2C5Dh	4		XXh
2C5Eh			XXh
2C5Fh	1		XXh
2C60h	DTC Control Data 4	DTCD4	XXh
2C61h			XXh
2C62h			XXh
2C63h 2C64h			XXh XXh
2C65h	4		XXh
2C66h	1		XXh
2C67h	1		XXh
2C68h	DTC Control Data 5	DTCD5	XXh
2C69h			XXh
2C6Ah	-		XXh
2C6Bh			XXh
2C6Ch 2C6Dh	4		XXh XXh
2C6Eh	4		XXh
2C6Fh			XXh
X: Undefined		+	+

Table 4.7SFR Information (7) (2C00h to 2C6Fh) (1)

X: Undefined

Note:

Address	Register	Symbol	After Reset
2C70h	DTC Control Data 6	DTCD6	XXh
2C71h			XXh
2C72h			XXh
2C73h			XXh
2C74h			XXh
2C75h			XXh
2C76h			XXh
2C77h			XXh
2C78h	DTC Control Data 7	DTCD7	XXh
2C79h			XXh
2C7Ah			XXh
2C7Bh			XXh
2C7Ch			XXh
2C7Dh			XXh
2C7Eh			XXh
2C7Fh			XXh
2C80h	DTC Control Data 8	DTCD8	XXh
2C81h			XXh
2C82h			XXh
2C83h	7		XXh
2C84h	7		XXh
2C85h	7		XXh
2C86h			XXh
2C87h			XXh
2C88h	DTC Control Data 9	DTCD9	XXh
2C89h			XXh
2C8Ah			XXh
2C8Bh			XXh
2C8Ch			XXh
2C8Dh			XXh
2C8Eh			XXh
2C8Fh			XXh
2C90h	DTC Control Data 10	DTCD10	XXh
2C91h			XXh
2C92h			XXh
2C93h			XXh
2C94h			XXh
2C95h			XXh
2C96h			XXh
2C97h			XXh
2C98h	DTC Control Data 11	DTCD11	XXh
2C99h		-	XXh
2C9Ah	-		XXh
2C9Bh			XXh
2C9Ch	1		XXh
2C9Dh	1		XXh
2C9Eh	1		XXh
2C9Fh	1		XXh
2CA0h	DTC Control Data 12	DTCD12	XXh
2CA1h			XXh
2CA2h	-		XXh
2CA3h	1		XXh
2CA3h 2CA4h	-		XXh
2CA4n 2CA5h	-		XXh
2CA6h	-		XXh
2CA01 2CA7h	-		XXh
2CA7h 2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h			XXh
2CA9n 2CA9n	-		XXh
2CAAn 2CABh	-		XXh
2CABh 2CACh	-		XXh
2CACh 2CADh	-		XXh
2CADh 2CAEh	-		XXh
2CAEN 2CAFh	-		
			XXh

Table 4.8SFR Information (8) (2C70h to 2CAFh) (1)

X: Undefined Note:

Address	Register	Symbol	After Reset
2CB0h	DTC Control Data 14	DTCD14	XXh
2CB1h			XXh
2CB2h			XXh
2CB3h			XXh
2CB4h			XXh
2CB5h			XXh
2CB6h			XXh
2CB7h			XXh
2CB8h	DTC Control Data 15	DTCD15	XXh
2CB9h			XXh
2CBAh			XXh
2CBBh			XXh
2CBCh			XXh
2CBDh			XXh
2CBEh			XXh
2CBFh			XXh
2CC0h	DTC Control Data 16	DTCD16	XXh
2000h		БТСБТО	XXh
2001h	4		XXh
	_		
2CC3h	4		XXh
2CC4h	4		XXh
2CC5h	4		XXh
2CC6h			XXh
2CC7h			XXh
2CC8h	DTC Control Data 17	DTCD17	XXh
2CC9h			XXh
2CCAh			XXh
2CCBh			XXh
2CCCh			XXh
2CCDh			XXh
2CCEh			XXh
2CCFh			XXh
2CD0h	DTC Control Data 18	DTCD18	XXh
2CD1h			XXh
2CD2h			XXh
2CD3h			XXh
2CD4h			XXh
2CD5h	-		XXh
2CD6h	-		XXh
2CD7h	-		XXh
2CD8h	DTC Control Data 19	DTCD19	XXh
2CD8h	DTC Control Data 19	DICDIS	XXh
2CD9n 2CDAh	_		XXh
2CDBh	4		XXh
2CDCh	4		XXh
2CDDh	4		XXh
2CDEh	4		XXh
2CDFh			XXh
2CE0h	DTC Control Data 20	DTCD20	XXh
2CE1h			XXh
2CE2h			XXh
2CE3h			XXh
2CE4h	7		XXh
2CE5h	7		XXh
2CE6h	1		XXh
2CE7h	1		XXh
2CE8h	DTC Control Data 21	DTCD21	XXh
2CE9h		5.0521	XXh
2CEAh	4		XXh
2CEAn 2CEBh	4		XXh
	4		
2CECh	4		XXh
2CEDh	4		XXh
2CEEh 2CEFh	4		XXh XXh

Table 4.9SFR Information (9) (2CB0h to 2CEFh) (1)

X: Undefined Note:

Address	Register	Symbol	After Reset
2D30h	Time Stamp Register 0	BBTSTAMP0	00h
2D31h			00h
2D32h	Time Stamp Register 1	BBTSTAMP1	00h
2D33h			00h
2D34h	Timer Control Register	BBTIMECON	00h
2D35h	Backoff Period Register	BBBOFFPROD	00h
2D36h	-		
2D37h			
2D38h			
2D39h			
2D3Ah	PLL Division Register 0	BBPLLDIVL	65h
2D3Bh	PLL Division Register 1	BBPLLDIVH	09h
2D3Ch	Transmit Output Power Register	BBTXOUTPWR	00h
2D3Dh	RSSI Offset Register	BBRSSIOFS	F6h
2D3Eh			
2D3Fh			
2D40h			
:	•		
2D45h			
2D46h	Automatic ACK Response Timing Adjustment Register	BBACKRTNTIMG	22h
2D47h			
2D63h			
2D64h			
2D65h			
2D66h			
2D67h			
2D68h	Verification Mode Set Register	BBEVAREG	00h
2D69h			
2D6Ah			
2D6Bh			
2D6Ch			
2D6Dh			
2D6Eh			
2D6Fh			
2D70h			
2D71h			
2D72h			
2D73h			
2D74h			
2D75h			
2D76h	IDLE Wait Set Register	BBIDELWAIT	01h
2D77h			
2D78h			
2D79h			
2D7Ah	ANTSW Output Timing Set Register	BBANTSWTIMG	72h
2D7Bh			
2D7Ch	RF Initial Set Register	BBRFINI	XXh
2D7Dh			XXh
2D7Eh			
2D7Fh			
2D80h			
2D81h			
2D82h	ANTSW Control Register	BBANTSWCON	00h
2D83h			
:			
2DFFh			
2E00h	Transmit RAM	TRANSMIT_RAM_STA	RT
	Transmit RAM		
2E7Eh	Transmit RAM	TRANSMIT_RAM_EN	0
2E7Fh			
2D80h	Receive RAM	RECIEVE_RAM_STAR	RT
:	Receive RAM		
2EFEh	Receive RAM	RECIEVE_RAM_END	
2EFFh			
201111			

Table 4.11 SFR Information (11) (2D30h to 2FFFh) ⁽¹⁾

2FFFh

X: Undefined Note:

Address	Area Name	Symbol	After Reset
:			
FFDBh Opt	ion Function Select Register 2	OFS2	(Note 1)
:			
FFDFh ID1			(Note 2)
:			
FFE3h ID2			(Note 2)
:			
FFEBh ID3			(Note 2)
:			
FFEFh ID4			(Note 2)
:			
FFF3h ID5			(Note 2)
:			
FFF7h ID6			(Note 2)
:			
FFFBh ID7			(Note 2)
:			
FFFFh Opt	ion Function Select Register	OFS	(Note 1)

Table 4.12ID Code Areas and Option Function Select Area

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

At shipment, the option function select area is set to FFh. It is set to the written value after written by the user.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. At shipment, the ID code areas are set to FFh. They are set to the written value after written by the user.

							Standard	1	
Symbol		Р	arameter		Conditions	Min.	Тур.	Max.	Unit
VCC	Digital supply voltage		ditions other	eration under the than (2) and (3)		1.8	3.3	3.6	V
		the	lash memor	ming and erasing of y using a serial parallel programmer.		2.7	_	3.6	
		(3) Duri	-	lebugging with the		2.7	—	3.6	
VCCRF	Analog supply vo					1.8	3.3	3.6	V
VSS/ VSS2/ VSSRF/ VSSRF1/ VSSRF2/ DIEGND	Supply voltage	VSS1, V	uge VSS1, VSS2, VSSRF, VSSRF1, VSSRF2, DIEGND				0		V
Vih	Input "H" voltage	Other th	an CMOS ir	nput		0.8 Vcc		Vcc	V
		CMOS	Input level	Input level selection:	$2.7 \text{ V} \leq \text{Vcc} \leq 3.6 \text{ V}$	0.55 Vcc		Vcc	V
	input	switching	0.35 Vcc	1.8 V ≤ Vcc < 2.7 V	0.65 Vcc	_	Vcc	V	
			function	Input level selection:	2.7 V ≤ Vcc ≤ 3.6 V	0.7 Vcc	_	Vcc	V
			(I/O port) 0.5 Vcc	1.8 V ≤ Vcc < 2.7 V	0.8 Vcc	_	Vcc	V	
				Input level selection:	2.7 V ≤ Vcc ≤ 3.6 V	0.85 Vcc		Vcc	V
				0.7 Vcc	$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0.85 Vcc		Vcc	V
VIL	Input "L" voltage	Other th	an CMOS ir	l Inut		0		0.2 Vcc	V
• .=	pat _ tenage	CMOS	Inputlevel	Input level selection:	2.7 V ≤ Vcc ≤ 3.6 V	0		0.2 Vcc	V
		input	switching	0.35 Vcc	$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0		0.2 Vcc	v
			function	Input level selection:	$2.7 V \le Vcc \le 3.6 V$	0		0.2 VCC	v
			(I/O port)	0.5 Vcc	$1.8 \text{ V} \le \text{Vcc} \le 3.0 \text{ V}$	0		0.0 Vcc	V
				Input level selection:	$2.7 V \le Vcc \le 3.6 V$	0	_	0.2 VCC	V
				0.7 Vcc	$1.8 \text{ V} \le \text{Vcc} \le 3.0 \text{ V}$	0		0.45 VCC	V
IOH(sum)	Peak sum output current	"H"	Sum of all	pins IOH(peak)	$1.0 \ \forall \geq \forall CC < 2.7 \ \forall$		_	-160	mA
IOH(sum)	Average sum out current	put "H"	Sum of all	pins IOH(avg)			—	-80	mA
IOH(peak)	Peak output "H" o	current	Drive capa	city Low		_	_	-10	mA
			Drive capa	city High		_		-40	mA
IOH(avg)	Average output "I	- 1"	Drive capa	city Low		_	_	-5	mA
	current		Drive capa	city High		_	_	-20	mA
IOL(sum)	Peak sum output current	"L"	Sum of all	pins IOL(peak)		—	—	160	mA
IOL(sum)	Average sum out current	put "L"	Sum of all	pins IOL(avg)		—	—	80	mA
IOL(peak)	Peak output "L" c	urrent	Drive capa	,		—		10	mA
			Drive capa					40	mA
IOL(avg)	Average output "L current	-"	Drive capa					5	mA
<u>(</u>		'11 '	Drive capa	city High			-	20	mA
f(XIN)	XIN clock input os		, ,		$1.8 \text{ V} \leq \text{Vcc} \leq 3.6 \text{ V}$	—	16		MHz
f(XCIN)	XCIN clock input				$1.8 \text{ V} \leq \text{Vcc} \leq 3.6 \text{ V}$	30	32.768	35	kHz
-	System clock free		f(XIN)=16 I		$1.8 \text{ V} \leq \text{Vcc} \leq 3.6 \text{ V}$	—	—	16	MHz
f(BCLK)	CPU clock freque	ency	f(XIN)=16 I	MHz	$2.7 \text{ V} \leq \text{Vcc} \leq 3.6 \text{ V}$	—	—	16	MHz
					$2.15~V \leq Vcc < 2.7~V$	—	—	8	
					$1.8 V \le Vcc < 2.15 V$		—	4	

Notes:

 $\label{eq:Vcc} \begin{array}{l} \text{1. Vcc} = 1.8 \text{ to } 3.6 \text{ V} \text{ and } T_{\text{opr}} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{, unless otherwise specified.} \\ \hline \text{2. The average output current indicates the average value of current measured during 100 ms.} \end{array}$

Symbol	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
—	Program/erase endurance (2)		10,000 (3)	_	—	times
_	Byte program time (program/erase endurance ≤ 1,000 times)		—	160	1500	μS
_	Byte program time (program/erase endurance > 1,000 times)		_	300	1500	μS
_	Block erase time (program/erase endurance ≤ 1,000 times)		—	0.2	1	S
_	Block erase time (program/erase endurance > 1,000 times)		—	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		—	_	5 + CPU clock × 3 cycles	ms
_	Interval from erase start/restart until following suspend request		0	_	—	μS
_	Time from suspend until erase restart		—	_	30 + CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly stopped until reading is enabled		_	_	30 + CPU clock × 1 cycle	μS
_	Program, erase voltage	CPU rewrite mode	1.8		3.6	V
		Standard serial I/O mode	2.7	_	3.6	
		Parallel I/O mode	2.7	_	3.6	
—	Read voltage		1.8		3.6	V
—	Program, erase temperature	CPU rewrite mode	-20	—	85	°C
		Standard serial I/O mode	0		60]
		Parallel I/O mode	0	—	60	
—	Data hold time (7)	Ambient temperature = 55°C	20	—	—	year

Table 5.4 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

Notes: 1. Vcc = 1.8 to 3.6 V and $T_{opr} = -20^{\circ}$ C to 85°C, unless otherwise specified.

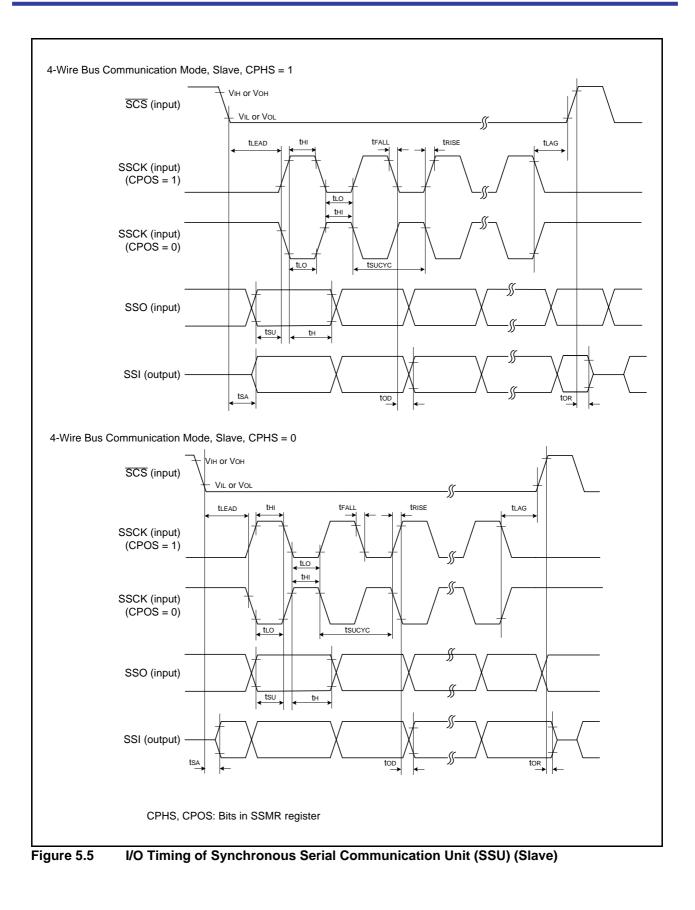
2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the

programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed.)


4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

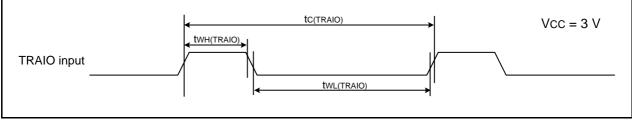
6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

RENESAS

Cumbal	Parameter		Condition		Standard			Unit
Symbol					Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	P0_4, P1, P3_0,	Drive capacity High	Iон = -5 mA	Vcc - 0.5	_	Vcc	V
		P3_1, P3_3 to P3_5, P3_7, P4_3 to P4_5	Drive capacity Low	Іон = –1 mA	Vcc - 0.5		Vcc	V
Vol	Output "L" voltage	P0_4, P1, P3_0,	Drive capacity High	IoL = 5 mA	—		0.5	V
		P3_1, P3_3 to P3_5, P3_7, P4_3 to P4_5	Drive capacity Low	IOL = 1 mA	—	_	0.5	V
VT+-VT-	Hysteresis INT0, INT1, INT3, KI0, KI1, KI2, KI3, KI4, KI6, KI7, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, RXD0, CLK0, SSI, SCL, SDA, SSO		VCC = 3.0 V VCC = 3.0 V		0.1	0.4		V
Ін	Input "H" current	RESET	$V_{I} = 3 V, V_{CC} = 3.0 V$	/			4.0	μA
	Input "H" current						-4.0	•
	Input "L" current		VI = 0 V, VCC = 3.0 \		_	_		μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3.0 \	/	42	84	168	kΩ
RfXIN	Feedback resistance XIN				—	0.3	—	MΩ
Rfxcin	Feedback resistance XCIN				_	8	—	MΩ
Vram	RAM hold voltage		During stop mode		1.8	_	3.6	V

Table 5.14 Electrical Characteristics (2) [2.7 V \leq Vcc \leq
--


Note: 1. 2.7 V \leq Vcc \leq 3.6 V, T_{opr} = -20°C to 85°C, and f(XIN) =16 MHz, unless otherwise specified.

Timing requirements (Vcc = 3 V, Topr = -20°C to 85°C, unless otherwise specified)

Table 5.15TRAIO Input

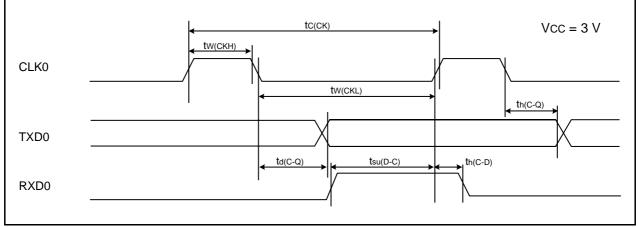
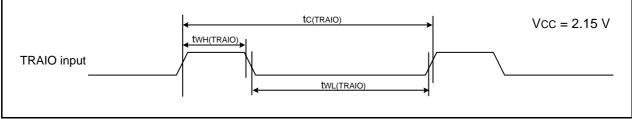

Symbol	Parameter		Standard	
Symbol			Max.	Unit
tc(TRAIO)	TRAIO input cycle time 300 —		_	ns
twh(traio)	TRAIO input "H" width 120		ns	
twl(traio)	TRAIO input "L" width120		ns	

Figure 5.8 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.16 Serial Interface

Symbol	Parameter		Standard		Unit
Symbol			Min.	Max.	Unit
tc(CK)	CLK0 input cycle time	When an external clock is selected	300		ns
tw(CKH)	CLK0 input "H" width		150		ns
tW(CKL)	CLK0 Input "L" width		150	—	ns
td(C-Q)	TXD0 output delay time		—	120	ns
th(C-Q)	TXD0 hold time		0		ns
tsu(D-C)	RXD0 input setup time		30		ns
th(C-D)	RXD0 input hold time		90		ns
th(C-Q)	TXD0 output delay time	When an internal clock is selected	—	30	ns
tsu(D-C)	RXD0 input setup time		120		ns
th(C-D)	RXD0 input hold time		90		ns



Timing requirements (Vcc = 2.15 V, Topr = -20°C to 85°C, unless otherwise specified)

Table 5.19TRAIO Input

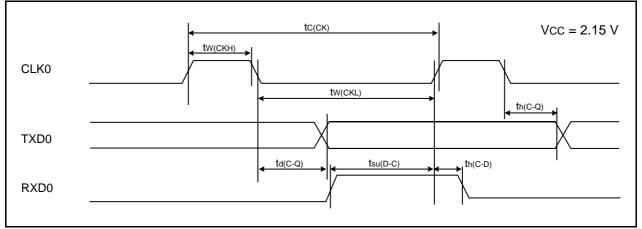
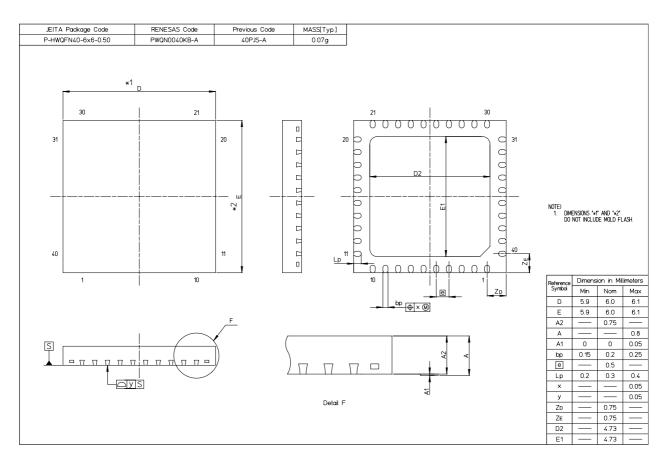

Svmbol	Parameter		Standard	
Symbol			Max.	Unit
tc(TRAIO)	TRAIO input cycle time 500 —		ns	
twh(traio)	TRAIO input "H" width 200 —		ns	
twl(traio)	TRAIO input "L" width200			ns

Figure 5.11 TRAIO Input Timing Diagram when Vcc = 2.15 V

Table 5.20 Serial Interface


Symbol	Parameter		Standard		Unit
Symbol			Min.	Max.	Unit
tc(CK)	CLK0 input cycle time	When an external clock is selected	800	—	ns
tw(CKH)	CLK0 input "H" width		400	—	ns
tw(CKL)	CLK0 input "L" width		400	—	ns
td(C-Q)	TXD0 output delay time		—	200	ns
th(C-Q)	TXD0 hold time		0	—	ns
tsu(D-C)	RXD0 input setup time		150	—	ns
th(C-D)	RXD0 input hold time		90	—	ns
th(C-Q)	TXD0 output delay time	When an internal clock is selected	_	200	ns
tsu(D-C)	RXD0 input setup time		150	—	ns
th(C-D)	RXD0 input hold time		90	—	ns

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.


```
REVISION HISTORY
```

R8C/3MQ Group Datasheet

Rev. Date			Description
	Page	Summary	
0.10	Nov 19, 2010	_	First Edition issued
1.00	Aug 11, 2011	All pages	"Preliminary", "Under development" deleted
		4	Table 1.2 revised, Note 1 added
		5	Table 1.3 "(D): Under development", (P): Under planning" deleted
		6	Figure 1.2 revised
		7	Figure 1.3 revised
		9, 10	Table 1.5, Table 1.6 revised
		12	2.4 revised
		14	3.1 revised
		16, 17	Table 4.2, Table 4.3 revised
		19	Table 4.5 Note 2 added
		20	Table 4.6 revised
		24, 25	Table 4.10, Table 4.11 revised
		32	Table 5.6 revised
		39	Table 5.13 revised
		46	Table 5.22, Table 5.23 revised, Table 5.22 Note 1 added
2.00	Jun 29, 2012	2	Table 1.1 "Voltage detection" revised, Table 1.2 "2.2 V" \rightarrow "2.15 V"
		3, 4	Tables 1.2 and 1.3 "2.2 V" \rightarrow "2.15 V"
		5	Table 1.4 and Figure 1.1 revised
		6	Figure 1.2 revised
		14	Figure 3.1 revised
		28	Table 5.2 "2.2 V" → "2.15 V"
		32	Table 5.5 revised, Note 4 added
		39	Table 5.13 "2.2 V" \rightarrow "2.15 V"
		43	Table 5.18 "2.2 V" \rightarrow "2.15 V"
		44, 45	Timing requirements, Figures 5.11 to 5.13, titles "2.2 V" \rightarrow "2.15 V"
		46	Table 5.23 revised

All trademarks and registered trademarks are the property of their respective owners.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for which it is not intended. Renesas Electronics shall not be in any way liable for any application for which the product is not intended by Nenesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-989-5441, Fax: +1-905-988-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +49-215-85100, Fax: +44-1628-585-900

 Renesas Electronics Europe GmbH

 Arcadiastrase 10, 40472 Dusseldorf, Germany

 Tel: +92-21-65030, Fax: +44-1628-585-900

 Renesas Electronics China) Co., Ltd.

 The Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +92-21-65030, Fax: +48-21-858-7679

 Renesas Electronics (Shanghai) Co., Ltd.

 Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China

 Tel: +85-257-1816, Fax: +852-2886-7789

 Renesas Electronics Hong Kong Limited

 Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +852-2886-9318, Fax: +852 2886-9022/9044

 Renesas Electronics Taiwan Co., Ltd.

 137. No. 363, Fu Shing Month Road, Taipei, Taiwan

 138., No. 353, Fu Shing Notth Road, Taipei, Taiwan

 <t