

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	31
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12c128vfae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4.3	Modes of Operation	. 151
	Internal Visibility	
4.4.5	Low-Power Options	. 156

Chapter 5 Interrupt (INTV1) Block Description

5.1		ction		
	5.1.1	Features	 	158
	5.1.2	Modes of Operation	 	158
5.2	External	l Signal Description	 	159
5.3	Memory	y Map and Register Definition	 	159
	5.3.1	Module Memory Map	 	159
	5.3.2	Register Descriptions	 	159
5.4	Function	nal Description	 	161
	5.4.1	Low-Power Modes	 	162
5.5	Resets		 	162
5.6		ts		
	5.6.1	Interrupt Registers	 	162
	5.6.2	Highest Priority I-Bit Maskable Interrupt	 	162
	5.6.3	Interrupt Priority Decoder	 	163
5.7	Exception	on Priority	 	163

Chapter 6

Background Debug Module (BDMV4) Block Description

6.1	Introduc	ction	
	6.1.1	Features	
	6.1.2	Modes of Operation	
6.2	Externa	l Signal Description	
	6.2.1	BKGD — Background Interface Pin	
	6.2.2	TAGHI — High Byte Instruction Tagging Pin	
	6.2.3	TAGLO — Low Byte Instruction Tagging Pin	
6.3	Memory	y Map and Register Definition	
	6.3.1	Module Memory Map	
	6.3.2	Register Descriptions	
6.4	Function	nal Description	
	6.4.1	Security	
	6.4.2	Enabling and Activating BDM	
	6.4.3	BDM Hardware Commands	
	6.4.4	Standard BDM Firmware Commands	
	6.4.5	BDM Command Structure	
	6.4.6	BDM Serial Interface	
	6.4.7	Serial Interface Hardware Handshake Protocol	
	6.4.8	Hardware Handshake Abort Procedure	
	6.4.9	SYNC — Request Timed Reference Pulse	

BKGD = MODC	PE6 = MODB	PE5 = MODA	PP6 = ROMCTL	ROMON Bit	Mode Description			
0	0	0	х	1	Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all other modes but a serial command is required to make BDM active.			
0	0	1	0	1	Emulation Expanded Narrow, BDM allowed			
0	0	I	1	0				
0	1	0	Х	0	Special Test (Expanded Wide), BDM allowed			
0	-	-	0	1	Emulation Expanded Wide, BDM allowed			
0	1		1	0				
1	0	0	Х	1	Normal Single Chip, BDM allowed			
4	0	1	0	0	Normal Expanded Narrow, BDM allowed			
1	0		1	1				
1	1	0	х	1	Peripheral; BDM allowed but bus operations would cause bus conflicts (must not be used)			
4	4	4	0	0	Normal Expanded Wide, BDM allowed			
	I	I	1	1				

Table 1-7. Mode Selection

For further explanation on the modes refer to the S12_MEBI block guide.

Table 1-8. Clock Selection Based on PE7

PE7 = XCLKS	Description		
1 Colpitts Oscillator selected			
0	Pierce Oscillator/external clock selected		

1.5.2 Security

The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows:

- Protection of the contents of FLASH,
- Operation in single-chip mode,
- Operation from external memory with internal FLASH disabled.

The user must be reminded that part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user's program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters.

1.5.2.1 Securing the Microcontroller

Once the user has programmed the FLASH, the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part.

2.3.2.2 Port S Registers

2.3.2.2.1 Port S I/O Register (PTS)

Module Base + 0x0008

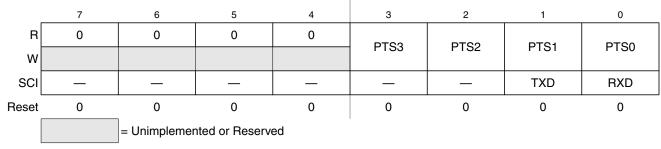
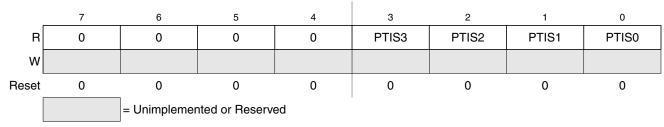


Figure 2-10. Port S I/O Register (PTS)

Read: Anytime.


Write: Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register, otherwise the value at the pins is read.

The SCI port associated with transmit pin 1 is configured as output if the transmitter is enabled and the SCI pin associated with receive pin 0 is configured as input if the receiver is enabled. *Please refer to SCI Block User Guide for details*.

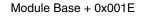
2.3.2.2.2 Port S Input Register (PTIS)

Module Base + 0x0009

Figure 2-11. Port S Input Register (PTIS)

Read: Anytime.

Write: Never, writes to this register have no effect.


Table 2-	10. PTIS	Field	Descriptions
----------	----------	-------	--------------

Field	Description
3–0 PTIS[3:0]	Port S Input Register — This register always reads back the status of the associated pins. This also can be used to detect overload or short circuit conditions on output pins.

Chapter 2 Port Integration Module (PIM9C32) Block Description

2.3.2.4.7 Port P Interrupt Enable Register (PIEP)

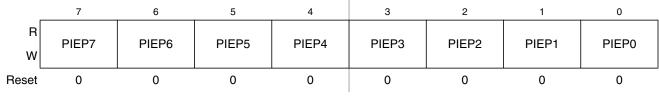


Figure 2-30. Port P Interrupt Enable Register (PIEP)

Read: Anytime.

Write: Anytime.

Table 2-26. PIEP Field Descriptions

Field	Description
7–0 PIEP[7:0]	 Pull Select Port P — This register disables or enables on a per pin basis the edge sensitive external interrupt associated with port P. 0 Interrupt is disabled (interrupt flag masked). 1 Interrupt is enabled.

2.3.2.4.8 Port P Interrupt Flag Register (PIFP)

Module Base + 0x001F

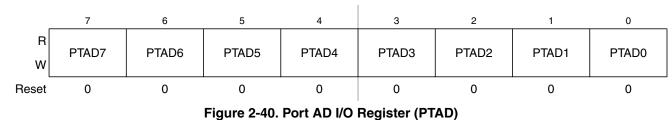
	7	6	5	4	3	2	1	0
R W	PIFP7	PIFP6	PIFP5	PIFP4	PIFP3	PIFP2	PIFP1	PIFP0
Reset	0	0	0	0	0	0	0	0

Figure 2-31. Port P Interrupt Flag Register (PIFP)

Read: Anytime.

Write: Anytime.

Table 2-27. PIFP Field Descriptions


Field	Description
7–0 PIFP[7:0]	 Interrupt Flags Port P — Each flag is set by an active edge on the associated input pin. This could be a rising or a falling edge based on the state of the PPSP register. To clear this flag, write a "1" to the corresponding bit in the PIFP register. Writing a "0" has no effect. 0 No active edge pending. Writing a "0" has no effect. 1 Active edge on the associated bit has occurred (an interrupt will occur if the associated enable bit is set). Writing a "1" clears the associated flag.

2.3.2.6 Port AD Registers

2.3.2.6.1 Port AD I/O Register (PTAD)

Module Base + 0x0030

Read: Anytime.

Write: Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register, otherwise the value at the pins is read.

2.3.2.6.2 Port AD Input Register (PTIAD)

Module Base + 0x0031

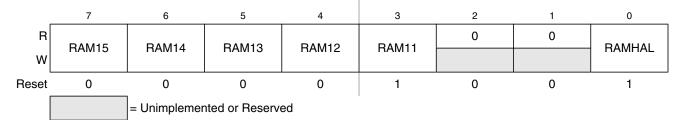
	7	6	5	4	3	2	1	0		
R	PTIAD7	PTIAD6	PTIAD5	PTIAD4	PTIAD3	PTIAD2	PTIAD1	PTIAD0		
w										
Reset	_	_	_	_	_		_			
	= Unimplemented or Reserved									

Figure 2-41. Port AD Input Register (PTIAD)

Read: Anytime.

Write: Never, writes to this register have no effect.

This register always reads back the status of the associated pins. This can be used to detect overload or short circuit conditions on output pins.



Chapter 3 Module Mapping Control (MMCV4) Block Description

3.3.2.1 Initialization of Internal RAM Position Register (INITRM)

Module Base + 0x0010

Starting address location affected by INITRG register setting.

Figure 3-3. Initialization of Internal RAM Position Register (INITRM)

Read: Anytime

Write: Once in normal and emulation modes, anytime in special modes

NOTE

Writes to this register take one cycle to go into effect.

This register initializes the position of the internal RAM within the on-chip system memory map.

Table 3-2. INITRM Field Descriptions

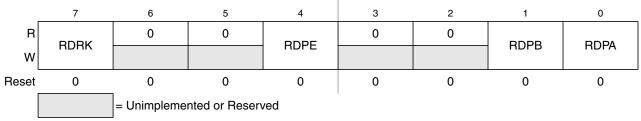
Field	Description	
	Internal RAM Map Position — These bits determine the upper five bits of the base address for the system's internal RAM array.	
0 RAMHAL	 RAM High-Align — RAMHAL specifies the alignment of the internal RAM array. 0 Aligns the RAM to the lowest address (0x0000) of the mappable space 1 Aligns the RAM to the higher address (0xFFFF) of the mappable space 	

Chapter 4 Multiplexed External Bus Interface (MEBIV3)

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these accesses will be echoed externally.

NOTE

These bits have no effect when the associated pin(s) are outputs. (The pull resistors are inactive.)


Table 4-9. PUCR Field Descriptions

Field	Description		
7 PUPKE	Pull resistors Port K Enable 0 Port K pull resistors are disabled. 1 Enable pull resistors for port K input pins.		
4 PUPEE	 Pull resistors Port E Enable 0 Port E pull resistors on bits 7, 4:0 are disabled. 1 Enable pull resistors for port E input pins bits 7, 4:0. Note: Pins 5 and 6 of port E have pull resistors which are only enabled during reset. This bit has no effect on these pins. 		
1 PUPBE	Pull resistors Port B Enable 0 Port B pull resistors are disabled. 1 Enable pull resistors for all port B input pins.		
0 PUPAE	Pull resistors Port A Enable 0 Port A pull resistors are disabled. 1 Enable pull resistors for all port A input pins.		

4.3.2.11 Reduced Drive Register (RDRIV)

Module Base + 0x000D

Starting address location affected by INITRG register setting.

Figure 4-15. Reduced Drive Register (RDRIV)

Read: Anytime (provided this register is in the map)

Write: Anytime (provided this register is in the map)

This register is used to select reduced drive for the pins associated with the core ports. This gives reduced power consumption and reduced RFI with a slight increase in transition time (depending on loading). This feature would be used on ports which have a light loading. The reduced drive function is independent of which function is being used on a particular port.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these accesses will be echoed externally.

Chapter 4 Multiplexed External Bus Interface (MEBIV3)

4.3.2.16 Port K Data Direction Register (DDRK)

Module Base + 0x0033

Starting address location affected by INITRG register setting.

Read: Anytime

Write: Anytime

This register determines the primary direction for each port K pin configured as general-purpose I/O. This register is not in the map in peripheral or expanded modes while the EMK control bit in MODE register is set. Therefore, these accesses will be echoed externally.

Field	Description		
7:0 DDRK	 Data Direction Port K Bits Associated pin is a high-impedance input Associated pin is an output Note: It is unwise to write PORTK and DDRK as a word access. If you are changing port K pins from inputs to outputs, the data may have extra transitions during the write. It is best to initialize PORTK before enabling as outputs. Note: To ensure that you read the correct value from the PORTK pins, always wait at least one cycle after writing to the DDRK register before reading from the PORTK register. 		

4.4 Functional Description

4.4.1 Detecting Access Type from External Signals

The external signals $\overline{\text{LSTRB}}$, R/\overline{W} , and AB0 indicate the type of bus access that is taking place. Accesses to the internal RAM module are the only type of access that would produce $\overline{\text{LSTRB}} = \text{AB0} = 1$, because the internal RAM is specifically designed to allow misaligned 16-bit accesses in a single cycle. In these cases the data for the address that was accessed is on the low half of the data bus and the data for address + 1 is on the high half of the data bus. This is summarized in Table 4-15.

LSTRB	AB0	R/W	Type of Access
1	0	1	8-bit read of an even address
0	1	1	8-bit read of an odd address
1	0	0	8-bit write of an even address
0	1	0	8-bit write of an odd address

5.6.3 Interrupt Priority Decoder

The priority decoder evaluates all interrupts pending and determines their validity and priority. When the CPU requests an interrupt vector, the decoder will provide the vector for the highest priority interrupt request. Because the vector is not supplied until the CPU requests it, it is possible that a higher priority interrupt request could override the original exception that caused the CPU to request the vector. In this case, the CPU will receive the highest priority vector and the system will process this exception instead of the original request.

NOTE

Care must be taken to ensure that all exception requests remain active until the system begins execution of the applicable service routine; otherwise, the exception request may not be processed.

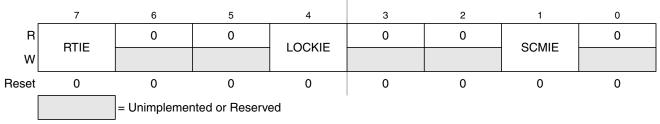
If for any reason the interrupt source is unknown (e.g., an interrupt request becomes inactive after the interrupt has been recognized but prior to the vector request), the vector address will default to that of the last valid interrupt that existed during the particular interrupt sequence. If the CPU requests an interrupt vector when there has never been a pending interrupt request, the INT will provide the software interrupt (SWI) vector address.

5.7 Exception Priority

The priority (from highest to lowest) and address of all exception vectors issued by the INT upon request by the CPU is shown in Table 5-5.

Vector Address	Source
0xFFFE-0xFFFF	System reset
0xFFFC-0xFFFD	Crystal monitor reset
0xFFFA-0xFFFB	COP reset
0xFFF8-0xFFF9	Unimplemented opcode trap
0xFFF6-0xFFF7	Software interrupt instruction (SWI) or BDM vector request
0xFFF4–0xFFF5	XIRQ signal
0xFFF2-0xFFF3	IRQ signal
0xFFF0-0xFF00	Device-specific I-bit maskable interrupt sources (priority in descending order)

Table 5-5. Exception Vector Map and Priority


Table 9-2. CRGFLG Field Descriptions (continued)
--

Field	Description
1 SCMIF	 Self-Clock Mode Interrupt Flag — SCMIF is set to 1 when SCM status bit changes. This flag can only be cleared by writing a 1. Writing a 0 has no effect. If enabled (SCMIE=1), SCMIF causes an interrupt request. 0 No change in SCM bit. 1 SCM bit has changed.
0 SCM	 Self-Clock Mode Status Bit — SCM reflects the current clocking mode. Writes have no effect. MCU is operating normally with OSCCLK available. MCU is operating in self-clock mode with OSCCLK in an unknown state. All clocks are derived from PLLCLK running at its minimum frequency f_{SCM}.

9.3.2.5 CRG Interrupt Enable Register (CRGINT)

This register enables CRG interrupt requests.

Module Base + 0x0004

Figure 9-8. CRG Interrupt Enable Register (CRGINT)

Read: anytime

Write: anytime

Field	Description		
7 RTIE	Real-Time Interrupt Enable Bit 0 Interrupt requests from RTI are disabled. 1 Interrupt will be requested whenever RTIF is set.		
4 LOCKIE	Lock Interrupt Enable Bit 0 LOCK interrupt requests are disabled. 1 Interrupt will be requested whenever LOCKIF is set.		
1 SCMIE	Self-Clock Mode Interrupt Enable Bit 0 SCM interrupt requests are disabled. 1 Interrupt will be requested whenever SCMIF is set.		

СМЕ	SCME	SCMIE	CRG Actions
0	Х	х	Clock failure> No action, clock loss not detected.
1	0	Х	Clock failure> CRG performs Clock Monitor Reset immediately
1	1	0	Clock failure> Scenario 1: OSCCLK recovers prior to exiting Wait Mode MCU remains in Wait Mode, - VREG enabled, - PLL enabled, - SCM activated, - Start Clock Quality Check, - Set SCMIF interrupt flag. Some time later OSCCLK recovers CM no longer indicates a failure, - 4096 OSCCLK cycles later Clock Quality Check indicates clock o.k., - SCM deactivated, - PLL disabled depending on PLLWAI, - VREG remains enabled (never gets disabled in Wait Mode) MCU remains in Wait Mode. Some time later either a wakeup interrupt occurs (no SCM interrupt) - Exit Wait Mode using OSCCLK as system clock (SYSCLK), - Continue normal operation.
			 Continue normal operation. or an External Reset is applied. Exit Wait Mode using OSCCLK as system clock, Start reset sequence. Scenario 2: OSCCLK does not recover prior to exiting Wait Mode. MCU remains in Wait Mode, VREG enabled, PLL enabled, SCM activated, Start Clock Quality Check, Set SCMIF interrupt flag, Keep performing Clock Quality Checks (could continue infinitely) while in Wait Mode. Some time later either a wakeup interrupt occurs (no SCM interrupt) Exit Wait Mode in SCM using PLL clock (f_{SCM}) as system clock, Continue to perform additional Clock Quality Checks until OSCCLK is o.k. again. or an External RESET is applied. Exit Wait Mode in SCM using PLL clock (f_{SCM}) as system clock, Continue to perform additional Clock Quality Checks until OSCCLK is o.k. again.

10.3.2.3 MSCAN Bus Timing Register 0 (CANBTR0)

The CANBTR0 register configures various CAN bus timing parameters of the MSCAN module.

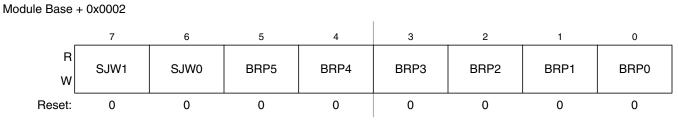


Figure 10-6. MSCAN Bus Timing Register 0 (CANBTR0)

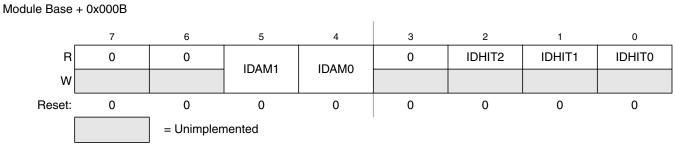
Read: Anytime Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)

Table 10-3. CANBTR0 Register Field Descriptions

Field	Description
7:6 SJW[1:0]	Synchronization Jump Width — The synchronization jump width defines the maximum number of time quanta (Tq) clock cycles a bit can be shortened or lengthened to achieve resynchronization to data transitions on the CAN bus (see Table 10-4).
5:0 BRP[5:0]	Baud Rate Prescaler — These bits determine the time quanta (Tq) clock which is used to build up the bit timing (see Table 10-5).

Table 10-4. Synchronization Jump Width

SJW1	SJW0	Synchronization Jump Width
0	0	1 Tq clock cycle
0	1	2 Tq clock cycles
1	0	3 Tq clock cycles
1	1	4 Tq clock cycles


Table 10-5. Baud Rate Prescaler

BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	Prescaler value (P)
0	0	0	0	0	0	1
0	0	0	0	0	1	2
0	0	0	0	1	0	3
0	0	0	0	1	1	4
:	:	:	:	:	:	:
1	1	1	1	1	1	64

10.3.2.12 MSCAN Identifier Acceptance Control Register (CANIDAC)

The CANIDAC register is used for identifier acceptance control as described below.

Read: Anytime

Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1), except bits IDHITx, which are read-only

Field	Description					
5:4 IDAM[1:0]	Identifier Acceptance Mode — The CPU sets these flags to define the identifier acceptance filter organization (see Section 10.4.3, "Identifier Acceptance Filter"). Table 10-17 summarizes the different settings. In filter closed mode, no message is accepted such that the foreground buffer is never reloaded.					
2:0 IDHIT[2:0]	Identifier Acceptance Hit Indicator — The MSCAN sets these flags to indicate an identifier acceptance hit (see Section 10.4.3, "Identifier Acceptance Filter"). Table 10-18 summarizes the different settings.					

Table 10-17. Identifier Acceptance Mode Settings

IDAM1	IDAM0	Identifier Acceptance Mode			
0	0	Two 32-bit acceptance filters			
0	1	Four 16-bit acceptance filters			
1	0	Eight 8-bit acceptance filters			
1	1	Filter closed			

Table 10-18. Identifier Acceptance Hit Indication

IDHIT2	IDHIT1	IDHIT0	Identifier Acceptance Hit
0	0	0	Filter 0 hit
0	0	1	Filter 1 hit
0	1	0	Filter 2 hit
0	1	1	Filter 3 hit
1	0	0	Filter 4 hit
1	0	1	Filter 5 hit
1	1	0	Filter 6 hit
1	1	1	Filter 7 hit

Table 12-3. PWMPOL Field Descriptions (continued)

Field	Description
3 PPOL3	Pulse Width Channel 3 Polarity0PWM channel 3 output is low at the beginning of the period, then goes high when the duty count is reached.1PWM channel 3 output is high at the beginning of the period, then goes low when the duty count is reached.
2 PPOL2	Pulse Width Channel 2 Polarity0PWM channel 2 output is low at the beginning of the period, then goes high when the duty count is reached.1PWM channel 2 output is high at the beginning of the period, then goes low when the duty count is reached.
1 PPOL1	 Pulse Width Channel 1 Polarity 0 PWM channel 1 output is low at the beginning of the period, then goes high when the duty count is reached. 1 PWM channel 1 output is high at the beginning of the period, then goes low when the duty count is reached.
0 PPOL0	Pulse Width Channel 0 Polarity0PWM channel 0 output is low at the beginning of the period, then goes high when the duty count is reached1PWM channel 0 output is high at the beginning of the period, then goes low when the duty count is reached.

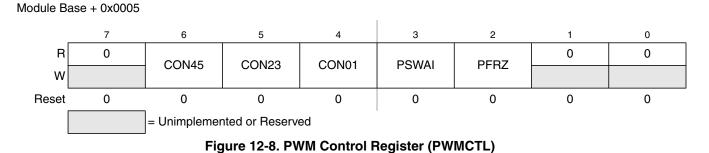
12.3.2.3 PWM Clock Select Register (PWMCLK)

Each PWM channel has a choice of two clocks to use as the clock source for that channel as described below.

Module Base + 0x0002

	7	6	5	4	3	2	1	0
R	0	0	PCLK5	PCLK4	PCLK3	PCLK2	PCLK1	PCLK0
w			I OEKS		I OLKO	I OLINZ	TOLKI	I OLINO
Reset	0	0	0	0	0	0	0	0
		= Unimplemer	nted or Reserve	ed				

Figure 12-5. PWM Clock Select Register (PWMCLK)


Read: anytime

Write: anytime

NOTE

Register bits PCLK0 to PCLK5 can be written anytime. If a clock select is changed while a PWM signal is being generated, a truncated or stretched pulse can occur during the transition.

Read: anytime

Write: anytime

There are three control bits for concatenation, each of which is used to concatenate a pair of PWM channels into one 16-bit channel. When channels 4 and 5 are concatenated, channel 4 registers become the high-order bytes of the double-byte channel. When channels 2 and 3 are concatenated, channel 2 registers become the high-order bytes of the double-byte channel. When channels 0 and 1 are concatenated, channel 0 registers become the high-order bytes of the double-byte of the double-byte channel.

Reference Section 12.4.2.7, "PWM 16-Bit Functions," for a more detailed description of the concatenation PWM function.

NOTE

Change these bits only when both corresponding channels are disabled.

12.4.1.3 Clock Select

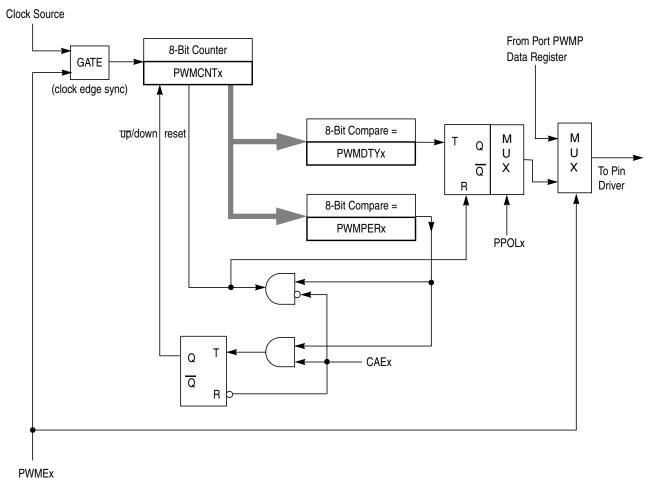
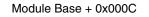
Each PWM channel has the capability of selecting one of two clocks. For channels 0, 1, 4, and 5 the clock choices are clock A or clock SA. For channels 2 and 3 the choices are clock B or clock SB. The clock selection is done with the PCLKx control bits in the PWMCLK register.

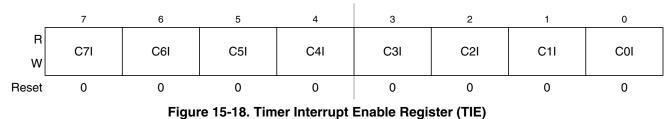
NOTE

Changing clock control bits while channels are operating can cause irregularities in the PWM outputs.

12.4.2 PWM Channel Timers

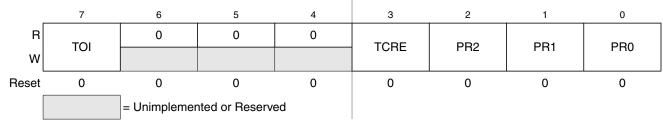
The main part of the PWM module are the actual timers. Each of the timer channels has a counter, a period register and a duty register (each are 8 bit). The waveform output period is controlled by a match between the period register and the value in the counter. The duty is controlled by a match between the duty register and the counter value and causes the state of the output to change during the period. The starting polarity of the output is also selectable on a per channel basis. Figure 12-35 shows a block diagram for PWM timer.


Figure 12-35. PWM Timer Channel Block Diagram

Chapter 15 Timer Module (TIM16B8CV1) Block Description

15.3.2.10 Timer Interrupt Enable Register (TIE)


Read: Anytime

Write: Anytime.

Field	Description
C7I:C0I	Input Capture/Output Compare "x" Interrupt Enable — The bits in TIE correspond bit-for-bit with the bits in the TFLG1 status register. If cleared, the corresponding flag is disabled from causing a hardware interrupt. If set, the corresponding flag is enabled to cause a interrupt.

15.3.2.11 Timer System Control Register 2 (TSCR2)

Module Base + 0x000D

Figure 15-19. Timer System Control Register 2 (TSCR2)

Read: Anytime

Write: Anytime.

Chapter 19 64 Kbyte Flash Module (S12FTS64KV4)

address 0x8000 to 0xBFFF to any physical 16K byte page in the Flash array memory.¹ The FPROT register (see Section 19.3.2.5) can be set to globally protect the entire Flash array. Three separate areas, one starting from the Flash array starting address (called lower) towards higher addresses, one growing downward from the Flash array end address (called higher), and the remaining addresses, can be activated for protection. The Flash array addresses covered by these protectable regions are shown in Figure 19-3Figure 19-4. The higher address area is mainly targeted to hold the boot loader code since it covers the vector space. The lower address area can be used for EEPROM emulation in an MCU without an EEPROM module since it can be left unprotected while the remaining addresses are protected from program or erase. Default protection settings as well as security information that allows the MCU to restrict access to the Flash module are stored in the Flash configuration field described in Table 19-1.

Flash Address	Size (bytes)	Description			
0xFF00-0xFF07	8	Backdoor Key to unlock security			
0xFF08-0xFF0C	5	Reserved			
0xFF0D	1	Flash Protection byte Refer to Section 19.3.2.5, "Flash Protection Register (FPROT)"			
0xFF0E	1	Reserved			
0xFF0F	1	Flash Security/Options byte Refer to Section 19.3.2.2, "Flash Security Register (FSEC)"			

Table 19-1. Flash Configuration Field

1. By placing 0x3E/0x3F in the HCS12 Core PPAGE register, the bottom/top fixed 16 Kbyte pages can be seen twice in the MCU memory map.

Table 20-5. FSEC Field Descriptions

Field	Description
7–6 KEYEN[1:0]	Backdoor Key Security Enable Bits — The KEYEN[1:0] bits define the enabling of the backdoor key access to the Flash module as shown in Table 20-6.
5–2 NV[5:2]	Nonvolatile Flag Bits — The NV[5:2] bits are available to the user as nonvolatile flags.
1–0 SEC[1:0]	Flash Security Bits — The SEC[1:0] bits define the security state of the MCU as shown in Table 20-7. If the Flash module is unsecured using backdoor key access, the SEC[1:0] bits are forced to 1:0.

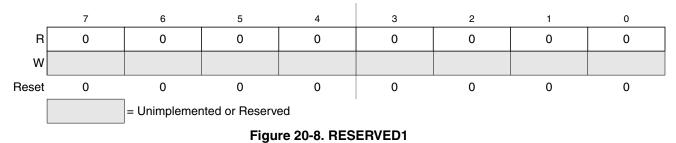
KEYEN[1:0]	Status of Backdoor Key Access			
00	DISABLED			
01 ⁽¹⁾	DISABLED			
10	ENABLED			
11	DISABLED			

Table 20-6. Flash KEYEN States

1. Preferred KEYEN state to disable Backdoor Key Access.

SEC[1:0]	Status of Security
00	Secured
01 ⁽¹⁾	Secured
10	Unsecured
11	Secured

Table 20-7. Flash Security States


1. Preferred SEC state to set MCU to secured state.

The security function in the Flash module is described in Section 20.4.3, "Flash Module Security".

20.3.2.3 RESERVED1

This register is reserved for factory testing and is not accessible to the user.

Module Base + 0x0002

All bits read 0 and are not writable.

From	To Protection Scenario ⁽¹⁾							
Protection Scenario	0	1	2	3	4	5	6	7
6		Х		Х	Х		Х	
7	X	Х	Х	Х	Х	Х	Х	Х

1. Allowed transitions marked with X.

21.3.2.6 Flash Status Register (FSTAT)

The FSTAT register defines the status of the Flash command controller and the results of command execution.

Module Base + 0x0005

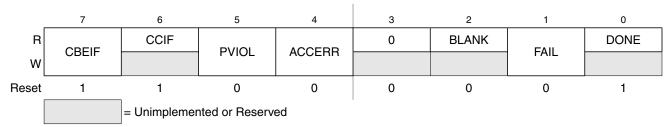


Figure 21-10. Flash Status Register (FSTAT)

In normal modes, bits CBEIF, PVIOL, and ACCERR are readable and writable, bits CCIF and BLANK are readable and not writable, remaining bits, including FAIL and DONE, read 0 and are not writable. In special modes, FAIL is readable and writable while DONE is readable but not writable. FAIL must be clear in special modes when starting a command write sequence.

Table 21-13. FSTAT Field Descriptions

Field	Description
7 CBEIF	Command Buffer Empty Interrupt Flag — The CBEIF flag indicates that the address, data and command buffers are empty so that a new command write sequence can be started. The CBEIF flag is cleared by writing a 1 to CBEIF. Writing a 0 to the CBEIF flag has no effect on CBEIF. Writing a 0 to CBEIF after writing an aligned word to the Flash address space but before CBEIF is cleared will abort a command write sequence and cause the ACCERR flag in the FSTAT register to be set. Writing a 0 to CBEIF outside of a command write sequence will not set the ACCERR flag. The CBEIF flag is used together with the CBEIE bit in the FCNFG register to generate an interrupt request (see Figure 21-26). 0 Buffers are full 1 Buffers are ready to accept a new command
6 CCIF	 Command Complete Interrupt Flag — The CCIF flag indicates that there are no more commands pending. The CCIF flag is cleared when CBEIF is clear and sets automatically upon completion of all active and pending commands. The CCIF flag does not set when an active commands completes and a pending command is fetched from the command buffer. Writing to the CCIF flag has no effect. The CCIF flag is used together with the CCIE bit in the FCNFG register to generate an interrupt request (see Figure 21-26). 0 Command in progress 1 All commands are completed