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memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 1-9. Pin Assignments in 48-Pin LQFP
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Figure 1-13. External Clock Connections (PE7 = 0)

1.3.4.9 PE6 / MODB / IPIPE1 — Port E I/O Pin 6

PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active
when RESET is low. PE[6] is not available in the 48- / 52-pin package versions.

1.3.4.10 PE5 / MODA / IPIPE0 — Port E I/O Pin 5

PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active
when RESET is low. This pin is not available in the 48- / 52-pin package versions.

1.3.4.11 PE4 / ECLK— Port E I/O Pin [4] / E-Clock Output

ECLK is the output connection for the internal bus clock. It is used to demultiplex the address and data in
expanded modes and is used as a timing reference. ECLK frequency is equal to 1/2 the crystal frequency
out of reset. The ECLK pin is initially configured as ECLK output with stretch in all expanded modes. The
E clock output function depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in
the MODE register and the ESTR bit in the EBICTL register. All clocks, including the E clock, are halted
when the MCU is in stop mode. It is possible to configure the MCU to interface to slow external memory.
ECLK can be stretched for such accesses. Reference the MISC register (EXSTR[1:0] bits) for more
information. In normal expanded narrow mode, the E clock is available for use in external select decode
logic or as a constant speed clock for use in the external application system. Alternatively PE4 can be used
as a general purpose input or output pin.

1.3.4.12 PE3 / LSTRB — Port E I/O Pin [3] / Low-Byte Strobe (LSTRB)

In all modes this pin can be used as a general-purpose I/O and is an input with an active pull-up out of
reset. If the strobe function is required, it should be enabled by setting the LSTRE bit in the PEAR register.
This signal is used in write operations. Therefore external low byte writes will not be possible until this
function is enabled. This pin is also used as TAGLO in special expanded modes and is multiplexed with
the LSTRB function. This pin is not available in the 48- / 52-pin package versions.

MCU

EXTAL

XTAL Not Connected

CMOS Compatible
External Oscillator
(VDDPLL Level)
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The security byte resides in a portion of the Flash array.

Check the Flash Block User Guide for more details on the security configuration.

1.5.2.2 Operation of the Secured Microcontroller

1.5.2.2.1 Normal Single Chip Mode

This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.

1.5.2.2.2 Executing from External Memory

The user may wish to execute from external space with a secured microcontroller. This is accomplished
by resetting directly into expanded mode. The internal FLASH will be disabled. BDM operations will be
blocked.

1.5.2.3 Unsecuring the Microcontroller

In order to unsecure the microcontroller, the internal FLASH must be erased. This can be done through an
external program in expanded mode or via a sequence of BDM commands. Unsecuring is also possible via
the Backdoor Key Access. Refer to Flash Block Guide for details.

Once the user has erased the FLASH, the part can be reset into special single chip mode. This invokes a
program that verifies the erasure of the internal FLASH. Once this program completes, the user can erase
and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but
the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to
an external program (again through BDM commands). Note that if the part goes through a reset before the
security bits are reprogrammed to the unsecure state, the part will be secured again.

1.5.3 Low-Power Modes

The microcontroller features three main low power modes. Consult the respective Block User Guide for
information on the module behavior in stop, pseudo stop, and wait mode. An important source of
information about the clock system is the Clock and Reset Generator User Guide (CRG).

1.5.3.1 Stop

Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static
mode. Wake up from this mode can be done via reset or external interrupts.

1.5.3.2 Pseudo Stop

This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running
and the real time interrupt (RTI) or watchdog (COP) sub module can stay active. Other peripherals are
turned off. This mode consumes more current than the full stop mode, but the wake up time from this mode
is significantly shorter.
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2.3.2.3 Port M Registers

2.3.2.3.1 Port M I/O Register (PTM)

Read: Anytime.

Write: Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register,
otherwise the value at the pins is read.

The SPI pin configurations (PM[5:2]) is determined by several status bits in the SPI module. Please refer
to the SPI Block User Guide for details.

2.3.2.3.2 Port M Input Register (PTIM)

Read: Anytime.

Write: Never, writes to this register have no effect.

Module Base + 0x0010

7 6 5 4 3 2 1 0

R 0 0
PTM5 PTM4 PTM3 PTM2 PTM1 PTM0

W

MSCAN/
SPI

— — SCK MOSI SS MISO TXCAN RXCAN

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 2-17. Port M I/O Register (PTM)

Module Base + 0x0011

7 6 5 4 3 2 1 0

R 0 0 PTIM5 PTIM4 PTIM3 PTIM2 PTIM1 PTIM0

W

Reset — — — — — — — —

= Unimplemented or Reserved

Figure 2-18. Port M Input Register (PTIM)

Table 2-16. PTIM Field Descriptions

Field Description

5–0
PTIM[5:0]

Port M Input Register — This register always reads back the status of the associated pins. This also can be
used to detect overload or short circuit conditions on output pins.
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3.1.1 Features
• Registers for mapping of address space for on-chip RAM, EEPROM, and FLASH (or ROM)

memory blocks and associated registers

• Memory mapping control and selection based upon address decode and system operating mode

• Core address bus control

• Core data bus control and multiplexing

• Core security state decoding

• Emulation chip select signal generation (ECS)

• External chip select signal generation (XCS)

• Internal memory expansion

• External stretch and ROM mapping control functions via the MISC register

• Reserved registers for test purposes

• Configurable system memory options defined at integration of core into the system-on-a-chip
(SoC).

3.1.2 Modes of Operation

Some of the registers operate differently depending on the mode of operation (i.e., normal expanded wide,
special single chip, etc.). This is best understood from the register descriptions.

3.2 External Signal Description
All interfacing with the MMC sub-block is done within the core, it has no external signals.

3.3 Memory Map and Register Definition
A summary of the registers associated with the MMC sub-block is shown in Figure 3-2. Detailed
descriptions of the registers and bits are given in the subsections that follow.

3.3.1 Module Memory Map

Table 3-1. MMC Memory Map

Address
Offset

Register Access

0x0010 Initialization of Internal RAM Position Register (INITRM) R/W

0x0011 Initialization of Internal Registers Position Register (INITRG) R/W

0x0012 Initialization of Internal EEPROM Position Register (INITEE) R/W

0x0013 Miscellaneous System Control Register (MISC) R/W

0x0014 Reserved —

.

.
.
.

—
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During the execution of an RTC instruction, the CPU:

• Pulls the old PPAGE value from the stack

• Pulls the 16-bit return address from the stack and loads it into the PC

• Writes the old PPAGE value into the PPAGE register

• Refills the queue and resumes execution at the return address

This sequence is uninterruptable; an RTC can be executed from anywhere in memory, even from a different
page of extended memory in the expansion window.

The CALL and RTC instructions behave like JSR and RTS, except they use more execution cycles.
Therefore, routinely substituting CALL/RTC for JSR/RTS is not recommended. JSR and RTS can be used
to access subroutines that are on the same page in expanded memory. However, a subroutine in expanded
memory that can be called from other pages must be terminated with an RTC. And the RTC unstacks a
PPAGE value. So any access to the subroutine, even from the same page, must use a CALL instruction so
that the correct PPAGE value is in the stack.

3.4.3.2 Extended Address (XAB19:14) and ECS Signal Functionality

If the EMK bit in the MODE register is set (see MEBI block description chapter) the PIX5:0 values will
be output on XAB19:14 respectively (port K bits 5:0) when the system is addressing within the physical
program page window address space (0x8000–0xBFFF) and is in an expanded mode. When addressing
anywhere else within the physical address space (outside of the paging space), the XAB19:14 signals will
be assigned a constant value based upon the physical address space selected. In addition, the active-low
emulation chip select signal, ECS, will likewise function based upon the assigned memory allocation. In
the cases of 48K byte and 64K byte allocated physical FLASH/ROM space, the operation of the ECS
signal will additionally depend upon the state of the ROMHM bit (see Section 3.3.2.4, “Miscellaneous
System Control Register (MISC)”) in the MISC register. Table 3-18, Table 3-19, Table 3-20, and Table 3-
21 summarize the functionality of these signals based upon the allocated memory configuration. Again,
this signal information is only available externally when the EMK bit is set and the system is in an
expanded mode.

Table 3-18. 0K Byte Physical FLASH/ROM Allocated

Address Space Page Window Access ROMHM ECS XAB19:14

0x0000–0x3FFF N/A N/A 1 0x3D

0x4000–0x7FFF N/A N/A 1 0x3E

0x8000–0xBFFF N/A N/A 0 PIX[5:0]

0xC000–0xFFFF N/A N/A 0 0x3F

Table 3-19. 16K Byte Physical FLASH/ROM Allocated

Address Space Page Window Access ROMHM ECS XAB19:14

0x0000–0x3FFF N/A N/A 1 0x3D

0x4000–0x7FFF N/A N/A 1 0x3E

0x8000–0xBFFF N/A N/A 1 PIX[5:0]

0xC000–0xFFFF N/A N/A 0 0x3F
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4.3.2.12 External Bus Interface Control Register (EBICTL)

Read: Anytime (provided this register is in the map)

Write: Refer to individual bit descriptions below

The EBICTL register is used to control miscellaneous functions (i.e., stretching of external E clock).

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these
accesses will be echoed externally.

Table 4-10. RDRIV Field Descriptions

Field Description

7
RDRK

Reduced Drive of Port K
0 All port K output pins have full drive enabled.
1 All port K output pins have reduced drive enabled.

4
RDPE

Reduced Drive of Port E
0 All port E output pins have full drive enabled.
1 All port E output pins have reduced drive enabled.

1
RDPB

Reduced Drive of Port B
0 All port B output pins have full drive enabled.
1 All port B output pins have reduced drive enabled.

0
RDPA

Reduced Drive of Ports A
0 All port A output pins have full drive enabled.
1 All port A output pins have reduced drive enabled.

Module Base + 0x000E
Starting address location affected by INITRG register setting.

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
ESTR

W

Reset:
Peripheral

All other modes
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

= Unimplemented or Reserved

Figure 4-16. External Bus Interface Control Register (EBICTL)

Table 4-11. EBICTL Field Descriptions

Field Description

0
ESTR

E Clock Stretches — This control bit determines whether the E clock behaves as a simple free-running clock or
as a bus control signal that is active only for external bus cycles.
Normal and Emulation: write once
Special: write anytime
0 E never stretches (always free running).
1 E stretches high during stretched external accesses and remains low during non-visible internal accesses.
This bit has no effect in single-chip modes.
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5.4.1 Low-Power Modes

The INT does not contain any user-controlled options for reducing power consumption. The operation of
the INT in low-power modes is discussed in the following subsections.

5.4.1.1 Operation in Run Mode

The INT does not contain any options for reducing power in run mode.

5.4.1.2 Operation in Wait Mode

Clocks to the INT can be shut off during system wait mode and the asynchronous interrupt path will be
used to generate the wake-up signal upon recognition of a valid interrupt or any XIRQ request.

5.4.1.3 Operation in Stop Mode

Clocks to the INT can be shut off during system stop mode and the asynchronous interrupt path will be
used to generate the wake-up signal upon recognition of a valid interrupt or any XIRQ request.

5.5 Resets
The INT supports three system reset exception request types: normal system reset or power-on-reset
request, crystal monitor reset request, and COP watchdog reset request. The type of reset exception request
must be decoded by the system and the proper request made to the core. The INT will then provide the
service routine address for the type of reset requested.

5.6 Interrupts
As shown in the block diagram in Figure 5-1, the INT contains a register block to provide interrupt status
and control, an optional highest priority I interrupt (HPRIO) block, and a priority decoder to evaluate
whether pending interrupts are valid and assess their priority.

5.6.1 Interrupt Registers

The INT registers are accessible only in special modes of operation and function as described in
Section 5.3.2.1, “Interrupt Test Control Register,” and Section 5.3.2.2, “Interrupt Test Registers,”
previously.

5.6.2 Highest Priority I-Bit Maskable Interrupt

When the optional HPRIO block is implemented, the user is allowed to promote a single I-bit maskable
interrupt to be the highest priority I interrupt. The HPRIO evaluates all interrupt exception requests and
passes the HPRIO vector to the priority decoder if the highest priority I interrupt is active. RTI replaces
the promoted interrupt source.
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9.3.2.5 CRG Interrupt Enable Register (CRGINT)

This register enables CRG interrupt requests.

Read: anytime

Write: anytime

1
SCMIF

Self-Clock Mode Interrupt Flag — SCMIF is set to 1 when SCM status bit changes. This flag can only be
cleared by writing a 1. Writing a 0 has no effect. If enabled (SCMIE=1), SCMIF causes an interrupt request.
0 No change in SCM bit.
1 SCM bit has changed.

0
SCM

Self-Clock Mode Status Bit — SCM reflects the current clocking mode. Writes have no effect.
0 MCU is operating normally with OSCCLK available.
1 MCU is operating in self-clock mode with OSCCLK in an unknown state. All clocks are derived from PLLCLK

running at its minimum frequency fSCM.

Module Base + 0x0004

7 6 5 4 3 2 1 0

R
RTIE

0 0
LOCKIE

0 0
SCMIE

0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-8. CRG Interrupt Enable Register (CRGINT)

Table 9-3. CRGINT Field Descriptions

Field Description

7
RTIE

Real-Time Interrupt Enable Bit
0 Interrupt requests from RTI are disabled.
1 Interrupt will be requested whenever RTIF is set.

4
LOCKIE

Lock Interrupt Enable Bit
0 LOCK interrupt requests are disabled.
1 Interrupt will be requested whenever LOCKIF is set.

1
SCMIE

Self-Clock Mode Interrupt Enable Bit
0 SCM interrupt requests are disabled.
1 Interrupt will be requested whenever SCMIF is set.

Table 9-2. CRGFLG Field Descriptions (continued)

Field Description
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If the PRE bit is set, the RTI will continue to run in pseudo-stop mode.
.

Figure 9-22. Clock Chain for RTI

9.4.7 Modes of Operation

9.4.7.1 Normal Mode

The CRGV4 block behaves as described within this specification in all normal modes.

9.4.7.2 Self-Clock Mode

The VCO has a minimum operating frequency, fSCM. If the external clock frequency is not available due
to a failure or due to long crystal start-up time, the bus clock and the core clock are derived from the VCO
running at minimum operating frequency; this mode of operation is called self-clock mode. This requires
CME = 1 and SCME = 1. If the MCU was clocked by the PLL clock prior to entering self-clock mode, the
PLLSEL bit will be cleared. If the external clock signal has stabilized again, the CRG will automatically
select OSCCLK to be the system clock and return to normal mode. See Section 9.4.4, “Clock Quality
Checker” for more information on entering and leaving self-clock mode.

OSCCLK

 RTR[6:4]
0:0:0

0:0:1

0:1:0

0:1:1

1:0:0

1:0:1

1:1:0

1:1:1

÷ 2

÷ 2

÷ 2

÷ 2

÷ 2

÷ 2

COUNTER (RTR[3:0])
4-BIT MODULUS

÷ 1024

RTI TIMEOUT= Clock Gate

WAIT(RTIWAI),
STOP(PSTP,PRE),

RTI enable

gating condition
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10.1.4 Modes of Operation

The following modes of operation are specific to the MSCAN. See Section 10.4, “Functional Description,”
for details.

• Listen-Only Mode

• MSCAN Sleep Mode

• MSCAN Initialization Mode

• MSCAN Power Down Mode

10.2 External Signal Description
The MSCAN uses two external pins:

10.2.1 RXCAN — CAN Receiver Input Pin

RXCAN is the MSCAN receiver input pin.

10.2.2 TXCAN — CAN Transmitter Output Pin

TXCAN is the MSCAN transmitter output pin. The TXCAN output pin represents the logic level on the
CAN bus:

0 = Dominant state
1 = Recessive state

10.2.3 CAN System

A typical CAN system with MSCAN is shown in Figure 10-2. Each CAN station is connected physically
to the CAN bus lines through a transceiver device. The transceiver is capable of driving the large current
needed for the CAN bus and has current protection against defective CAN or defective stations.

Figure 10-2. CAN System

CAN Bus

CAN Controller

(MSCAN)

Transceiver

CAN node 1 CAN node 2 CAN node n

CAN_LCAN_H

MCU

TXCAN RXCAN
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Module Base + 0x00X1

7 6 5 4 3 2 1 0

R
ID2 ID1 ID0 RTR IDE (=0)

W

Reset: x x x x x x x x

= Unused; always read ‘x’

Figure 10-30. Identifier Register 1 — Standard Mapping

Table 10-29. IDR1 Register Field Descriptions

Field Description

7:5
ID[2:0]

Standard Format Identifier — The identifiers consist of 11 bits (ID[10:0]) for the standard format. ID10 is the
most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an
identifier is defined to be highest for the smallest binary number. See also ID bits in Table 10-28.

4
RTR

Remote Transmission Request — This flag reflects the status of the Remote Transmission Request bit in the
CAN frame. In the case of a receive buffer, it indicates the status of the received frame and supports the
transmission of an answering frame in software. In the case of a transmit buffer, this flag defines the setting of
the RTR bit to be sent.
0 Data frame
1 Remote frame

3
IDE

ID Extended — This flag indicates whether the extended or standard identifier format is applied in this buffer. In
the case of a receive buffer, the flag is set as received and indicates to the CPU how to process the buffer
identifier registers. In the case of a transmit buffer, the flag indicates to the MSCAN what type of identifier to send.
0 Standard format (11 bit)
1 Extended format (29 bit)

Module Base + 0x00X2

7 6 5 4 3 2 1 0

R

W

Reset: x x x x x x x x

= Unused; always read ‘x’

Figure 10-31. Identifier Register 2 — Standard Mapping
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11.2 External Signal Description
This section lists and describes the signals that connect off chip.

11.2.1 VDDPLL and VSSPLL — PLL Operating Voltage, PLL Ground

These pins provide the operating voltage (VDDPLL) and ground (VSSPLL) for the OSCV2 circuitry. This
allows the supply voltage to the OSCV2 to be independently bypassed.

11.2.2 EXTAL and XTAL — Clock/Crystal Source Pins

These pins provide the interface for either a crystal or a CMOS compatible clock to control the internal
clock generator circuitry. EXTAL is the external clock input or the input to the crystal oscillator amplifier.
XTAL is the output of the crystal oscillator amplifier. All the MCU internal system clocks are derived from
the EXTAL input frequency. In full stop mode (PSTP = 0) the EXTAL pin is pulled down by an internal
resistor of typical 200 kΩ.

NOTE
Freescale Semiconductor recommends an evaluation of the application
board and chosen resonator or crystal by the resonator or crystal supplier.

The Crystal circuit is changed from standard.

The Colpitts circuit is not suited for overtone resonators and crystals.

Figure 11-1. Colpitts Oscillator Connections (XCLKS = 0)

NOTE
The Pierce circuit is not suited for overtone resonators and crystals without
a careful component selection.

MCU

C2

EXTAL

XTAL

VSSPLL

C1
CDC*

Crystal or Ceramic
Resonator

* Due to the nature of a translated ground Colpitts oscillator
a DC voltage bias is applied to the crystal.

Please contact the crystal manufacturer for crystal DC bias
conditions and recommended capacitor value CDC.
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Read: anytime

Write: anytime

There are three control bits for concatenation, each of which is used to concatenate a pair of PWM
channels into one 16-bit channel. When channels 4 and 5 are concatenated, channel 4 registers become the
high-order bytes of the double-byte channel. When channels 2 and 3 are concatenated, channel 2 registers
become the high-order bytes of the double-byte channel. When channels 0 and 1 are concatenated,
channel 0 registers become the high-order bytes of the double-byte channel.

Reference Section 12.4.2.7, “PWM 16-Bit Functions,” for a more detailed description of the concatenation
PWM function.

NOTE
Change these bits only when both corresponding channels are disabled.

Module Base + 0x0005

7 6 5 4 3 2 1 0

R 0
CON45 CON23 CON01 PSWAI PFRZ

0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-8. PWM Control Register (PWMCTL)
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Table 14-7. Example SPI Baud Rate Selection (25 MHz Bus Clock)

SPPR2 SPPR1 SPPR0 SPR2 SPR1 SPR0
Baud Rate

Divisor
Baud Rate

0 0 0 0 0 0 2 12.5 MHz

0 0 0 0 0 1 4 6.25 MHz

0 0 0 0 1 0 8 3.125 MHz

0 0 0 0 1 1 16 1.5625 MHz

0 0 0 1 0 0 32 781.25 kHz

0 0 0 1 0 1 64 390.63 kHz

0 0 0 1 1 0 128 195.31 kHz

0 0 0 1 1 1 256 97.66 kHz

0 0 1 0 0 0 4 6.25 MHz

0 0 1 0 0 1 8 3.125 MHz

0 0 1 0 1 0 16 1.5625 MHz

0 0 1 0 1 1 32 781.25 kHz

0 0 1 1 0 0 64 390.63 kHz

0 0 1 1 0 1 128 195.31 kHz

0 0 1 1 1 0 256 97.66 kHz

0 0 1 1 1 1 512 48.83 kHz

0 1 0 0 0 0 6 4.16667 MHz

0 1 0 0 0 1 12 2.08333 MHz

0 1 0 0 1 0 24 1.04167 MHz

0 1 0 0 1 1 48 520.83 kHz

0 1 0 1 0 0 96 260.42 kHz

0 1 0 1 0 1 192 130.21 kHz

0 1 0 1 1 0 384 65.10 kHz

0 1 0 1 1 1 768 32.55 kHz

0 1 1 0 0 0 8 3.125 MHz

0 1 1 0 0 1 16 1.5625 MHz

0 1 1 0 1 0 32 781.25 kHz

0 1 1 0 1 1 64 390.63 kHz

0 1 1 1 0 0 128 195.31 kHz

0 1 1 1 0 1 256 97.66 kHz

0 1 1 1 1 0 512 48.83 kHz

0 1 1 1 1 1 1024 24.41 kHz

1 0 0 0 0 0 10 2.5 MHz

1 0 0 0 0 1 20 1.25 MHz

1 0 0 0 1 0 40 625 kHz

1 0 0 0 1 1 80 312.5 kHz

1 0 0 1 0 0 160 156.25 kHz

1 0 0 1 0 1 320 78.13 kHz

1 0 0 1 1 0 640 39.06 kHz
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14.3.2.4 SPI Status Register (SPISR)

Read: anytime

Write: has no effect

14.3.2.5 SPI Data Register (SPIDR)

Read: anytime; normally read only after SPIF is set

Module Base 0x0003

7 6 5 4 3 2 1 0

R SPIF 0 SPTEF MODF 0 0 0 0

W

Reset 0 0 1 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-6. SPI Status Register (SPISR)

Table 14-8. SPISR Field Descriptions

Field Description

7
SPIF

SPIF Interrupt Flag — This bit is set after a received data byte has been transferred into the SPI Data Register.
This bit is cleared by reading the SPISR register (with SPIF set) followed by a read access to the SPI Data
Register.
0 Transfer not yet complete
1 New data copied to SPIDR

5
SPTEF

SPI Transmit Empty Interrupt Flag — If set, this bit indicates that the transmit data register is empty. To clear
this bit and place data into the transmit data register, SPISR has to be read with SPTEF = 1, followed by a write
to SPIDR. Any write to the SPI Data Register without reading SPTEF = 1, is effectively ignored.
0 SPI Data register not empty
1 SPI Data register empty

4
MODF

Mode Fault Flag — This bit is set if the SS input becomes low while the SPI is configured as a master and mode
fault detection is enabled, MODFEN bit of SPICR2 register is set. Refer to MODFEN bit description in
Section 14.3.2.2, “SPI Control Register 2 (SPICR2).” The flag is cleared automatically by a read of the SPI Status
Register (with MODF set) followed by a write to the SPI Control Register 1.
0 Mode fault has not occurred.
1 Mode fault has occurred.

Module Base 0x0005

7 6 5 4 3 2 1 0

R
Bit 7 6 5 4 3 2 2 Bit 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-7. SPI Data Register (SPIDR)
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addresses sequentially staring with 0xFF00-0xFF01 and ending with 0xFF06–0xFF07. The values 0x0000
and 0xFFFF are not permitted as keys. When the KEYACC bit is set, reads of the Flash array will return
invalid data.

The user code stored in the Flash array must have a method of receiving the backdoor key from an external
stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If KEYEN[1:0] = 1:0 in the FSEC register, the MCU can be unsecured by the backdoor key access
sequence described below:

1. Set the KEYACC bit in the FCNFG register

2. Write the correct four 16-bit words to Flash addresses 0xFF00–0xFF07 sequentially starting with
0xFF00

3. Clear the KEYACC bit in the FCNFG register

4. If all four 16-bit words match the backdoor key stored in Flash addresses 0xFF00–0xFF07, the
MCU is unsecured and bits SEC[1:0] in the FSEC register are forced to the unsecure state of 1:0

The backdoor key access sequence is monitored by the internal security state machine. An illegal operation
during the backdoor key access sequence will cause the security state machine to lock, leaving the MCU
in the secured state. A reset of the MCU will cause the security state machine to exit the lock state and
allow a new backdoor key access sequence to be attempted. The following illegal operations will lock the
security state machine:

1. If any of the four 16-bit words does not match the backdoor key programmed in the Flash array

2. If the four 16-bit words are written in the wrong sequence

3. If more than four 16-bit words are written

4. If any of the four 16-bit words written are 0x0000 or 0xFFFF

5. If the KEYACC bit does not remain set while the four 16-bit words are written

After the backdoor key access sequence has been correctly matched, the MCU will be unsecured. The
Flash security byte can be programmed to the unsecure state, if desired.

In the unsecure state, the user has full control of the contents of the four word backdoor key by
programming bytes 0xFF00–0xFF07 of the Flash configuration field.

The security as defined in the Flash security/options byte at address 0xFF0F is not changed by using the
backdoor key access sequence to unsecure. The backdoor key stored in addresses 0xFF00–0xFF07 is
unaffected by the backdoor key access sequence. After the next reset sequence, the security state of the
Flash module is determined by the Flash security/options byte at address 0xFF0F. The backdoor key access
sequence has no effect on the program and erase protection defined in the FPROT register.

It is not possible to unsecure the MCU in special single chip mode by executing the backdoor key access
sequence in background debug mode.
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addresses sequentially staring with 0xFF00-0xFF01 and ending with 0xFF06–0xFF07. The values 0x0000
and 0xFFFF are not permitted as keys. When the KEYACC bit is set, reads of the Flash array will return
invalid data.

The user code stored in the Flash array must have a method of receiving the backdoor key from an external
stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If KEYEN[1:0] = 1:0 in the FSEC register, the MCU can be unsecured by the backdoor key access
sequence described below:

1. Set the KEYACC bit in the FCNFG register

2. Write the correct four 16-bit words to Flash addresses 0xFF00–0xFF07 sequentially starting with
0xFF00

3. Clear the KEYACC bit in the FCNFG register

4. If all four 16-bit words match the backdoor key stored in Flash addresses 0xFF00–0xFF07, the
MCU is unsecured and bits SEC[1:0] in the FSEC register are forced to the unsecure state of 1:0

The backdoor key access sequence is monitored by the internal security state machine. An illegal operation
during the backdoor key access sequence will cause the security state machine to lock, leaving the MCU
in the secured state. A reset of the MCU will cause the security state machine to exit the lock state and
allow a new backdoor key access sequence to be attempted. The following illegal operations will lock the
security state machine:

1. If any of the four 16-bit words does not match the backdoor key programmed in the Flash array

2. If the four 16-bit words are written in the wrong sequence

3. If more than four 16-bit words are written

4. If any of the four 16-bit words written are 0x0000 or 0xFFFF

5. If the KEYACC bit does not remain set while the four 16-bit words are written

After the backdoor key access sequence has been correctly matched, the MCU will be unsecured. The
Flash security byte can be programmed to the unsecure state, if desired.

In the unsecure state, the user has full control of the contents of the four word backdoor key by
programming bytes 0xFF00–0xFF07 of the Flash configuration field.

The security as defined in the Flash security/options byte at address 0xFF0F is not changed by using the
backdoor key access sequence to unsecure. The backdoor key stored in addresses 0xFF00–0xFF07 is
unaffected by the backdoor key access sequence. After the next reset sequence, the security state of the
Flash module is determined by the Flash security/options byte at address 0xFF0F. The backdoor key access
sequence has no effect on the program and erase protection defined in the FPROT register.

It is not possible to unsecure the MCU in special single chip mode by executing the backdoor key access
sequence in background debug mode.
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21.4.1.3.4 Mass Erase Command

The mass erase operation will erase all addresses in a Flash array using an embedded algorithm.

An example flow to execute the mass erase operation is shown in Figure 21-25. The mass erase command
write sequence is as follows:

1. Write to a Flash array address to start the command write sequence for the mass erase command.
The address and data written will be ignored.

2. Write the mass erase command, 0x41, to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the mass erase
command.

If a Flash array to be erased contains any protected area, the PVIOL flag in the FSTAT register will set and
the mass erase command will not launch. Once the mass erase command has successfully launched, the
CCIF flag in the FSTAT register will set after the mass erase operation has completed unless a new
command write sequence has been buffered.


