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Figure 1-9. Pin Assignments in 48-Pin LQFP
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1.3.4.6 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins

PA7–PA0 are general purpose input or output pins,. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus. PA[7:1] pins are not available in the 48-pin package
version. PA[7:3] are not available in the 52-pin package version.

1.3.4.7 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins

PB7–PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus. PB[7:5] and PB[3:0] pins are not available in the
48-pin nor 52-pin package version.

1.3.4.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7

PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal
will assert when the CPU is not using the bus.The XCLKS is an input signal which controls whether a
crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce
oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of RESET. If
the input is a logic low the EXTAL pin is configured for an external clock drive or a Pierce oscillator. If
input is a logic high a Colpitts oscillator circuit is configured on EXTAL and XTAL. Since this pin is an
input with a pull-up device during reset, if the pin is left floating, the default configuration is a Colpitts
oscillator circuit on EXTAL and XTAL.

Figure 1-11. Colpitts Oscillator Connections (PE7 = 1)

Figure 1-12. Pierce Oscillator Connections (PE7 = 0)
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For further explanation on the modes refer to the S12_MEBI block guide.

1.5.2 Security

The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:

• Protection of the contents of FLASH,

• Operation in single-chip mode,

• Operation from external memory with internal FLASH disabled.

The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example
of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters.

1.5.2.1 Securing the Microcontroller

Once the user has programmed the FLASH, the part can be secured by programming the security bits
located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part
and through powering down the part.

Table 1-7. Mode Selection

BKGD =
MODC

PE6 =
MODB

PE5 =
MODA

PP6 =
ROMCTL

ROMON
Bit

Mode Description

0 0 0 X 1
Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in
all other modes but a serial command is required to make BDM
active.

0 0 1
0 1 Emulation Expanded Narrow, BDM allowed

1 0

0 1 0 X 0 Special Test (Expanded Wide), BDM allowed

0 1 1
0 1 Emulation Expanded Wide, BDM allowed

1 0

1 0 0 X 1 Normal Single Chip, BDM allowed

1 0 1
0 0 Normal Expanded Narrow, BDM allowed

1 1

1 1 0 X 1
Peripheral; BDM allowed but bus operations would cause bus
conflicts (must not be used)

1 1 1
0 0 Normal Expanded Wide, BDM allowed

1 1

Table 1-8. Clock Selection Based on PE7

PE7 = XCLKS Description

1 Colpitts Oscillator selected

0 Pierce Oscillator/external clock selected
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3.3.2.5 Reserved Test Register 0 (MTST0)

Read: Anytime

Write: No effect — this register location is used for internal test purposes.

3.3.2.6 Reserved Test Register 1 (MTST1)

Read: Anytime

Write: No effect — this register location is used for internal test purposes.

Table 3-6. External Stretch Bit Definition

Stretch Bit EXSTR1 Stretch Bit EXSTR0 Number of E Clocks Stretched

0 0 0

0 1 1

1 0 2

1 1 3

Module Base + 0x0014
Starting address location affected by INITRG register setting.

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 3-7. Reserved Test Register 0 (MTST0)

Module Base + 0x0017
Starting address location affected by INITRG register setting.

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 1 0 0 0 0

= Unimplemented or Reserved

Figure 3-8. Reserved Test Register 1 (MTST1)
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Figure 6-6. BDM Command Structure

6.4.6 BDM Serial Interface

The BDM communicates with external devices serially via the BKGD pin. During reset, this pin is a mode
select input which selects between normal and special modes of operation. After reset, this pin becomes
the dedicated serial interface pin for the BDM.

The BDM serial interface is timed using the clock selected by the CLKSW bit in the status register see
Section 6.3.2.1, “BDM Status Register (BDMSTS).” This clock will be referred to as the target clock in
the following explanation.

The BDM serial interface uses a clocking scheme in which the external host generates a falling edge on
the BKGD pin to indicate the start of each bit time. This falling edge is sent for every bit whether data is
transmitted or received. Data is transferred most significant bit (MSB) first at 16 target clock cycles per
bit. The interface times out if 512 clock cycles occur between falling edges from the host.

The BKGD pin is a pseudo open-drain pin and has an weak on-chip active pull-up that is enabled at all
times. It is assumed that there is an external pull-up and that drivers connected to BKGD do not typically
drive the high level. Because R-C rise time could be unacceptably long, the target system and host provide
brief driven-high (speedup) pulses to drive BKGD to a logic 1. The source of this speedup pulse is the host
for transmit cases and the target for receive cases.

The timing for host-to-target is shown in Figure 6-7 and that of target-to-host in Figure 6-8 and Figure 6-
9. All four cases begin when the host drives the BKGD pin low to generate a falling edge. Because the host
and target are operating from separate clocks, it can take the target system up to one full clock cycle to
recognize this edge. The target measures delays from this perceived start of the bit time while the host
measures delays from the point it actually drove BKGD low to start the bit up to one target clock cycle
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control (TBC) block. When PAGSEL = 01, registers DBGCAX, DBGCBX, and DBGCCX are used to
match the upper addresses as shown in Table 7-11.

NOTE
If a tagged-type C breakpoint is set at the same address as an A/B tagged-
type trigger (including the initial entry in an inside or outside range trigger),
the C breakpoint will have priority and the trigger will not be recognized.

7.4.2.1.1 Read or Write Comparison

Read or write comparisons are useful only with TRGSEL = 0, because only opcodes should be tagged as
they are “read” from memory. RWAEN and RWBEN are ignored when TRGSEL = 1.

In full modes (“A and B” and “A and not B”) RWAEN and RWA are used to select read or write
comparisons for both comparators A and B. Table 7-24 shows the effect for RWAEN, RWA, and RW on
the DBGCB comparison conditions. The RWBEN and RWB bits are not used and are ignored in full
modes.

7.4.2.1.2 Trigger Selection

The TRGSEL bit in DBGC1 is used to determine the triggering condition in DBG mode. TRGSEL applies
to both trigger A and B except in the event only trigger modes. By setting TRGSEL, the comparators A
and B will qualify a match with the output of opcode tracking logic and a trigger occurs before the tagged
instruction executes (tagged-type trigger). With the TRGSEL bit cleared, a comparator match forces a
trigger when the matching condition occurs (force-type trigger).

NOTE
If the TRGSEL is set, the address stored in the comparator match address
registers must be an opcode address for the trigger to occur.

7.4.2.2 Trace Buffer Control (TBC)

The TBC is the main controller for the DBG module. Its function is to decide whether data should be stored
in the trace buffer based on the trigger mode and the match signals from the comparator. The TBC also
determines whether a request to break the CPU should occur.

Table 7-24. Read or Write Comparison Logic Table

RWAEN bit RWA bit RW signal Comment

0 x 0 Write data bus

0 x 1 Read data bus

1 0 0 Write data bus

1 0 1 No data bus compare since RW=1

1 1 0 No data bus compare since RW=0

1 1 1 Read data bus



Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 251
Rev 01.24

Chapter 9
Clocks and Reset Generator (CRGV4) Block Description

9.1 Introduction
This specification describes the function of the clocks and reset generator (CRGV4).

9.1.1 Features

The main features of this block are:

• Phase-locked loop (PLL) frequency multiplier

— Reference divider

— Automatic bandwidth control mode for low-jitter operation

— Automatic frequency lock detector

— CPU interrupt on entry or exit from locked condition

— Self-clock mode in absence of reference clock

• System clock generator

— Clock quality check

— Clock switch for either oscillator- or PLL-based system clocks

— User selectable disabling of clocks during wait mode for reduced power consumption

• Computer operating properly (COP) watchdog timer with time-out clear window

• System reset generation from the following possible sources:

— Power-on reset

— Low voltage reset
Refer to the device overview section for availability of this feature.

— COP reset

— Loss of clock reset

— External pin reset

• Real-time interrupt (RTI)
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Definition.” All reset sources are listed in Table 9-13. Refer to the device overview chapter for related
vector addresses and priorities.

The reset sequence is initiated by any of the following events:

• Low level is detected at the RESET pin (external reset).

• Power on is detected.

• Low voltage is detected.

• COP watchdog times out.

• Clock monitor failure is detected and self-clock mode was disabled (SCME = 0).

Upon detection of any reset event, an internal circuit drives the RESET pin low for 128 SYSCLK cycles
(see Figure 9-25). Because entry into reset is asynchronous it does not require a running SYSCLK.
However, the internal reset circuit of the CRGV4 cannot sequence out of current reset condition without a
running SYSCLK. The number of 128 SYSCLK cycles might be increased by n = 3 to 6 additional
SYSCLK cycles depending on the internal synchronization latency. After 128+n SYSCLK cycles the
RESET pin is released. The reset generator of the CRGV4 waits for additional 64 SYSCLK cycles and
then samples the RESET pin to determine the originating source. Table 9-14 shows which vector will be
fetched.

NOTE
External circuitry connected to the RESET pin should not include a large
capacitance that would interfere with the ability of this signal to rise to a
valid logic 1 within 64 SYSCLK cycles after the low drive is released.

Table 9-13. Reset Summary

Reset Source Local Enable

Power-on Reset None

Low Voltage Reset None

External Reset None

Clock Monitor Reset PLLCTL (CME=1, SCME=0)

COP Watchdog Reset COPCTL (CR[2:0] nonzero)

Table 9-14. Reset Vector Selection

Sampled RESET Pin
(64 Cycles After

Release)

Clock Monitor
Reset Pending

COP Reset
Pending

Vector Fetch

1 0 0 POR / LVR / External Reset

1 1 X Clock Monitor Reset

1 0 1 COP Reset

0 X X POR / LVR / External Reset
with rise of RESET pin
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10.3.2.11 MSCAN Transmit Buffer Selection Register (CANTBSEL)

The CANTBSEL register allows the selection of the actual transmit message buffer, which then will be
accessible in the CANTXFG register space.

NOTE
The CANTBSEL register is held in the reset state when the initialization
mode is active (INITRQ = 1 and INITAK=1). This register is writable when
not in initialization mode (INITRQ = 0 and INITAK = 0).

Read: Find the lowest ordered bit set to 1, all other bits will be read as 0
Write: Anytime when not in initialization mode

The following gives a short programming example of the usage of the CANTBSEL register:

To get the next available transmit buffer, application software must read the CANTFLG register and write
this value back into the CANTBSEL register. In this example Tx buffers TX1 and TX2 are available. The
value read from CANTFLG is therefore 0b0000_0110. When writing this value back to CANTBSEL, the
Tx buffer TX1 is selected in the CANTXFG because the lowest numbered bit set to 1 is at bit position 1.
Reading back this value out of CANTBSEL results in 0b0000_0010, because only the lowest numbered
bit position set to 1 is presented. This mechanism eases the application software the selection of the next
available Tx buffer.

• LDD CANTFLG; value read is 0b0000_0110

• STD CANTBSEL; value written is 0b0000_0110

• LDD CANTBSEL; value read is 0b0000_0010

If all transmit message buffers are deselected, no accesses are allowed to the CANTXFG registers.

Module Base + 0x000A

7 6 5 4 3 2 1 0

R 0 0 0 0 0
TX2 TX1 TX0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 10-14. MSCAN Transmit Buffer Selection Register (CANTBSEL)

Table 10-15. CANTBSEL Register Field Descriptions

Field Description

2:0
TX[2:0]

Transmit Buffer Select — The lowest numbered bit places the respective transmit buffer in the CANTXFG
register space (e.g., TX1 = 1 and TX0 = 1 selects transmit buffer TX0; TX1 = 1 and TX0 = 0 selects transmit
buffer TX1). Read and write accesses to the selected transmit buffer will be blocked, if the corresponding TXEx
bit is cleared and the buffer is scheduled for transmission (see Section 10.3.2.7, “MSCAN Transmitter Flag
Register (CANTFLG)”).
0 The associated message buffer is deselected
1 The associated message buffer is selected, if lowest numbered bit
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— a) the 14 most significant bits of the extended identifier plus the SRR and IDE bits of CAN 2.0B
messages or

— b) the 11 bits of the standard identifier, the RTR and IDE bits of CAN 2.0A/B messages.
Figure 10-40 shows how the first 32-bit filter bank (CANIDAR0–CANIDA3,
CANIDMR0–3CANIDMR) produces filter 0 and 1 hits. Similarly, the second filter bank
(CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7) produces filter 2 and 3 hits.

• Eight identifier acceptance filters, each to be applied to the first 8 bits of the identifier. This mode
implements eight independent filters for the first 8 bits of a CAN 2.0A/B compliant standard
identifier or a CAN 2.0B compliant extended identifier. Figure 10-41 shows how the first 32-bit
filter bank (CANIDAR0–CANIDAR3, CANIDMR0–CANIDMR3) produces filter 0 to 3 hits.
Similarly, the second filter bank (CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7)
produces filter 4 to 7 hits.

• Closed filter. No CAN message is copied into the foreground buffer RxFG, and the RXF flag is
never set.

Figure 10-39. 32-bit Maskable Identifier Acceptance Filter
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ID10 ID3IDR0

ID20 ID15IDR1

ID2 IDEIDR1
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AC7 AC0CANIDAR2

AM7 AM0CANIDMR2

AC7 AC0CANIDAR3
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CAN 2.0A/B
Standard Identifier



Chapter 12 Pulse-Width Modulator (PWM8B6CV1) Block Description

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 349
 Rev 01.24

12.2.4 PWM2 — Pulse Width Modulator Channel 2 Pin

This pin serves as waveform output of PWM channel 2.

12.2.5 PWM1 — Pulse Width Modulator Channel 1 Pin

This pin serves as waveform output of PWM channel 1.

12.2.6 PWM0 — Pulse Width Modulator Channel 0 Pin

This pin serves as waveform output of PWM channel 0.

12.3 Memory Map and Register Definition
This subsection describes in detail all the registers and register bits in the PWM8B6CV1 module.

The special-purpose registers and register bit functions that would not normally be made available to
device end users, such as factory test control registers and reserved registers are clearly identified by means
of shading the appropriate portions of address maps and register diagrams. Notes explaining the reasons
for restricting access to the registers and functions are also explained in the individual register descriptions.

12.3.1 Module Memory Map

The following paragraphs describe the content of the registers in the PWM8B6CV1 module. The base
address of the PWM8B6CV1 module is determined at the MCU level when the MCU is defined. The
register decode map is fixed and begins at the first address of the module address offset. Table 12-1 shows
the registers associated with the PWM and their relative offset from the base address. The register detail
description follows the order in which they appear in the register map.

Reserved bits within a register will always read as 0 and the write will be unimplemented. Unimplemented
functions are indicated by shading the bit.

Table 12-1 shows the memory map for the PWM8B6CV1 module.

NOTE
Register address = base address + address offset, where the base address is
defined at the MCU level and the address offset is defined at the module
level.
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12.3.2.12 PWM Channel Counter Registers (PWMCNTx)

Each channel has a dedicated 8-bit up/down counter which runs at the rate of the selected clock source.
The counter can be read at any time without affecting the count or the operation of the PWM channel. In
left aligned output mode, the counter counts from 0 to the value in the period register – 1. In center aligned
output mode, the counter counts from 0 up to the value in the period register and then back down to 0.

Any value written to the counter causes the counter to reset to 0x0000, the counter direction to be set to
up, the immediate load of both duty and period registers with values from the buffers, and the output to
change according to the polarity bit. The counter is also cleared at the end of the effective period (see
Section 12.4.2.5, “Left Aligned Outputs,” and Section 12.4.2.6, “Center Aligned Outputs,” for more
details). When the channel is disabled (PWMEx = 0), the PWMCNTx register does not count. When a
channel becomes enabled (PWMEx = 1), the associated PWM counter starts at the count in the
PWMCNTx register. For more detailed information on the operation of the counters, reference
Section 12.4.2.4, “PWM Timer Counters.”

In concatenated mode, writes to the 16-bit counter by using a 16-bit access or writes to either the low- or
high-order byte of the counter will reset the 16-bit counter. Reads of the 16-bit counter must be made by
16-bit access to maintain data coherency.

NOTE
Writing to the counter while the channel is enabled can cause an irregular
PWM cycle to occur.

Module Base + 0x000C

7 6 5 4 3 2 1 0

R Bit 7 6 5 4 3 2 1 Bit 0

W 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0

Figure 12-15. PWM Channel Counter Registers (PWMCNT0)

Module Base + 0x000D

7 6 5 4 3 2 1 0

R Bit 7 6 5 4 3 2 1 Bit 0

W 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0

Figure 12-16. PWM Channel Counter Registers (PWMCNT1)
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12.4 Functional Description

12.4.1 PWM Clock Select

There are four available clocks called clock A, clock B, clock SA (scaled A), and clock SB (scaled B).
These four clocks are based on the bus clock.

Clock A and B can be software selected to be 1, 1/2, 1/4, 1/8,..., 1/64, 1/128 times the bus clock. Clock SA
uses clock A as an input and divides it further with a reloadable counter. Similarly, clock SB uses clock B
as an input and divides it further with a reloadable counter. The rates available for clock SA are software
selectable to be clock A divided by 2, 4, 6, 8, ..., or 512 in increments of divide by 2. Similar rates are
available for clock SB. Each PWM channel has the capability of selecting one of two clocks, either the
pre-scaled clock (clock A or B) or the scaled clock (clock SA or SB).

The block diagram in Figure 12-34 shows the four different clocks and how the scaled clocks are created.

12.4.1.1 Prescale

The input clock to the PWM prescaler is the bus clock. It can be disabled whenever the part is in freeze
mode by setting the PFRZ bit in the PWMCTL register. If this bit is set, whenever the MCU is in freeze
mode the input clock to the prescaler is disabled. This is useful for emulation in order to freeze the PWM.
The input clock can also be disabled when all six PWM channels are disabled (PWME5–PWME0 = 0)
This is useful for reducing power by disabling the prescale counter.

Clock A and clock B are scaled values of the input clock. The value is software selectable for both clock A
and clock B and has options of 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, or 1/128 times the bus clock. The value
selected for clock A is determined by the PCKA2, PCKA1, and PCKA0 bits in the PWMPRCLK register.
The value selected for clock B is determined by the PCKB2, PCKB1, and PCKB0 bits also in the
PWMPRCLK register.
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Chapter 15
Timer Module (TIM16B8CV1) Block Description

15.1 Introduction
The basic timer consists of a 16-bit, software-programmable counter driven by a seven-stage
programmable prescaler.

This timer can be used for many purposes, including input waveform measurements while simultaneously
generating an output waveform. Pulse widths can vary from microseconds to many seconds.

This timer contains 8 complete input capture/output compare channels and one pulse accumulator. The
input capture function is used to detect a selected transition edge and record the time. The output compare
function is used for generating output signals or for timer software delays. The 16-bit pulse accumulator
is used to operate as a simple event counter or a gated time accumulator. The pulse accumulator shares
timer channel 7 when in event mode.

A full access for the counter registers or the input capture/output compare registers should take place in
one clock cycle. Accessing high byte and low byte separately for all of these registers may not yield the
same result as accessing them in one word.

15.1.1 Features

The TIM16B8CV1 includes these distinctive features:

• Eight input capture/output compare channels.

• Clock prescaling.

• 16-bit counter.

• 16-bit pulse accumulator.

Table 15-1. Revision History

Version
 Number

Revision Dates
Effective

Date
Author Description of Changes

01.03 06 Feb 2006 06 Feb 2006 S. Chinnam Corrected the type at 0x006 and later in the document
from TSCR2 and TSCR1

01.04 08 July 2008 08 July 2008 S. Chinnam Revised flag clearing procedure, whereby TEN bit must be
set when clearing flags.

01.05 05 May 2010 05 May 2010 Ame Wang -in 15.3.2.8/15-446,add Table 15-11
-in 15.3.2.11/15-450,TCRE bit description part,add Note
-in 15.4.3/15-459,add Figure 15-29
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NOTE
The newly selected prescale factor will not take effect until the next
synchronized edge where all prescale counter stages equal zero.

15.3.2.12 Main Timer Interrupt Flag 1 (TFLG1)

Read: Anytime

Table 15-15. TSCR2 Field Descriptions

Field Description

7
TOI

Timer Overflow Interrupt Enable
0 Interrupt inhibited.
1 Hardware interrupt requested when TOF flag set.

3
TCRE

Timer Counter Reset Enable — This bit allows the timer counter to be reset by a successful output compare 7
event. This mode of operation is similar to an up-counting modulus counter.
0 Counter reset inhibited and counter free runs.
1 Counter reset by a successful output compare 7.
Note: If TC7 = 0x0000 and TCRE = 1, TCNT will stay at 0x0000 continuously. If TC7 = 0xFFFF and TCRE = 1,

TOF will never be set when TCNT is reset from 0xFFFF to 0x0000.
Note: TCRE=1 and TC7!=0, the TCNT cycle period will be TC7 x "prescaler counter width" + "1 Bus Clock", for

a more detail explanation please refer to Section 15.4.3, “Output Compare

2
PR[2:0]

Timer Prescaler Select — These three bits select the frequency of the timer prescaler clock derived from the
Bus Clock as shown in Table 15-16.

Table 15-16. Timer Clock Selection

PR2 PR1 PR0 Timer Clock

0 0 0 Bus Clock / 1

0 0 1 Bus Clock / 2

0 1 0 Bus Clock / 4

0 1 1 Bus Clock / 8

1 0 0 Bus Clock / 16

1 0 1 Bus Clock / 32

1 1 0 Bus Clock / 64

1 1 1 Bus Clock / 128

Module Base + 0x000E

7 6 5 4 3 2 1 0

R
C7F C6F C5F C4F C3F C2F C1F C0F

W

Reset 0 0 0 0 0 0 0 0

Figure 15-20. Main Timer Interrupt Flag 1 (TFLG1)
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All bits read 0 and are not writable.

17.3.2.12 RESERVED4

This register is reserved for factory testing and is not accessible to the user.

All bits read 0 and are not writable.

17.3.2.13 RESERVED5

This register is reserved for factory testing and is not accessible to the user.

All bits read 0 and are not writable.

17.3.2.14 RESERVED6

This register is reserved for factory testing and is not accessible to the user.

Module Base + 0x000C

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 17-17. RESERVED3

Module Base + 0x000D

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 17-18. RESERVED4

Module Base + 0x000E

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 17-19. RESERVED5
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addresses sequentially staring with 0xFF00-0xFF01 and ending with 0xFF06–0xFF07. The values 0x0000
and 0xFFFF are not permitted as keys. When the KEYACC bit is set, reads of the Flash array will return
invalid data.

The user code stored in the Flash array must have a method of receiving the backdoor key from an external
stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If KEYEN[1:0] = 1:0 in the FSEC register, the MCU can be unsecured by the backdoor key access
sequence described below:

1. Set the KEYACC bit in the FCNFG register

2. Write the correct four 16-bit words to Flash addresses 0xFF00–0xFF07 sequentially starting with
0xFF00

3. Clear the KEYACC bit in the FCNFG register

4. If all four 16-bit words match the backdoor key stored in Flash addresses 0xFF00–0xFF07, the
MCU is unsecured and bits SEC[1:0] in the FSEC register are forced to the unsecure state of 1:0

The backdoor key access sequence is monitored by the internal security state machine. An illegal operation
during the backdoor key access sequence will cause the security state machine to lock, leaving the MCU
in the secured state. A reset of the MCU will cause the security state machine to exit the lock state and
allow a new backdoor key access sequence to be attempted. The following illegal operations will lock the
security state machine:

1. If any of the four 16-bit words does not match the backdoor key programmed in the Flash array

2. If the four 16-bit words are written in the wrong sequence

3. If more than four 16-bit words are written

4. If any of the four 16-bit words written are 0x0000 or 0xFFFF

5. If the KEYACC bit does not remain set while the four 16-bit words are written

After the backdoor key access sequence has been correctly matched, the MCU will be unsecured. The
Flash security byte can be programmed to the unsecure state, if desired.

In the unsecure state, the user has full control of the contents of the four word backdoor key by
programming bytes 0xFF00–0xFF07 of the Flash configuration field.

The security as defined in the Flash security/options byte at address 0xFF0F is not changed by using the
backdoor key access sequence to unsecure. The backdoor key stored in addresses 0xFF00–0xFF07 is
unaffected by the backdoor key access sequence. After the next reset sequence, the security state of the
Flash module is determined by the Flash security/options byte at address 0xFF0F. The backdoor key access
sequence has no effect on the program and erase protection defined in the FPROT register.

It is not possible to unsecure the MCU in special single chip mode by executing the backdoor key access
sequence in background debug mode.
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18.4.2 Operating Modes

18.4.2.1 Wait Mode

If the MCU enters wait mode while a Flash command is active (CCIF = 0), that command and any buffered
command will be completed.

The Flash module can recover the MCU from wait mode if the interrupts are enabled (see Section 18.4.5).

18.4.2.2 Stop Mode

If the MCU enters stop mode while a Flash command is active (CCIF = 0), that command will be aborted
and the data being programmed or erased is lost. The high voltage circuitry to the Flash array will be
switched off when entering stop mode. CCIF and ACCERR flags will be set. Upon exit from stop mode,
the CBEIF flag will be set and any buffered command will not be executed. The ACCERR flag must be
cleared before returning to normal operation.

NOTE
As active Flash commands are immediately aborted when the MCU enters
stop mode, it is strongly recommended that the user does not use the STOP
instruction during program and erase execution.

18.4.2.3 Background Debug Mode

In background debug mode (BDM), the FPROT register is writable. If the MCU is unsecured, then all
Flash commands listed in Table 18-16 can be executed. If the MCU is secured and is in special single chip
mode, the only possible command to execute is mass erase.

18.4.3 Flash Module Security

The Flash module provides the necessary security information to the MCU. After each reset, the Flash
module determines the security state of the MCU as defined in Section 18.3.2.2, “Flash Security Register
(FSEC)”.

The contents of the Flash security/options byte at address 0xFF0F in the Flash configuration field must be
changed directly by programming address 0xFF0F when the device is unsecured and the higher address
sector is unprotected. If the Flash security/options byte is left in the secure state, any reset will cause the
MCU to return to the secure operating mode.

18.4.3.1 Unsecuring the MCU using Backdoor Key Access

The MCU may only be unsecured by using the backdoor key access feature which requires knowledge of
the contents of the backdoor key (four 16-bit words programmed at addresses 0xFF00–0xFF07). If
KEYEN[1:0] = 1:0 and the KEYACC bit is set, a write to a backdoor key address in the Flash array triggers
a comparison between the written data and the backdoor key data stored in the Flash array. If all four words
of data are written to the correct addresses in the correct order and the data matches the backdoor key
stored in the Flash array, the MCU will be unsecured. The data must be written to the backdoor key
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Figure 19-11 illustrates all possible protection scenarios. Although the protection scheme is loaded from
the Flash array after reset, it is allowed to change in normal modes. This protection scheme can be used by
applications requiring re-programming in single chip mode while providing as much protection as possible
if no re-programming is required.

Table 19-10. Flash Protection Function

FPOPEN FPHDIS FPHS[1] FPHS[0] FPLDIS FPLS[1] FPLS[0] Function(1)

1. For range sizes refer to Table 19-11 and Table 19-12 or .

1 1 x x 1 x x No protection

1 1 x x 0 x x Protect low range

1 0 x x 1 x x Protect high range

1 0 x x 0 x x Protect high and low ranges

0 1 x x 1 x x Full Flash array protected

0 0 x x 1 x x Unprotected high range

0 1 x x 0 x x Unprotected low range

0 0 x x 0 x x Unprotected high and low ranges

Table 19-11. Flash Protection Higher Address Range

FPHS[1:0]  Address Range Range Size

00 0xF800–0xFFFF 2 Kbytes

01 0xF000–0xFFFF 4 Kbytes

10 0xE000–0xFFFF 8 Kbytes

11 0xC000–0xFFFF 16 Kbytes

Table 19-12. Flash Protection Lower Address Range

FPLS[1:0]  Address Range Range Size

00 0x4000–0x43FF 1 Kbyte

01 0x4000–0x47FF 2 Kbytes

10 0x4000–0x4FFF 4 Kbytes

11 0x4000–0x5FFF 8 Kbytes
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The security function in the Flash module is described in Section 20.4.3, “Flash Module Security”.

20.3.2.3 RESERVED1

This register is reserved for factory testing and is not accessible to the user.

All bits read 0 and are not writable.

Table 20-5. FSEC Field Descriptions

Field Description

7–6
KEYEN[1:0]

Backdoor Key Security Enable Bits — The KEYEN[1:0] bits define the enabling of the backdoor key access
to the Flash module as shown in Table 20-6.

5–2
NV[5:2]

Nonvolatile Flag Bits — The NV[5:2] bits are available to the user as nonvolatile flags.

1–0
SEC[1:0]

Flash Security Bits — The SEC[1:0] bits define the security state of the MCU as shown in Table 20-7. If the
Flash module is unsecured using backdoor key access, the SEC[1:0] bits are forced to 1:0.

Table 20-6. Flash KEYEN States

KEYEN[1:0] Status of Backdoor Key Access

00 DISABLED

01(1)

1. Preferred KEYEN state to disable Backdoor Key Access.

DISABLED

10 ENABLED

11 DISABLED

Table 20-7. Flash Security States

SEC[1:0] Status of Security

00 Secured

01(1)

1. Preferred SEC state to set MCU to secured state.

Secured

10 Unsecured

11 Secured

Module Base + 0x0002

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-8. RESERVED1


