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0x0253 RDRM
Read: 0 0

RDRM5 RDRM4 RDRM3 RDRM2 RDRM1 RDRM0
Write:

0x0254 PERM
Read: 0 0

PERM5 PERM4 PERM3 PERM2 PERM1 PERM0
Write:

0x0255 PPSM
Read: 0 0

PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0
Write:

0x0256 WOMM
Read: 0 0

WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0
Write:

0x0257 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0258 PTP
Read:

PTP7 PTP6 PTP5 PTP4 PTP3 PTP2 PTP1 PTP0
Write:

0x0259 PTIP
Read: PTIP7 PTIP6 PTIP5 PTIP4 PTIP3 PTIP2 PTIP1 PTIP0
Write:

0x025A DDRP
Read:

DDRP7 DDRP7 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0
Write:

0x025B RDRP
Read:

RDRP7 RDRP6 RDRP5 RDRP4 RDRP3 RDRP2 RDRP1 RDRP0
Write:

0x025C PERP
Read:

PERP7 PERP6 PERP5 PERP4 PERP3 PERP2 PERP1 PERP0
Write:

0x025D PPSP
Read:

PPSP7 PPSP6 PPSP5 PPSP4 PPSP3 PPSP2 PPSP1 PPSS0
Write:

0x025E PIEP
Read:

PIEP7 PIEP6 PIEP5 PIEP4 PIEP3 PIEP2 PIEP1 PIEP0
Write:

0x025F PIFP
Read:

PIFP7 PIFP6 PIFP5 PIFP4 PIFP3 PIFP2 PIFP1 PIFP0
Write:

0x0260 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0261 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0262 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0263 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0264 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0265 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0266 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0267 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0268 PTJ
Read:

PTJ7 PTJ6
0 0 0 0 0 0

Write:

0x0269 PTIJ
Read: PTIJ7 PTIJ6 0 0 0 0 0 0
Write:

0x0240–0x027F PIM (Port Interface Module) (Sheet 2 of 3)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
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2.3.2.3.6 Port M Polarity Select Register (PPSM)

Read: Anytime.

Write: Anytime.

2.3.2.3.7 Port M Wired-OR Mode Register (WOMM)

Read: Anytime.

Write: Anytime.

Module Base + 0x0015

7 6 5 4 3 2 1 0

R 0 0
PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 2-22. Port M Polarity Select Register (PPSM)

Table 2-20. PPSM Field Descriptions

Field Description

5–0
PPSM[5:0]

Polarity Select Port M — This register selects whether a pull-down or a pull-up device is connected to the pin.
0 A pull-up device is connected to the associated port M pin, if enabled by the associated bit in register PERM

and if the port is used as input or as wired-or output.
1 A pull-down device is connected to the associated port M pin, if enabled by the associated bit in register PERM

and if the port is used as input.

Module Base + 0x0016

7 6 5 4 3 2 1 0

R 0 0
WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 2-23. Port M Wired-OR Mode Register (WOMM)

Table 2-21. WOMM Field Descriptions

Field Description

5–0
WOMM[5:0]

Wired-OR Mode Port M — This register configures the output pins as wired-or. If enabled the output is driven
active low only (open-drain). A logic level of “1” is not driven. This bit has no influence on pins used as inputs.
0 Output buffers operate as push-pull outputs.
1 Output buffers operate as open-drain outputs.
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2.3.2.5.3 Port J Data Direction Register (DDRJ)

Read: Anytime.

Write: Anytime.

2.3.2.5.4 Port J Reduced Drive Register (RDRJ)

Read: Anytime.

Write: Anytime.

Module Base + 0x002A

7 6 5 4 3 2 1 0

R
DDRJ7 DDRJ6

0 0 0 0 0 0

W

Reset 0 0 — — — — — —

= Unimplemented or Reserved

Figure 2-34. Port J Data Direction Register (DDRJ)

Table 2-28. DDRJ Field Descriptions

Field Description

7–6
DDRJ[7:6]

Data Direction Port J — This register configures port pins J[7:6] as either input or output.
DDRJ[7:6] — Data Direction Port J
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is read on PTJ

or PTIJ registers, when changing the DDRJ register.

Module Base + 0x002B

7 6 5 4 3 2 1 0

R
RDRJ7 RDRJ6

0 0 0 0 0 0

W

Reset 0 0 — — — — — —

= Unimplemented or Reserved

Figure 2-35. Port J Reduced Drive Register (RDRJ)

Table 2-29. RDRJ Field Descriptions

Field Description

7–6
RDRJ[7:6]

Reduced Drive Port J — This register configures the drive strength of each port J output pin as either full or
reduced. If the port is used as input this bit is ignored.
0 Full drive strength at output.
1 Associated pin drives at about 1/3 of the full drive strength.
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2.6 Interrupts
Port P and J generate a separate edge sensitive interrupt if enabled.

2.6.1 Interrupt Sources

NOTE
Vector addresses and their relative interrupt priority are determined at the
MCU level.

2.6.2 Recovery from STOP

The PIM can generate wake-up interrupts from STOP on port P and J. For other sources of external
interrupts please refer to the respective Block User Guide.

2.7 Application Information
It is not recommended to write PORTx and DDRx in a word access. When changing the register pins from
inputs to outputs, the data may have extra transitions during the write access. Initialize the port data register
before enabling the outputs.

Power consumption will increase the more the voltages on general purpose input pins deviate from the
supply voltages towards mid-range because the digital input buffers operate in the linear region.

Table 2-39. Port Reset State Summary

Port
Reset States

Data Direction Pull Mode Reduced Drive Wired-OR Mode Interrupt

T Input Hi-z Disabled n/a n/a

S Input Pull up Disabled Disabled n/a

M Input Pull up Disabled Disabled n/a

P Input Hi-z Disabled n/a Disabled

J Input Hi-z Disabled n/a Disabled

A

Refer to MEBI Block Guide for details.
B

E

BKGD pin Refer to BDM Block Guide for details.

Table 2-40. Port Integration Module Interrupt Sources

Interrupt Source Interrupt Flag Local Enable Global (CCR) Mask

Port P PIFP[7:0] PIEP[7:0] I Bit

Port J PIFJ[7:6] PIEJ[7:6] I Bit
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• Nine hardware commands using free cycles, if available, for minimal CPU intervention

• Hardware commands not requiring active BDM

• 15 firmware commands execute from the standard BDM firmware lookup table

• Instruction tagging capability

• Software control of BDM operation during wait mode

• Software selectable clocks

• When secured, hardware commands are allowed to access the register space in special single-chip
mode, if the FLASH and EEPROM erase tests fail.

6.1.2 Modes of Operation

BDM is available in all operating modes but must be enabled before firmware commands are executed.
Some system peripherals may have a control bit which allows suspending the peripheral function during
background debug mode.

6.1.2.1 Regular Run Modes

All of these operations refer to the part in run mode. The BDM does not provide controls to conserve power
during run mode.

• Normal operation

General operation of the BDM is available and operates the same in all normal modes.

• Special single-chip mode

In special single-chip mode, background operation is enabled and active out of reset. This allows
programming a system with blank memory.

• Special peripheral mode

BDM is enabled and active immediately out of reset. BDM can be disabled by clearing the
BDMACT bit in the BDM status (BDMSTS) register. The BDM serial system should not be used
in special peripheral mode.

NOTE
The BDM serial system should not be used in special peripheral mode since
the CPU, which in other modes interfaces with the BDM to relinquish
control of the bus during a free cycle or a steal operation, is not operating in
this mode.

• Emulation modes

General operation of the BDM is available and operates the same as in normal modes.

6.1.2.2 Secure Mode Operation

If the part is in secure mode, the operation of the BDM is reduced to a small subset of its regular run mode
operation. Secure operation prevents access to FLASH or EEPROM other than allowing erasure.
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6.4.8 Hardware Handshake Abort Procedure

The abort procedure is based on the SYNC command. In order to abort a command, which had not issued
the corresponding ACK pulse, the host controller should generate a low pulse in the BKGD pin by driving
it low for at least 128 serial clock cycles and then driving it high for one serial clock cycle, providing a
speedup pulse. By detecting this long low pulse in the BKGD pin, the target executes the SYNC protocol,
see Section 6.4.9, “SYNC — Request Timed Reference Pulse,” and assumes that the pending command
and therefore the related ACK pulse, are being aborted. Therefore, after the SYNC protocol has been
completed the host is free to issue new BDM commands.

Although it is not recommended, the host could abort a pending BDM command by issuing a low pulse in
the BKGD pin shorter than 128 serial clock cycles, which will not be interpreted as the SYNC command.
The ACK is actually aborted when a falling edge is perceived by the target in the BKGD pin. The short
abort pulse should have at least 4 clock cycles keeping the BKGD pin low, in order to allow the falling
edge to be detected by the target. In this case, the target will not execute the SYNC protocol but the pending
command will be aborted along with the ACK pulse. The potential problem with this abort procedure is
when there is a conflict between the ACK pulse and the short abort pulse. In this case, the target may not
perceive the abort pulse. The worst case is when the pending command is a read command (i.e.,
READ_BYTE). If the abort pulse is not perceived by the target the host will attempt to send a new
command after the abort pulse was issued, while the target expects the host to retrieve the accessed
memory byte. In this case, host and target will run out of synchronism. However, if the command to be
aborted is not a read command the short abort pulse could be used. After a command is aborted the target
assumes the next falling edge, after the abort pulse, is the first bit of a new BDM command.

NOTE
The details about the short abort pulse are being provided only as a reference
for the reader to better understand the BDM internal behavior. It is not
recommended that this procedure be used in a real application.

Because the host knows the target serial clock frequency, the SYNC command (used to abort a command)
does not need to consider the lower possible target frequency. In this case, the host could issue a SYNC
very close to the 128 serial clock cycles length. Providing a small overhead on the pulse length in order to
assure the SYNC pulse will not be misinterpreted by the target. See Section 6.4.9, “SYNC — Request
Timed Reference Pulse.”

Figure 6-12 shows a SYNC command being issued after a READ_BYTE, which aborts the READ_BYTE
command. Note that, after the command is aborted a new command could be issued by the host computer.

NOTE
Figure 6-12 does not represent the signals in a true timing scale
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If the PRE bit is set, the RTI will continue to run in pseudo-stop mode.
.

Figure 9-22. Clock Chain for RTI

9.4.7 Modes of Operation

9.4.7.1 Normal Mode

The CRGV4 block behaves as described within this specification in all normal modes.

9.4.7.2 Self-Clock Mode

The VCO has a minimum operating frequency, fSCM. If the external clock frequency is not available due
to a failure or due to long crystal start-up time, the bus clock and the core clock are derived from the VCO
running at minimum operating frequency; this mode of operation is called self-clock mode. This requires
CME = 1 and SCME = 1. If the MCU was clocked by the PLL clock prior to entering self-clock mode, the
PLLSEL bit will be cleared. If the external clock signal has stabilized again, the CRG will automatically
select OSCCLK to be the system clock and return to normal mode. See Section 9.4.4, “Clock Quality
Checker” for more information on entering and leaving self-clock mode.

OSCCLK

 RTR[6:4]
0:0:0

0:0:1

0:1:0

0:1:1

1:0:0

1:0:1

1:1:0

1:1:1

÷ 2

÷ 2

÷ 2

÷ 2

÷ 2

÷ 2

COUNTER (RTR[3:0])
4-BIT MODULUS

÷ 1024

RTI TIMEOUT= Clock Gate

WAIT(RTIWAI),
STOP(PSTP,PRE),

RTI enable

gating condition
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10.3.3.3 Data Length Register (DLR)

This register keeps the data length field of the CAN frame.

10.3.3.4 Transmit Buffer Priority Register (TBPR)

This register defines the local priority of the associated message buffer. The local priority is used for the
internal prioritization process of the MSCAN and is defined to be highest for the smallest binary number.
The MSCAN implements the following internal prioritization mechanisms:

• All transmission buffers with a cleared TXEx flag participate in the prioritization immediately
before the SOF (start of frame) is sent.

• The transmission buffer with the lowest local priority field wins the prioritization.

Module Base + 0x00XB

7 6 5 4 3 2 1 0

R
DLC3 DLC2 DLC1 DLC0

W

Reset: x x x x x x x x

= Unused; always read “x”

Figure 10-34. Data Length Register (DLR) — Extended Identifier Mapping

Table 10-31.  DLR Register Field Descriptions

Field Description

3:0
DLC[3:0]

Data Length Code Bits — The data length code contains the number of bytes (data byte count) of the respective
message. During the transmission of a remote frame, the data length code is transmitted as programmed while
the number of transmitted data bytes is always 0. The data byte count ranges from 0 to 8 for a data frame.
Table 10-32 shows the effect of setting the DLC bits.

Table 10-32. Data Length Codes

Data Length Code Data Byte
CountDLC3 DLC2 DLC1 DLC0

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8
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• If there are one or more message buffers scheduled for transmission (TXEx = 0), the MSCAN will
continue to transmit until all transmit message buffers are empty (TXEx = 1, transmitted
successfully or aborted) and then goes into sleep mode.

• If the MSCAN is receiving, it continues to receive and goes into sleep mode as soon as the CAN
bus next becomes idle.

• If the MSCAN is neither transmitting nor receiving, it immediately goes into sleep mode.

Figure 10-44. Sleep Request / Acknowledge Cycle

NOTE
The application software must avoid setting up a transmission (by clearing
one or more TXEx flag(s)) and immediately request sleep mode (by setting
SLPRQ). Whether the MSCAN starts transmitting or goes into sleep mode
directly depends on the exact sequence of operations.

If sleep mode is active, the SLPRQ and SLPAK bits are set (Figure 10-44). The application software must
use SLPAK as a handshake indication for the request (SLPRQ) to go into sleep mode.

When in sleep mode (SLPRQ = 1 and SLPAK = 1), the MSCAN stops its internal clocks. However, clocks
that allow register accesses from the CPU side continue to run.

If the MSCAN is in bus-off state, it stops counting the 128 occurrences of 11 consecutive recessive bits
due to the stopped clocks. The TXCAN pin remains in a recessive state. If RXF = 1, the message can be
read and RXF can be cleared. Shifting a new message into the foreground buffer of the receiver FIFO
(RxFG) does not take place while in sleep mode.

It is possible to access the transmit buffers and to clear the associated TXE flags. No message abort takes
place while in sleep mode.

If the WUPE bit in CANCLT0 is not asserted, the MSCAN will mask any activity it detects on CAN. The
RXCAN pin is therefore held internally in a recessive state. This locks the MSCAN in sleep mode
(Figure 10-45). WUPE must be set before entering sleep mode to take effect.

SYNC

SYNC

Bus Clock Domain CAN Clock Domain

MSCAN
in Sleep Mode

CPU
Sleep Request

SLPRQ
Flag

SLPAK
Flag

SLPRQ

sync.
SLPAK

sync.
SLPRQ

SLPAK



Chapter 12 Pulse-Width Modulator (PWM8B6CV1) Block Description

358 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

Read: anytime

Write: anytime

NOTE
Write these bits only when the corresponding channel is disabled.

12.3.2.6 PWM Control Register (PWMCTL)

The PWMCTL register provides for various control of the PWM module.

Module Base + 0x0004

7 6 5 4 3 2 1 0

R 0 0
CAE5 CAE4 CAE3 CAE2 CAE1 CAE0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-7. PWM Center Align Enable Register (PWMCAE)

Table 12-8. PWMCAE Field Descriptions

Field Description

5
CAE5

Center Aligned Output Mode on Channel 5
0 Channel 5 operates in left aligned output mode.
1 Channel 5 operates in center aligned output mode.

4
CAE4

Center Aligned Output Mode on Channel 4
0 Channel 4 operates in left aligned output mode.
1 Channel 4 operates in center aligned output mode.

3
CAE3

Center Aligned Output Mode on Channel 3
1 Channel 3 operates in left aligned output mode.
1 Channel 3 operates in center aligned output mode.

2
CAE2

Center Aligned Output Mode on Channel 2
0 Channel 2 operates in left aligned output mode.
1 Channel 2 operates in center aligned output mode.

1
CAE1

Center Aligned Output Mode on Channel 1
0 Channel 1 operates in left aligned output mode.
1 Channel 1 operates in center aligned output mode.

0
CAE0

Center Aligned Output Mode on Channel 0
0 Channel 0 operates in left aligned output mode.
1 Channel 0 operates in center aligned output mode.
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NOTE
In slave mode of SPI S-clock speed DIV2 is not supported.

1 0 0 1 1 1 1280 19.53 kHz

1 0 1 0 0 0 12 2.08333 MHz

1 0 1 0 0 1 24 1.04167 MHz

1 0 1 0 1 0 48 520.83 kHz

1 0 1 0 1 1 96 260.42 kHz

1 0 1 1 0 0 192 130.21 kHz

1 0 1 1 0 1 384 65.10 kHz

1 0 1 1 1 0 768 32.55 kHz

1 0 1 1 1 1 1536 16.28 kHz

1 1 0 0 0 0 14 1.78571 MHz

1 1 0 0 0 1 28 892.86 kHz

1 1 0 0 1 0 56 446.43 kHz

1 1 0 0 1 1 112 223.21 kHz

1 1 0 1 0 0 224 111.61 kHz

1 1 0 1 0 1 448 55.80 kHz

1 1 0 1 1 0 896 27.90 kHz

1 1 0 1 1 1 1792 13.95 kHz

1 1 1 0 0 0 16 1.5625 MHz

1 1 1 0 0 1 32 781.25 kHz

1 1 1 0 1 0 64 390.63 kHz

1 1 1 0 1 1 128 195.31 kHz

1 1 1 1 0 0 256 97.66 kHz

1 1 1 1 0 1 512 48.83 kHz

1 1 1 1 1 0 1024 24.41 kHz

1 1 1 1 1 1 2048 12.21 kHz

Table 14-7. Example SPI Baud Rate Selection (25 MHz Bus Clock) (continued)

SPPR2 SPPR1 SPPR0 SPR2 SPR1 SPR0
Baud Rate

Divisor
Baud Rate
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17.1.3 Modes of Operation

See Section 17.4.2, “Operating Modes” for a description of the Flash module operating modes. For
program and erase operations, refer to Section 17.4.1, “Flash Command Operations”.

17.1.4 Block Diagram

Figure 17-1 shows a block diagram of the FTS16K module.

Figure 17-1. FTS16K Block Diagram

17.2 External Signal Description
The FTS16K module contains no signals that connect off-chip.

FTS16K

Oscillator
Clock

Command
Complete
Interrupt

Command
Buffer Empty
Interrupt

Flash Array

8K * 16 Bits

sector 0
sector 1

sector 31

Clock
Divider FCLK

Protection

Security

Command Pipeline

cmd2
addr2
data2

cmd1
addr1
data1

Registers

Flash
Interface
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17.4.1.3.3 Sector Erase Command

The sector erase operation will erase all addresses in a 512 byte sector of the Flash array using an
embedded algorithm.

An example flow to execute the sector erase operation is shown in Figure 17-24. The sector erase
command write sequence is as follows:

1. Write to a Flash array address to start the command write sequence for the sector erase command.
The Flash address written determines the sector to be erased while MCU address bits [8:0] and the
data written are ignored.

2. Write the sector erase command, 0x40, to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase
command.

If a Flash sector to be erased is in a protected area of the Flash array, the PVIOL flag in the FSTAT register
will set and the sector erase command will not launch. Once the sector erase command has successfully
launched, the CCIF flag in the FSTAT register will set after the sector erase operation has completed unless
a new command write sequence has been buffered.
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Figure 18-24. Example Sector Erase Command Flow

Write: Flash Sector Address

Write: FCMD register
Sector Erase Command 0x40

Write: FSTAT register
Clear CBEIF 0x80

1.

2.

3.

Clear ACCERR/PVIOL 0x30
Write: FSTAT registeryes

no

Access Error and
Protection Violation

 and Dummy Data

Read: FSTAT register

Read: FSTAT register

no

START

yes

Check

CBEIF
Set?

Address, Data,
Command
Buffer Empty Check

ACCERR/
PVIOL
Set?

EXIT

Write: FCLKDIV register

Read: FCLKDIV register

yes

no
Clock Register
Written
Check

FDIVLD
Set?

NOTE: FCLKDIV needs to
be set once after each reset.

noBit Polling for
Command Completion
Check

yes

CCIF
Set?
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addresses sequentially staring with 0xFF00-0xFF01 and ending with 0xFF06–0xFF07. The values 0x0000
and 0xFFFF are not permitted as keys. When the KEYACC bit is set, reads of the Flash array will return
invalid data.

The user code stored in the Flash array must have a method of receiving the backdoor key from an external
stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If KEYEN[1:0] = 1:0 in the FSEC register, the MCU can be unsecured by the backdoor key access
sequence described below:

1. Set the KEYACC bit in the FCNFG register

2. Write the correct four 16-bit words to Flash addresses 0xFF00–0xFF07 sequentially starting with
0xFF00

3. Clear the KEYACC bit in the FCNFG register

4. If all four 16-bit words match the backdoor key stored in Flash addresses 0xFF00–0xFF07, the
MCU is unsecured and bits SEC[1:0] in the FSEC register are forced to the unsecure state of 1:0

The backdoor key access sequence is monitored by the internal security state machine. An illegal operation
during the backdoor key access sequence will cause the security state machine to lock, leaving the MCU
in the secured state. A reset of the MCU will cause the security state machine to exit the lock state and
allow a new backdoor key access sequence to be attempted. The following illegal operations will lock the
security state machine:

1. If any of the four 16-bit words does not match the backdoor key programmed in the Flash array

2. If the four 16-bit words are written in the wrong sequence

3. If more than four 16-bit words are written

4. If any of the four 16-bit words written are 0x0000 or 0xFFFF

5. If the KEYACC bit does not remain set while the four 16-bit words are written

After the backdoor key access sequence has been correctly matched, the MCU will be unsecured. The
Flash security byte can be programmed to the unsecure state, if desired.

In the unsecure state, the user has full control of the contents of the four word backdoor key by
programming bytes 0xFF00–0xFF07 of the Flash configuration field.

The security as defined in the Flash security/options byte at address 0xFF0F is not changed by using the
backdoor key access sequence to unsecure. The backdoor key stored in addresses 0xFF00–0xFF07 is
unaffected by the backdoor key access sequence. After the next reset sequence, the security state of the
Flash module is determined by the Flash security/options byte at address 0xFF0F. The backdoor key access
sequence has no effect on the program and erase protection defined in the FPROT register.

It is not possible to unsecure the MCU in special single chip mode by executing the backdoor key access
sequence in background debug mode.
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The security function in the Flash module is described in Section 19.4.3, “Flash Module Security”.

19.3.2.3 RESERVED1

This register is reserved for factory testing and is not accessible to the user.

All bits read 0 and are not writable.

Table 19-5. FSEC Field Descriptions

Field Description

7–6
KEYEN[1:0]

Backdoor Key Security Enable Bits — The KEYEN[1:0] bits define the enabling of the backdoor key access
to the Flash module as shown in Table 19-6.

5–2
NV[5:2]

Nonvolatile Flag Bits — The NV[5:2] bits are available to the user as nonvolatile flags.

1–0
SEC[1:0]

Flash Security Bits — The SEC[1:0] bits define the security state of the MCU as shown in Table 19-7. If the
Flash module is unsecured using backdoor key access, the SEC[1:0] bits are forced to 1:0.

Table 19-6. Flash KEYEN States

KEYEN[1:0] Status of Backdoor Key Access

00 DISABLED

01(1)

1. Preferred KEYEN state to disable Backdoor Key Access.

DISABLED

10 ENABLED

11 DISABLED

Table 19-7. Flash Security States

SEC[1:0] Status of Security

00 Secured

01(1)

1. Preferred SEC state to set MCU to secured state.

Secured

10 Unsecured

11 Secured

Module Base + 0x0002

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 19-8. RESERVED1
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Figure 20-26. Example Sector Erase Command Flow
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Sector Erase Command 0x40
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addresses sequentially staring with 0xFF00-0xFF01 and ending with 0xFF06–0xFF07. The values 0x0000
and 0xFFFF are not permitted as keys. When the KEYACC bit is set, reads of the Flash array will return
invalid data.

The user code stored in the Flash array must have a method of receiving the backdoor key from an external
stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If KEYEN[1:0] = 1:0 in the FSEC register, the MCU can be unsecured by the backdoor key access
sequence described below:

1. Set the KEYACC bit in the FCNFG register

2. Write the correct four 16-bit words to Flash addresses 0xFF00–0xFF07 sequentially starting with
0xFF00

3. Clear the KEYACC bit in the FCNFG register

4. If all four 16-bit words match the backdoor key stored in Flash addresses 0xFF00–0xFF07, the
MCU is unsecured and bits SEC[1:0] in the FSEC register are forced to the unsecure state of 1:0

The backdoor key access sequence is monitored by the internal security state machine. An illegal operation
during the backdoor key access sequence will cause the security state machine to lock, leaving the MCU
in the secured state. A reset of the MCU will cause the security state machine to exit the lock state and
allow a new backdoor key access sequence to be attempted. The following illegal operations will lock the
security state machine:

1. If any of the four 16-bit words does not match the backdoor key programmed in the Flash array

2. If the four 16-bit words are written in the wrong sequence

3. If more than four 16-bit words are written

4. If any of the four 16-bit words written are 0x0000 or 0xFFFF

5. If the KEYACC bit does not remain set while the four 16-bit words are written

After the backdoor key access sequence has been correctly matched, the MCU will be unsecured. The
Flash security byte can be programmed to the unsecure state, if desired.

In the unsecure state, the user has full control of the contents of the four word backdoor key by
programming bytes 0xFF00–0xFF07 of the Flash configuration field.

The security as defined in the Flash security/options byte at address 0xFF0F is not changed by using the
backdoor key access sequence to unsecure. The backdoor key stored in addresses 0xFF00–0xFF07 is
unaffected by the backdoor key access sequence. After the next reset sequence, the security state of the
Flash module is determined by the Flash security/options byte at address 0xFF0F. The backdoor key access
sequence has no effect on the program and erase protection defined in the FPROT register.

It is not possible to unsecure the MCU in special single chip mode by executing the backdoor key access
sequence in background debug mode.
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A.4.3 Phase Locked Loop

The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)
is also the system clock source in self clock mode.

A.4.3.1 XFC Component Selection

This section describes the selection of the XFC components to achieve a good filter characteristics.

Figure A-2. Basic PLL Functional Diagram

The following procedure can be used to calculate the resistance and capacitance values using typical values
for K1, f1 and ich from Table A-17.

The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used
for fOSC = 4MHz and a 25MHz bus clock.

The VCO Gain at the desired VCO frequency is approximated by:

The phase detector relationship is given by:

ich is the current in tracking mode.
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A.5.1.1 Single Word Programming

The programming time for single word programming is dependant on the bus frequency as a well as on the
frequency f¨NVMOP and can be calculated according to the following formula.

A.5.1.2 Row Programming

Generally the time to program a consecutive word can be calculated as:

For the C16, GC16, C32 and GC32 device flash arrays, where up to 32 words in a row can be programmed
consecutively by keeping the command pipeline filled, the time to program a whole row is:

For the C64, GC64, C96, C128 and GC128 device flash arrays, where up to 64 words in a row can be
programmed consecutively by keeping the command pipeline filled, the time to program a whole row is:

Row programming is more than 2 times faster than single word programming.

A.5.1.3 Sector Erase

Erasing either a 512 byte or 1024 byte Flash sector takes:

The setup times can be ignored for this operation.

A.5.1.4 Mass Erase

Erasing a NVM block takes:

This is independent of sector size.

The setup times can be ignored for this operation.
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