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• Operating frequency:
— 32MHz equivalent to 16MHz bus speed for single chip
— 32MHz equivalent to 16MHz bus speed in expanded bus modes
— Option of 9S12C Family: 50MHz equivalent to 25MHz bus speed
— All 9S12GC Family members allow a 50MHz operating frequency.

• Internal 2.5V regulator:
— Supports an input voltage range from 2.97V to 5.5V
— Low power mode capability
— Includes low voltage reset (LVR) circuitry
— Includes low voltage interrupt (LVI) circuitry

• 48-pin LQFP, 52-pin LQFP, or 80-pin QFP package:
— Up to 58 I/O lines with 5V input and drive capability (80-pin package)
— Up to 2 dedicated 5V input only lines (IRQ, XIRQ)
— 5V 8 A/D converter inputs and 5V I/O

• Development support:
— Single-wire background debug™ mode (BDM)
— On-chip hardware breakpoints
— Enhanced DBG12 debug features

1.1.2 Modes of Operation

User modes (expanded modes are only available in the 80-pin package version).

• Normal and emulation operating modes:
— Normal single-chip mode
— Normal expanded wide mode
— Normal expanded narrow mode
— Emulation expanded wide mode
— Emulation expanded narrow mode

• Special operating modes:
— Special single-chip mode with active background debug mode
— Special test mode (Freescale use only)
— Special peripheral mode (Freescale use only)

•  Low power modes:
— Stop mode
— Pseudo stop mode
— Wait mode
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Figure 1-4. MC9S12C64 and MC9S12GC64 User Configurable Memory Map
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0x0010–0x0014 MMC Map 1 of 4 (HCS12 Module Mapping Control)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0010 INITRM
Read:

RAM15 RAM14 RAM13 RAM12 RAM11
0 0

RAMHAL
Write:

0x0011 INITRG
Read: 0

REG14 REG13 REG12 REG11
0 0 0

Write:

0x0012 INITEE
Read:

EE15 EE14 EE13 EE12 EE11
0 0

EEON
Write:

0x0013 MISC
Read: 0 0 0 0

EXSTR1 EXSTR0 ROMHM ROMON
Write:

0x0014 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0015–0x0016 INT Map 1 of 2 (HCS12 Interrupt)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0015 ITCR
Read: 0 0 0

WRINT ADR3 ADR2 ADR1 ADR0
Write:

0x0016 ITEST
Read:

INTE INTC INTA INT8 INT6 INT4 INT2 INT0
Write:

0x0017–0x0017 MMC Map 2 of 4 (HCS12 Module Mapping Control)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0017 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0018–0x0018 Miscellaneous Peripherals (Device User Guide)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0018 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0019–0x0019 VREG3V3 (Voltage Regulator)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0019 VREGCTRL
Read: 0 0 0 0 0 LVDS

LVIE LVIF
Write:
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4.3.2.8 Port E Assignment Register (PEAR)

Read: Anytime (provided this register is in the map).

Write: Each bit has specific write conditions. Please refer to the descriptions of each bit on the following
pages.

Port E serves as general-purpose I/O or as system and bus control signals. The PEAR register is used to
choose between the general-purpose I/O function and the alternate control functions. When an alternate
control function is selected, the associated DDRE bits are overridden.

The reset condition of this register depends on the mode of operation because bus control signals are
needed immediately after reset in some modes. In normal single-chip mode, no external bus control signals
are needed so all of port E is configured for general-purpose I/O. In normal expanded modes, only the E
clock is configured for its alternate bus control function and the other bits of port E are configured for
general-purpose I/O. As the reset vector is located in external memory, the E clock is required for this
access. R/W is only needed by the system when there are external writable resources. If the normal
expanded system needs any other bus control signals, PEAR would need to be written before any access
that needed the additional signals. In special test and emulation modes, IPIPE1, IPIPE0, E, LSTRB, and
R/W are configured out of reset as bus control signals.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these
accesses will be echoed externally.

Module Base + 0x000A
Starting address location affected by INITRG register setting.

7 6 5 4 3 2 1 0

R
NOACCE

0
PIPOE NECLK LSTRE RDWE

0 0

W

Reset

Special Single Chip 0 0 0 0 0 0 0 0

Special Test 0 0 1 0 1 1 0 0

Peripheral 0 0 0 0 0 0 0 0

Emulation Expanded
Narrow

1 0 1 0 1 1 0 0

Emulation Expanded
Wide

1 0 1 0 1 1 0 0

Normal Single Chip 0 0 0 1 0 0 0 0

Normal Expanded
Narrow

0 0 0 0 0 0 0 0

Normal Expanded Wide 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-12. Port E Assignment Register (PEAR)
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mode. Background debugging should not be used while the MCU is in special peripheral mode as internal
bus conflicts between BDM and the external master can cause improper operation of both functions.

4.4.4 Internal Visibility

Internal visibility is available when the MCU is operating in expanded wide modes or emulation narrow
mode. It is not available in single-chip, peripheral or normal expanded narrow modes. Internal visibility is
enabled by setting the IVIS bit in the MODE register.

If an internal access is made while E, R/W, and LSTRB are configured as bus control outputs and internal
visibility is off (IVIS=0), E will remain low for the cycle, R/W will remain high, and address, data and the
LSTRB pins will remain at their previous state.

When internal visibility is enabled (IVIS=1), certain internal cycles will be blocked from going external.
During cycles when the BDM is selected, R/W will remain high, data will maintain its previous state, and
address and LSTRB pins will be updated with the internal value. During CPU no access cycles when the
BDM is not driving, R/W will remain high, and address, data and the LSTRB pins will remain at their
previous state.

NOTE
When the system is operating in a secure mode, internal visibility is not
available (i.e., IVIS = 1 has no effect). Also, the IPIPE signals will not be
visible, regardless of operating mode. IPIPE1–IPIPE0 will display 0es if
they are enabled. In addition, the MOD bits in the MODE control register
cannot be written.

4.4.5 Low-Power Options

The MEBI does not contain any user-controlled options for reducing power consumption. The operation
of the MEBI in low-power modes is discussed in the following subsections.

4.4.5.1 Operation in Run Mode

The MEBI does not contain any options for reducing power in run mode; however, the external addresses
are conditioned to reduce power in single-chip modes. Expanded bus modes will increase power
consumption.

4.4.5.2 Operation in Wait Mode

The MEBI does not contain any options for reducing power in wait mode.

4.4.5.3 Operation in Stop Mode

The MEBI will cease to function after execution of a CPU STOP instruction.
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6.4 Functional Description
The BDM receives and executes commands from a host via a single wire serial interface. There are two
types of BDM commands, namely, hardware commands and firmware commands.

Hardware commands are used to read and write target system memory locations and to enter active
background debug mode, see Section 6.4.3, “BDM Hardware Commands.” Target system memory
includes all memory that is accessible by the CPU.

Firmware commands are used to read and write CPU resources and to exit from active background debug
mode, see Section 6.4.4, “Standard BDM Firmware Commands.” The CPU resources referred to are the
accumulator (D), X index register (X), Y index register (Y), stack pointer (SP), and program counter (PC).

Hardware commands can be executed at any time and in any mode excluding a few exceptions as
highlighted, see Section 6.4.3, “BDM Hardware Commands.” Firmware commands can only be executed
when the system is in active background debug mode (BDM).

6.4.1 Security

If the user resets into special single-chip mode with the system secured, a secured mode BDM firmware
lookup table is brought into the map overlapping a portion of the standard BDM firmware lookup table.
The secure BDM firmware verifies that the on-chip EEPROM and FLASH EEPROM are erased. This
being the case, the UNSEC bit will get set. The BDM program jumps to the start of the standard BDM
firmware and the secured mode BDM firmware is turned off and all BDM commands are allowed. If the
EEPROM or FLASH do not verify as erased, the BDM firmware sets the ENBDM bit, without asserting
UNSEC, and the firmware enters a loop. This causes the BDM hardware commands to become enabled,
but does not enable the firmware commands. This allows the BDM hardware to be used to erase the
EEPROM and FLASH. After execution of the secure firmware, regardless of the results of the erase tests,
the CPU registers, INITEE and PPAGE, will no longer be in their reset state.

6.4.2 Enabling and Activating BDM

The system must be in active BDM to execute standard BDM firmware commands. BDM can be activated
only after being enabled. BDM is enabled by setting the ENBDM bit in the BDM status (BDMSTS)
register. The ENBDM bit is set by writing to the BDM status (BDMSTS) register, via the single-wire
interface, using a hardware command such as WRITE_BD_BYTE.

After being enabled, BDM is activated by one of the following1:

• Hardware BACKGROUND command

• BDM external instruction tagging mechanism

• CPU BGND instruction

• Breakpoint sub-block’s force or tag mechanism2

When BDM is activated, the CPU finishes executing the current instruction and then begins executing the
firmware in the standard BDM firmware lookup table. When BDM is activated by the breakpoint sub-

1. BDM is enabled and active immediately out of special single-chip reset.
2. This method is only available on systems that have a a breakpoint or a debug sub-block.
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DBGC2 being logic 1 or logic 0, respectively. BDM requests have a higher priority than SWI requests. No
data breakpoints are allowed in this mode.

TAGAB in DBGC2 selects whether the breakpoint mode is forced or tagged. The BKxMBH:L bits in
DBGC3 select whether or not the breakpoint is matched exactly or is a range breakpoint. They also select
whether the address is matched on the high byte, low byte, both bytes, and/or memory expansion. The
RWx and RWxEN bits in DBGC3 select whether the type of bus cycle to match is a read, write, or
read/write when performing forced breakpoints.

7.4.1.2 Full Breakpoint Mode

Full breakpoint mode requires a match on address and data for a breakpoint to occur. Upon a successful
match, the system will enter background debug mode or initiate a software interrupt based upon the state
of BDM in DBGC2 being logic 1 or logic 0, respectively. BDM requests have a higher priority than SWI
requests. R/W matches are also allowed in this mode.

TAGAB in DBGC2 selects whether the breakpoint mode is forced or tagged. When TAGAB is set in
DBGC2, only addresses are compared and data is ignored. The BKAMBH:L bits in DBGC3 select
whether or not the breakpoint is matched exactly, is a range breakpoint, or is in page space. The
BKBMBH:L bits in DBGC3 select whether the data is matched on the high byte, low byte, or both bytes.
RWA and RWAEN bits in DBGC2 select whether the type of bus cycle to match is a read or a write when
performing forced breakpoints. RWB and RWBEN bits in DBGC2 are not used in full breakpoint mode.

NOTE
The full trigger mode is designed to be used for either a word access or a
byte access, but not both at the same time. Confusing trigger operation
(seemingly false triggers or no trigger) can occur if the trigger address
occurs in the user program as both byte and word accesses.

7.4.1.3 Breakpoint Priority

Breakpoint operation is first determined by the state of the BDM module. If the BDM module is already
active, meaning the CPU is executing out of BDM firmware, breakpoints are not allowed. In addition,
while executing a BDM TRACE command, tagging into BDM is not allowed. If BDM is not active, the
breakpoint will give priority to BDM requests over SWI requests. This condition applies to both forced
and tagged breakpoints.

In all cases, BDM related breakpoints will have priority over those generated by the Breakpoint sub-block.
This priority includes breakpoints enabled by the TAGLO and TAGHI external pins of the system that
interface with the BDM directly and whose signal information passes through and is used by the
breakpoint sub-block.
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control (TBC) block. When PAGSEL = 01, registers DBGCAX, DBGCBX, and DBGCCX are used to
match the upper addresses as shown in Table 7-11.

NOTE
If a tagged-type C breakpoint is set at the same address as an A/B tagged-
type trigger (including the initial entry in an inside or outside range trigger),
the C breakpoint will have priority and the trigger will not be recognized.

7.4.2.1.1 Read or Write Comparison

Read or write comparisons are useful only with TRGSEL = 0, because only opcodes should be tagged as
they are “read” from memory. RWAEN and RWBEN are ignored when TRGSEL = 1.

In full modes (“A and B” and “A and not B”) RWAEN and RWA are used to select read or write
comparisons for both comparators A and B. Table 7-24 shows the effect for RWAEN, RWA, and RW on
the DBGCB comparison conditions. The RWBEN and RWB bits are not used and are ignored in full
modes.

7.4.2.1.2 Trigger Selection

The TRGSEL bit in DBGC1 is used to determine the triggering condition in DBG mode. TRGSEL applies
to both trigger A and B except in the event only trigger modes. By setting TRGSEL, the comparators A
and B will qualify a match with the output of opcode tracking logic and a trigger occurs before the tagged
instruction executes (tagged-type trigger). With the TRGSEL bit cleared, a comparator match forces a
trigger when the matching condition occurs (force-type trigger).

NOTE
If the TRGSEL is set, the address stored in the comparator match address
registers must be an opcode address for the trigger to occur.

7.4.2.2 Trace Buffer Control (TBC)

The TBC is the main controller for the DBG module. Its function is to decide whether data should be stored
in the trace buffer based on the trigger mode and the match signals from the comparator. The TBC also
determines whether a request to break the CPU should occur.

Table 7-24. Read or Write Comparison Logic Table

RWAEN bit RWA bit RW signal Comment

0 x 0 Write data bus

0 x 1 Read data bus

1 0 0 Write data bus

1 0 1 No data bus compare since RW=1

1 1 0 No data bus compare since RW=0

1 1 1 Read data bus
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8.3.2.12 Port Data Register (PORTAD)

The data port associated with the ATD is general purpose I/O. The port pins are shared with the analog
A/D inputs AN7–AN0.

Read: Anytime

Write: Anytime, no effect

The A/D input channels may be used for general-purpose digital I/0.

8.3.2.13 ATD Conversion Result Registers (ATDDRHx/ATDDRLx)

The A/D conversion results are stored in 8 read-only result registers ATDDRHx/ATDDRLx. The result
data is formatted in the result registers based on two criteria. First there is left and right justification; this
selection is made using the DJM control bit in ATDCTL5. Second there is signed and unsigned data; this
selection is made using the DSGN control bit in ATDCTL5. Signed data is stored in 2’s complement
format and only exists in left justified format. Signed data selected for right justified format is ignored.

Read: Anytime

Write: Anytime, no effect in normal modes

 Module Base + 0x000F

7 6 5 4 3 2 1 0

R PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0

W

Reset 1 1 1 1 1 1 1 1

Pin
Function

AN7 AN6 AN5 AN4 AN3‘ AN2 AN1 AN0

= Unimplemented or Reserved

Figure 8-14. Port Data Register (PORTAD)

Table 8-18. PORTAD Field Descriptions

Field Description

7
PTAD[7:0]

A/D Channel x (ANx) Digital Input (x = 7, 6, 5, 4, 3, 2, 1, 0) — If the digital input buffer on the ANx pin is enabled
(IENx = 1) read returns the logic level on ANx pin (signal potentials not meeting VIL or VIH specifications will have
an indeterminate value)).

If the digital input buffers are disabled (IENx = 0), read returns a “1”.

Reset sets all PORTAD bits to “1”.
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NOTE
Register address = base address + address offset, where the base address is
defined at the MCU level and the address offset is defined at the module
level.

9.3.2 Register Descriptions

This section describes in address order all the CRGV4 registers and their individual bits.

Register
Name

Bit 7 6 5 4 3 2 1 Bit 0

0x0000
SYNR

R 0 0
SYN5 SYN4 SYN3 SYN2 SYN1 SYN0

W

0x0001
REFDV

R 0 0 0 0
REFDV3 REFDV2 REFDV1 REFDV0

W

0x0002
CTFLG

R 0 0 0 0 0 0 0 0

W

0x0003
CRGFLG

R
RTIF PORF LVRF LOCKIF

LOCK TRACK
SCMIF

SCM

W

0x0004
CRGINT

R
RTIE

0 0
LOCKIE

0 0
SCMIE

0

W

0x0005
CLKSEL

R
PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI

W

0x0006
PLLCTL

R
CME PLLON AUTO ACQ

0
PRE PCE SCME

W

0x0007
RTICTL

R 0
RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0

W

0x0008
COPCTL

R
WCOP RSBCK

0 0 0
CR2 CR1 CR0

W

0x0009
FORBYP

R 0 0 0 0 0 0 0 0

W

0x000A
CTCTL

R 0 0 0 0 0 0 0 0

W

= Unimplemented or Reserved

Figure 9-3. CRG Register Summary
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Table 9-11. Outcome of Clock Loss in Wait Mode

CME SCME SCMIE CRG Actions

0 X X Clock failure -->
      No action, clock loss not detected.

1 0 X Clock failure -->
      CRG performs Clock Monitor Reset immediately

1 1 0 Clock failure -->

Scenario 1: OSCCLK recovers prior to exiting Wait Mode.
      – MCU remains in Wait Mode,
      – VREG enabled,
      – PLL enabled,
      – SCM activated,
      – Start Clock Quality Check,
      – Set SCMIF interrupt flag.

Some time later OSCCLK recovers.

– CM no longer indicates a failure,
      – 4096 OSCCLK cycles later Clock Quality Check indicates clock o.k.,
      – SCM deactivated,
      – PLL disabled depending on PLLWAI,
      – VREG remains enabled (never gets disabled in Wait Mode).
      – MCU remains in Wait Mode.

Some time later either a wakeup interrupt occurs (no SCM interrupt)
      – Exit Wait Mode using OSCCLK as system clock (SYSCLK),
      – Continue normal operation.

or an External Reset is applied.
      – Exit Wait Mode using OSCCLK as system clock,
      – Start reset sequence.

Scenario 2: OSCCLK does not recover prior to exiting Wait Mode.
      – MCU remains in Wait Mode,
      – VREG enabled,
      – PLL enabled,
      – SCM activated,
      – Start Clock Quality Check,
      – Set SCMIF interrupt flag,
      – Keep performing Clock Quality Checks (could continue infinitely)
             while in Wait Mode.

Some time later either a wakeup interrupt occurs (no SCM interrupt)
      – Exit Wait Mode in SCM using PLL clock (fSCM) as system clock,
      – Continue to perform additional Clock Quality Checks until OSCCLK
           is o.k. again.

      or an External RESET is applied.
      – Exit Wait Mode in SCM using PLL clock (fSCM) as system clock,
      – Start reset sequence,
      – Continue to perform additional Clock Quality Checks until OSCCLK
           is o.k.again.
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The internal reset of the MCU remains asserted while the reset generator completes the 192 SYSCLK long
reset sequence. The reset generator circuitry always makes sure the internal reset is deasserted
synchronously after completion of the 192 SYSCLK cycles. In case the RESET pin is externally driven
low for more than these 192 SYSCLK cycles (external reset), the internal reset remains asserted too.

Figure 9-25. RESET Timing

9.5.1 Clock Monitor Reset

The CRGV4 generates a clock monitor reset in case all of the following conditions are true:

• Clock monitor is enabled (CME=1)

• Loss of clock is detected

• Self-clock mode is disabled (SCME=0)

The reset event asynchronously forces the configuration registers to their default settings (see Section 9.3,
“Memory Map and Register Definition”). In detail the CME and the SCME are reset to logical ‘1’ (which
doesn’t change the state of the CME bit, because it has already been set). As a consequence, the CRG
immediately enters self-clock mode and starts its internal reset sequence. In parallel the clock quality
check starts. As soon as clock quality check indicates a valid oscillator clock the CRG switches to
OSCCLK and leaves self-clock mode. Because the clock quality checker is running in parallel to the reset
generator, the CRG may leave self-clock mode while completing the internal reset sequence. When the
reset sequence is finished the CRG checks the internally latched state of the clock monitor fail circuit. If a
clock monitor fail is indicated processing begins by fetching the clock monitor reset vector.

9.5.2 Computer Operating Properly Watchdog (COP) Reset

When COP is enabled, the CRG expects sequential write of 0x0055 and 0x00AA (in this order) to the
ARMCOP register during the selected time-out period. As soon as this is done, the COP time-out period
restarts. If the program fails to do this the CRG will generate a reset. Also, if any value other than 0x0055
or 0x00AA is written, the CRG immediately generates a reset. In case windowed COP operation is enabled
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Module Base + 0x00X1

7 6 5 4 3 2 1 0

R
ID2 ID1 ID0 RTR IDE (=0)

W

Reset: x x x x x x x x

= Unused; always read ‘x’

Figure 10-30. Identifier Register 1 — Standard Mapping

Table 10-29. IDR1 Register Field Descriptions

Field Description

7:5
ID[2:0]

Standard Format Identifier — The identifiers consist of 11 bits (ID[10:0]) for the standard format. ID10 is the
most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an
identifier is defined to be highest for the smallest binary number. See also ID bits in Table 10-28.

4
RTR

Remote Transmission Request — This flag reflects the status of the Remote Transmission Request bit in the
CAN frame. In the case of a receive buffer, it indicates the status of the received frame and supports the
transmission of an answering frame in software. In the case of a transmit buffer, this flag defines the setting of
the RTR bit to be sent.
0 Data frame
1 Remote frame

3
IDE

ID Extended — This flag indicates whether the extended or standard identifier format is applied in this buffer. In
the case of a receive buffer, the flag is set as received and indicates to the CPU how to process the buffer
identifier registers. In the case of a transmit buffer, the flag indicates to the MSCAN what type of identifier to send.
0 Standard format (11 bit)
1 Extended format (29 bit)

Module Base + 0x00X2

7 6 5 4 3 2 1 0

R

W

Reset: x x x x x x x x

= Unused; always read ‘x’

Figure 10-31. Identifier Register 2 — Standard Mapping
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Read: anytime

Write: anytime

NOTE
Write these bits only when the corresponding channel is disabled.

12.3.2.6 PWM Control Register (PWMCTL)

The PWMCTL register provides for various control of the PWM module.

Module Base + 0x0004

7 6 5 4 3 2 1 0

R 0 0
CAE5 CAE4 CAE3 CAE2 CAE1 CAE0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-7. PWM Center Align Enable Register (PWMCAE)

Table 12-8. PWMCAE Field Descriptions

Field Description

5
CAE5

Center Aligned Output Mode on Channel 5
0 Channel 5 operates in left aligned output mode.
1 Channel 5 operates in center aligned output mode.

4
CAE4

Center Aligned Output Mode on Channel 4
0 Channel 4 operates in left aligned output mode.
1 Channel 4 operates in center aligned output mode.

3
CAE3

Center Aligned Output Mode on Channel 3
1 Channel 3 operates in left aligned output mode.
1 Channel 3 operates in center aligned output mode.

2
CAE2

Center Aligned Output Mode on Channel 2
0 Channel 2 operates in left aligned output mode.
1 Channel 2 operates in center aligned output mode.

1
CAE1

Center Aligned Output Mode on Channel 1
0 Channel 1 operates in left aligned output mode.
1 Channel 1 operates in center aligned output mode.

0
CAE0

Center Aligned Output Mode on Channel 0
0 Channel 0 operates in left aligned output mode.
1 Channel 0 operates in center aligned output mode.
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12.3.2.11 Reserved Registers (PWMSCNTx)

The registers PWMSCNTA and PWMSCNTB are reserved for factory testing of the PWM module and
are not available in normal modes.

Read: always read 0x0000 in normal modes

Write: unimplemented in normal modes

NOTE
Writing to these registers when in special modes can alter the PWM
functionality.

Module Base + 0x000A

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-13. Reserved Register (PWMSCNTA)

Module Base + 0x000B

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-14. Reserved Register (PWMSCNTB)



Chapter 13 Serial Communications Interface (S12SCIV2) Block Description

398 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

writing another byte to the Transmitter buffer (SCIDRH/SCIDRL), while the shift register is still shifting
out the first byte.

To initiate an SCI transmission:

1. Configure the SCI:

a) Select a baud rate. Write this value to the SCI baud registers (SCIBDH/L) to begin the baud
rate generator. Remember that the baud rate generator is disabled when the baud rate is zero.
Writing to the SCIBDH has no effect without also writing to SCIBDL.

b) Write to SCICR1 to configure word length, parity, and other configuration bits
(LOOPS,RSRC,M,WAKE,ILT,PE,PT).

c) Enable the transmitter, interrupts, receive, and wake up as required, by writing to the SCICR2
register bits (TIE,TCIE,RIE,ILIE,TE,RE,RWU,SBK). A preamble or idle character will now
be shifted out of the transmitter shift register.

2. Transmit Procedure for Each Byte:

a. Poll the TDRE flag by reading the SCISR1 or responding to the TDRE interrupt. Keep in mind
that the TDRE bit resets to one.

d) If the TDRE flag is set, write the data to be transmitted to SCIDRH/L, where the ninth bit is
written to the T8 bit in SCIDRH if the SCI is in 9-bit data format. A new transmission will not
result until the TDRE flag has been cleared.

3. Repeat step 2 for each subsequent transmission.

NOTE
The TDRE flag is set when the shift register is loaded with the next data to
be transmitted from SCIDRH/L, which happens, generally speaking, a little
over half-way through the stop bit of the previous frame. Specifically, this
transfer occurs 9/16ths of a bit time AFTER the start of the stop bit of the
previous frame.

Writing the TE bit from 0 to a 1 automatically loads the transmit shift register with a preamble of 10 logic
1s (if M = 0) or 11 logic 1s (if M = 1). After the preamble shifts out, control logic transfers the data from
the SCI data register into the transmit shift register. A logic 0 start bit automatically goes into the least
significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit
position.

Hardware supports odd or even parity. When parity is enabled, the most significant bit (msb) of the data
character is the parity bit.

The transmit data register empty flag, TDRE, in SCI status register 1 (SCISR1) becomes set when the SCI
data register transfers a byte to the transmit shift register. The TDRE flag indicates that the SCI data
register can accept new data from the internal data bus. If the transmit interrupt enable bit, TIE, in SCI
control register 2 (SCICR2) is also set, the TDRE flag generates a transmitter interrupt request.

When the transmit shift register is not transmitting a frame, the Tx output signal goes to the idle condition,
logic 1. If at any time software clears the TE bit in SCI control register 2 (SCICR2), the transmitter enable
signal goes low and the transmit signal goes idle.
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13.4.4.2 Character Reception

During an SCI reception, the receive shift register shifts a frame in from the Rx input signal. The SCI data
register is the read-only buffer between the internal data bus and the receive shift register.

After a complete frame shifts into the receive shift register, the data portion of the frame transfers to the
SCI data register. The receive data register full flag, RDRF, in SCI status register 1 (SCISR1) becomes set,
indicating that the received byte can be read. If the receive interrupt enable bit, RIE, in SCI control
register 2 (SCICR2) is also set, the RDRF flag generates an RDRF interrupt request.

13.4.4.3 Data Sampling

The receiver samples the Rx input signal at the RT clock rate. The RT clock is an internal signal with a
frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock (see Figure 13-13) is re-
synchronized:

• After every start bit

• After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit
samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and
RT10 samples returns a valid logic 0)

To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three
logic 1s.When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

Figure 13-13. Receiver Data Sampling

To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7.
Table 13-11 summarizes the results of the start bit verification samples.

Table 13-11. Start Bit Verification

RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag

000 Yes 0

001 Yes 1

010 Yes 1

011 No 0
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R
T1

R
T1

R
T1

R
T1

R
T1

R
T1
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R
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R
T5

R
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R
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R
T6

R
T1
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R
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R
T9

R
T1
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R
T1
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R
T1

3

R
T1

2

R
T1

6

R
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R
T2

R
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RT CLOCK
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START BIT
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START BIT
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START BIT DATA
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1 111111 1 0 0 0 000 0
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15.3.2.4 Output Compare 7 Data Register (OC7D)

Read: Anytime

Write: Anytime

15.3.2.5 Timer Count Register (TCNT)

Table 15-5. OC7M Field Descriptions

Field Description

7:0
OC7M[7:0]

Output Compare 7 Mask — Setting the OC7Mx (x ranges from 0 to 6) will set the corresponding port to be an
output port when the corresponding TIOSx (x ranges from 0 to 6) bit is set to be an output compare.
Note: A successful channel 7 output compare overrides any channel 6:0 compares. For each OC7M bit that is

set, the output compare action reflects the corresponding OC7D bit.

Module Base + 0x0003

7 6 5 4 3 2 1 0

R
OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0

W

Reset 0 0 0 0 0 0 0 0

Figure 15-9. Output Compare 7 Data Register (OC7D)

Table 15-6. OC7D Field Descriptions

Field Description

7:0
OC7D[7:0]

Output Compare 7 Data — A channel 7 output compare can cause bits in the output compare 7 data register
to transfer to the timer port data register depending on the output compare 7 mask register.

Module Base + 0x0004

15 14 13 12 11 10 9 9

R
TCNT15 TCNT14 TCNT13 TCNT12 TCNT11 TCNT10 TCNT9 TCNT8

W

Reset 0 0 0 0 0 0 0 0

Figure 15-10. Timer Count Register High (TCNTH)

Module Base + 0x0005

7 6 5 4 3 2 1 0

R
TCNT7 TCNT6 TCNT5 TCNT4 TCNT3 TCNT2 TCNT1 TCNT0

W

Reset 0 0 0 0 0 0 0 0

Figure 15-11. Timer Count Register Low (TCNTL)
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FPHDIS is cleared. The FPROT register is loaded from Flash address 0xFF0D during the reset sequence,
indicated by F in Figure 20-10.

To change the Flash protection that will be loaded on reset, the upper sector of the Flash array must be
unprotected, then the Flash protection byte located at Flash address 0xFF0D must be written to.

A protected Flash sector is disabled by FPHDIS and FPLDIS while the size of the protected sector is
defined by FPHS[1:0] and FPLS[1:0] in the FPROT register.

Trying to alter any of the protected areas will result in a protect violation error and the PVIOL flag will be
set in the FSTAT register (see Section 20.3.2.6). A mass erase of the whole Flash array is only possible
when protection is fully disabled by setting the FPOPEN, FPLDIS, and FPHDIS bits. An attempt to mass
erase a Flash array while protection is enabled will set the PVIOL flag in the FSTAT register.

Table 20-9. FPROT Field Descriptions

Field Description

7
FPOPEN

Protection Function for Program or Erase — It is possible using the FPOPEN bit to either select address
ranges to be protected using FPHDIS, FPLDIS, FPHS[1:0] and FPLS[1:0] or to select the same ranges to be
unprotected. When FPOPEN is set, FPxDIS enables the ranges to be protected, whereby clearing FPxDIS
enables protection for the range specified by the corresponding FPxS[1:0] bits. When FPOPEN is cleared,
FPxDIS defines unprotected ranges as specified by the corresponding FPxS[1:0] bits. In this case, setting
FPxDIS enables protection. Thus the effective polarity of the FPxDIS bits is swapped by the FPOPEN bit as
shown in Table 20-10. This function allows the main part of the Flash array to be protected while a small range
can remain unprotected for EEPROM emulation.
0 The FPHDIS and FPLDIS bits define Flash address ranges to be unprotected
1 The FPHDIS and FPLDIS bits define Flash address ranges to be protected

6
NV6

Nonvolatile Flag Bit — The NV6 bit should remain in the erased state for future enhancements.

5
FPHDIS

Flash Protection Higher Address Range Disable — The FPHDIS bit determines whether there is a
protected/unprotected area in the higher space of the Flash address map.
0 Protection/unprotection enabled
1 Protection/unprotection disabled

4–3
FPHS[1:0]

Flash Protection Higher Address Size — The FPHS[1:0] bits determine the size of the protected/unprotected
sector as shown in Table 20-11. The FPHS[1:0] bits can only be written to while the FPHDIS bit is set.

2
FPLDIS

Flash Protection Lower Address Range Disable — The FPLDIS bit determines whether there is a
protected/unprotected sector in the lower space of the Flash address map.
0 Protection/unprotection enabled
1 Protection/unprotection disabled

1–0
FPLS[1:0]

Flash Protection Lower Address Size — The FPLS[1:0] bits determine the size of the protected/unprotected
sector as shown in Table 20-12. The FPLS[1:0] bits can only be written to while the FPLDIS bit is set.
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