

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	60
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12c64vfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4.3	Modes of Operation	. 151
4.4.4	Internal Visibility	. 156
4.4.5	Low-Power Options	. 156

Chapter 5 Interrupt (INTV1) Block Description

5.1	Introduc	ction	 	157
	5.1.1	Features	 	158
	5.1.2	Modes of Operation	 	158
5.2	External	l Signal Description	 	159
5.3	Memory	y Map and Register Definition	 	159
	5.3.1	Module Memory Map	 	159
	5.3.2	Register Descriptions	 	159
5.4	Function	nal Description	 	161
	5.4.1	Low-Power Modes	 	162
5.5	Resets		 	162
5.6	Interrup	ts	 	162
	5.6.1	Interrupt Registers	 	162
	5.6.2	Highest Priority I-Bit Maskable Interrupt	 	162
	5.6.3	Interrupt Priority Decoder	 	163
5.7	Exception	on Priority	 	163

Chapter 6

Background Debug Module (BDMV4) Block Description

6.1	Introduc	ction	
	6.1.1	Features	
	6.1.2	Modes of Operation	
6.2	Externa	l Signal Description	
	6.2.1	BKGD — Background Interface Pin	
	6.2.2	TAGHI — High Byte Instruction Tagging Pin	
	6.2.3	TAGLO — Low Byte Instruction Tagging Pin	
6.3	Memory	y Map and Register Definition	
	6.3.1	Module Memory Map	
	6.3.2	Register Descriptions	
6.4	Function	nal Description	
	6.4.1	Security	
	6.4.2	Enabling and Activating BDM	
	6.4.3	BDM Hardware Commands	
	6.4.4	Standard BDM Firmware Commands	
	6.4.5	BDM Command Structure	
	6.4.6	BDM Serial Interface	
	6.4.7	Serial Interface Hardware Handshake Protocol	
	6.4.8	Hardware Handshake Abort Procedure	
	6.4.9	SYNC — Request Timed Reference Pulse	

6.4.10	Instruction Tracing	. 187
6.4.11	Instruction Tagging	. 188
6.4.12	Serial Communication Time-Out	. 188
6.4.13	Operation in Wait Mode	. 189
6.4.14	Operation in Stop Mode	. 189

Chapter 7 Debug Module (DBGV1) Block Description

7.1	Introduc	ction	 191
	7.1.1	Features	 191
	7.1.2	Modes of Operation	 193
	7.1.3	Block Diagram	 193
7.2	External	l Signal Description	 195
7.3	Memory	y Map and Register Definition	 196
	7.3.1	Module Memory Map	 196
	7.3.2	Register Descriptions	 196
7.4	Function	nal Description	 212
	7.4.1	DBG Operating in BKP Mode	 212
	7.4.2	DBG Operating in DBG Mode	 214
	7.4.3	Breakpoints	 221
7.5	Resets		 222
7.6	Interrup	vts	 222

Chapter 8 Analog-to-Digital Converter (ATD10B8C) Block Description

		I I	
8.1	Introduc	ction	223
	8.1.1	Features	223
	8.1.2	Modes of Operation	223
	8.1.3	Block Diagram	224
8.2	Signal I	Description	225
	8.2.1	AN7 / ETRIG / PAD7	225
	8.2.2	AN6 / PAD6	225
	8.2.3	AN5 / PAD5	225
	8.2.4	AN4 / PAD4	225
	8.2.5	AN3 / PAD3	225
	8.2.6	AN2 / PAD2	225
	8.2.7	AN1 / PAD1	225
	8.2.8	AN0 / PAD0	225
	8.2.9	V_{RH}, V_{RI}	225
	8.2.10	V_{DDA}, V_{SSA}	225
8.3	Memory	y Map and Registers	
	8.3.1	Module Memory Map	226
	8.3.2	Register Descriptions	230

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
020024	SVND	Read:	0	0	SVNE	SANA		SVND	SVN1	SVNO
0X0034	STINN	Write:			31103	31114	51115	01112	STINI	51110
020035	BEEDV	Read:	0	0	0	0		BEEDV2	REEDV1	BEED//0
0x0035	NEI DV	Write:					TIEL DV3			
0x0036	CTFLG	Read:	TOUT7	TOUT6	TOUT5	TOUT4	TOUT3	TOUT2	TOUT1	TOUT0
0,0000	TEST ONLY	Write:								
0v0037		Read:	BTIE	PORE	IVRE		LOCK	TRACK	SCMIE	SCM
0x0037	Charles	Write:	11111	1011		LOOKI			5000	
0v0038	038 CRGINT	Read:	BTIE	0	0		0	0	SCMIE	0
0,0000		Write:				LOOKIL				
0x0039	CLKSEL	Read:	PLLSEL	PSTP	SYSWAI	ROAWAI	PLLWAI	CWAI	RTIWAI	COPWAI
		Write:								
0x003A	PLLCTL	Read:	CME	PLLON	AUTO	ACQ	0	PRE	PCE	SCME
		Write:				700		-		
0x003B	RTICTL	Read:	0	RTR6	RTR5	RTR4	RTR3	RTR2	RTR1	RTR0
		Write:								
0x003C	COPCTL	Read:	WCOP	RSBCK	0	0	0	CR2	CR1	CR0
		Write:								
0x003D	FORBYP	Read:	RTIBYP	СОРВҮР	0	PLLBYP	0	0	FCM	0
	TEST ONLY	Write:							_	
0x003E	CTCTL	Read:	TCTL7	TCTL6	TCTL5	TCTL4	TCLT3	TCTL2	TCTL1	TCTL0
	TEST ONLY	Write:								
0x003F	ARMCOP	Read:	0	0	0	0	0	0	0	0
0,0001		Write:	Bit 7	6	5	4	3	2	1	Bit 0

0x0034–0x003F CRG (Clock and Reset Generator)

0x0040-0x006F TIM

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0040	TIOS	Read: Write:	IOS7	IOS6	IOS5	IOS4	IOS3	IOS2	IOS1	IOS0
0v00/1	CEORC	Read:	0	0	0	0	0	0	0	0
0,0041		Write:	FOC7	FOC6	FOC5	FOC4	FOC3	FOC2	FOC1	FOC0
0x0042	OC7M	Read: Write:	OC7M7	OC7M6	OC7M5	OC7M4	OC7M3	OC7M2	OC7M1	OC7M0
0x0043	OC7D	Read: Write:	OC7D7	OC7D6	OC7D5	OC7D4	OC7D3	OC7D2	OC7D1	OC7D0
020044		Read:	Bit 15	14	13	12	11	10	9	Bit 8
0X0044		Write:								
0x0045		Read:	Bit 7	6	5	4	3	2	1	Bit 0
0X0043		Write:								
0v0046	TSCB1	Read:	TEN	τςινίδι	TSEB7	TEECA	0	0	0	0
070040	100111	Write:		TOWA	TOTTIZ	III OA				
0x0047	TTOV	Read: Write:	TOV7	TOV6	TOV5	TOV4	TOV3	TOV2	TOV1	TOV0

Figure 1-9. Pin Assignments in 48-Pin LQFP

Figure 1-17. Recommended PCB Layout (80 QFP) Colpitts Oscillator

Chapter 2 Port Integration Module (PIM9C32) Block Description

2.3.2.3.6 Port M Polarity Select Register (PPSM)

Module Base + 0x0015

Figure 2-22. Port M Polarity Select Register (PPSM)

Read: Anytime.

Write: Anytime.

Table 2-20. PPSM Field Descriptions

Field	Description
5–0 PPSM[5:0]	 Polarity Select Port M — This register selects whether a pull-down or a pull-up device is connected to the pin. A pull-up device is connected to the associated port M pin, if enabled by the associated bit in register PERM and if the port is used as input or as wired-or output. A pull-down device is connected to the associated port M pin, if enabled by the associated bit in register PERM and if the port is used as input.

2.3.2.3.7 Port M Wired-OR Mode Register (WOMM)

Module Base + 0x0016

Figure 2-23. Port M Wired-OR Mode Register (WOMM)

Read: Anytime.

Write: Anytime.

Table 2-21. WOMM Field Descriptions

Field	Description
5–0 WOMM[5:0]	 Wired-OR Mode Port M — This register configures the output pins as wired-or. If enabled the output is driven active low only (open-drain). A logic level of "1" is not driven. This bit has no influence on pins used as inputs. Output buffers operate as push-pull outputs. Output buffers operate as open-drain outputs.

Chapter 4 Multiplexed External Bus Interface (MEBIV3)

4.3.2.5 Reserved Registers

Module Base + 0x0004

Starting address location affected by INITRG register setting.

Figure 4-6. Reserved Register

Module Base + 0x0005

Starting address location affected by INITRG register setting.

Figure 4-7. Reserved Register

Module Base + 0x0006 Starting address location affected by INITRG register setting.

Figure 4-8. Reserved Register

Module Base + 0x0007

Starting address location affected by INITRG register setting.

Chapter 5 Interrupt (INTV1) Block Description

5.1 Introduction

This section describes the functionality of the interrupt (INT) sub-block of the S12 core platform. A block diagram of the interrupt sub-block is shown in Figure 5-1.

Figure 5-1. INTV1 Block Diagram

Chapter 7 Debug Module (DBGV1) Block Description

- 1. The DBG module is designed for backwards compatibility to existing BKP modules. Register and bit names have changed from the BKP module. This column shows the DBG register name, as well as the BKP register name for reference.
- 2. Comparator C can be used to enhance the BKP mode by providing a third breakpoint.

7.3.2.1 Debug Control Register 1 (DBGC1)

NOTE

All bits are used in DBG mode only.

Module Base + 0x0020

Starting address location affected by INITRG register setting.

Figure 7-4. Debug Control Register (DBGC1)

NOTE

This register cannot be written if BKP mode is enabled (BKABEN in DBGC2 is set).

Table 7-3	. DBGC1	Field	Descriptions
-----------	---------	-------	--------------

Field	Description
7 DBGEN	 DBG Mode Enable Bit — The DBGEN bit enables the DBG module for use in DBG mode. This bit cannot be set if the MCU is in secure mode. 0 DBG mode disabled 1 DBG mode enabled
6 ARM	 Arm Bit — The ARM bit controls whether the debugger is comparing and storing data in the trace buffer. See Section 7.4.2.4, "Arming the DBG Module," for more information. 0 Debugger unarmed 1 Debugger armed Note: This bit cannot be set if the DBGEN bit is not also being set at the same time. For example, a write of 01 to DBGEN[7:6] will be interpreted as a write of 00.
5 TRGSEL	 Trigger Selection Bit — The TRGSEL bit controls the triggering condition for comparators A and B in DBG mode. It serves essentially the same function as the TAGAB bit in the DBGC2 register does in BKP mode. See Section 7.4.2.1.2, "Trigger Selection," for more information. TRGSEL may also determine the type of breakpoint based on comparator A and B if enabled in DBG mode (DBGBRK = 1). Please refer to Section 7.4.3.1, "Breakpoint Based on Comparator A and B." 0 Trigger on any compare address match 1 Trigger before opcode at compare address gets executed (tagged-type)
4 BEGIN	 Begin/End Trigger Bit — The BEGIN bit controls whether the trigger begins or ends storing of data in the trace buffer. See Section 7.4.2.8.1, "Storing with Begin-Trigger," and Section 7.4.2.8.2, "Storing with End-Trigger," for more details. 0 Trigger at end of stored data 1 Trigger before storing data

Chapter 8 Analog-to-Digital Converter (ATD10B8C) Block Description

Address	Name		Bit 7	6	5	4	3	2	1	Bit 0
		R	0	0	0	0	0	0	BIT 9 MSB	BIT 8
0x001C	ATDDR6H		0	0	0	0	0	0	0	0
		W								
		R	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
0x001D	ATDDR6L		BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
		W								
		R	0	0	0	0	0	0	BIT 9 MSB	BIT 8
0x001E	ATDDR7H		0	0	0	0	0	0	0	0
		W								
		R	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
0x001F	ATDDR7L		BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
		W								
				= Unimpler	nented or R	eserved				

Figure 8-2. ATD Register Summary (Sheet 4 of 4)

NOTE

Register Address = Module Base Address + Address Offset, where the Module Base Address is defined at the MCU level and the Address Offset is defined at the module level.

Chapter 8 Analog-to-Digital Converter (ATD10B8C) Block Description

8.3.2.7 ATD Status Register 0 (ATDSTAT0)

This read-only register contains the sequence complete flag, overrun flags for external trigger and FIFO mode, and the conversion counter.

Module Base + 0x0006

Figure 8-9. ATD Status Register 0 (ATDSTAT0)

Read: Anytime

Write: Anytime (no effect on (CC2, CC1, CC0))

Table 8-13.	ATDSTAT0	Field	Descri	ptions

Field	Description
7 SCF	Sequence Complete Flag — This flag is set upon completion of a conversion sequence. If conversion sequences are continuously performed (SCAN = 1), the flag is set after each one is completed. This flag is cleared when one of the following occurs: A) Write "1" to SCF B) Write to ATDCTL5 (a new conversion sequence is started) C) If AFFC=1 and read of a result register O Conversion sequence not completed 1 Conversion sequence has completed
5 ETORF	External Trigger Overrun Flag — While in edge trigger mode (ETRIGLE = 0), if additional active edges are detected while a conversion sequence is in process the overrun flag is set. This flag is cleared when one of the following occurs: A) Write "1" to ETORF B) Write to ATDCTL2, ATDCTL3 or ATDCTL4 (a conversion sequence is aborted) C) Write to ATDCTL5 (a new conversion sequence is started) No External trigger over run error has occurred 1 External trigger over run error has occurred

NOTE

Register address = base address + address offset, where the base address is defined at the MCU level and the address offset is defined at the module level.

9.3.2 Register Descriptions

This section describes in address order all the CRGV4 registers and their individual bits.

Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0000	R	0	0	SVN5	SVNA	SVN3	SVN2	SVN1	SVNO
SYNR	W			31115	31114	31113	31112	3111	31110
0x0001	R	0	0	0	0				
REFDV	w					REFDV3	REFDV2	REFDV1	REFDV0
0x0002	R	0	0	0	0	0	0	0	0
CTFLG	W								
0x0003	R	DTIC	DODE			LOCK	TRACK	SCMIE	SCM
CRGFLG	W	КПГ	PORF	LVRF	LUCKIF			SCMIF	
0x0004	R	DTIE	0	0		0	0	SCMIE	0
CRGINT	W				LOOKIE			SCIVILE	
0x0005	R	PLLSEL	PSTP	SYSWAI	BOAWAI	PLIWAI	CWAI	RTIWAI	COPWAI
CLKSEL	W						••••		
0x0006	R	CMF	PLLON	AUTO	ACO	0	PRF	PCF	SCME
PLLUIL	W								
0x0007	R	0	BTB6	BTB5	RTR4	BTB3	BTB2	BTB1	BTR0
RIICIL	W								
0x0008	R	WCOP	BSBCK	0	0	0	CB2	CB1	CB0
COPCIL N			Hebert				0112		Chie
0x0009	R	0	0	0	0	0	0	0	0
FORBAD	W								
0x000A	R	0	0	0	0	0	0	0	0
UIUIL	W								

= Unimplemented or Reserved

Figure 9-3. CRG Register Summary

10.3.2.16 MSCAN Identifier Acceptance Registers (CANIDAR0-7)

On reception, each message is written into the background receive buffer. The CPU is only signalled to read the message if it passes the criteria in the identifier acceptance and identifier mask registers (accepted); otherwise, the message is overwritten by the next message (dropped).

The acceptance registers of the MSCAN are applied on the IDR0–IDR3 registers (see Section 10.3.3.1, "Identifier Registers (IDR0–IDR3)") of incoming messages in a bit by bit manner (see Section 10.4.3, "Identifier Acceptance Filter").

For extended identifiers, all four acceptance and mask registers are applied. For standard identifiers, only the first two (CANIDAR0/1, CANIDMR0/1) are applied.

Module Base + 0 0 0 0 0	0x0010 (CAN 0x0011 (CAN 0x0012 (CAN 0x0013 (CAN	IIDAR0) IIDAR1) IIDAR2) IIDAR3)						
	7	6	5	4	3	2	1	0
R W	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
Reset	0	0	0	0	0	0	0	0
_	7	6	5	4	3	2	1	0
R W	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
Reset	0	0	0	0	0	0	0	0
_	7	6	5	4	3	2	1	0
R W	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
Reset	0	0	0	0	0	0	0	0
_	7	6	5	4	3	2	1	0
R W	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
Reset	0	0	0	0	0	0	0	0

Figure 10-19. MSCAN Identifier Acceptance Registers (First Bank) — CANIDAR0–CANIDAR3

Read: Anytime

Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)

Table 10-19. CANIDAR0–CANIDAR3 Register Field Descriptions

Field	Description
7:0 AC[7:0]	Acceptance Code Bits — AC[7:0] comprise a user-defined sequence of bits with which the corresponding bits of the related identifier register (IDRn) of the receive message buffer are compared. The result of this comparison is then masked with the corresponding identifier mask register.

14.4.1 Master Mode

The SPI operates in master mode when the MSTR bit is set. Only a master SPI module can initiate transmissions. A transmission begins by writing to the master SPI Data Register. If the shift register is empty, the byte immediately transfers to the shift register. The byte begins shifting out on the MOSI pin under the control of the serial clock.

• S-clock

The SPR2, SPR1, and SPR0 baud rate selection bits in conjunction with the SPPR2, SPPR1, and SPPR0 baud rate preselection bits in the SPI Baud Rate register control the baud rate generator and determine the speed of the transmission. The SCK pin is the SPI clock output. Through the SCK pin, the baud rate generator of the master controls the shift register of the slave peripheral.

• MOSI and MISO Pins

In master mode, the function of the serial data output pin (MOSI) and the serial data input pin (MISO) is determined by the SPC0 and BIDIROE control bits.

• \overline{SS} Pin

If MODFEN and SSOE bit are set, the \overline{SS} pin is configured as slave select output. The \overline{SS} output becomes low during each transmission and is high when the SPI is in idle state.

If MODFEN is set and SSOE is cleared, the \overline{SS} pin is configured as input for detecting mode fault error. If the \overline{SS} input becomes low this indicates a mode fault error where another master tries to drive the MOSI and SCK lines. In this case, the SPI immediately switches to slave mode, by clearing the MSTR bit and also disables the slave output buffer MISO (or SISO in bidirectional mode). So the result is that all outputs are disabled and SCK, MOSI and MISO are inputs. If a transmission is in progress when the mode fault occurs, the transmission is aborted and the SPI is forced into idle state.

This mode fault error also sets the mode fault (MODF) flag in the SPI Status Register (SPISR). If the SPI interrupt enable bit (SPIE) is set when the MODF flag gets set, then an SPI interrupt sequence is also requested.

When a write to the SPI Data Register in the master occurs, there is a half SCK-cycle delay. After the delay, SCK is started within the master. The rest of the transfer operation differs slightly, depending on the clock format specified by the SPI clock phase bit, CPHA, in SPI Control Register 1 (see Section 14.4.3, "Transmission Formats").

NOTE

A change of the bits CPOL, CPHA, SSOE, LSBFE, MODFEN, SPC0, BIDIROE with SPC0 set, SPPR2–SPPR0 and SPR2–SPR0 in master mode will abort a transmission in progress and force the SPI into idle state. The remote slave cannot detect this, therefore the master has to ensure that the remote slave is set back to idle state.

Field	Description
7:0 OC7M[7:0]	 Output Compare 7 Mask — Setting the OC7Mx (x ranges from 0 to 6) will set the corresponding port to be an output port when the corresponding TIOSx (x ranges from 0 to 6) bit is set to be an output compare. Note: A successful channel 7 output compare overrides any channel 6:0 compares. For each OC7M bit that is set, the output compare action reflects the corresponding OC7D bit.

Table 15-5. OC7M Field Descriptions

15.3.2.4 Output Compare 7 Data Register (OC7D)

Module Base + 0x0003

Figure 15-9. Output Compare 7 Data Register (OC7D)

Read: Anytime

Write: Anytime

Table 15-6. OC7D Field Descriptions

Field	Description
7:0	Output Compare 7 Data — A channel 7 output compare can cause bits in the output compare 7 data register
OC7D[7:0]	to transfer to the timer port data register depending on the output compare 7 mask register.

15.3.2.5 Timer Count Register (TCNT)

Module Base + 0x0004

_	15	14	13	12	11	10	9	9
R W	TCNT15	TCNT14	TCNT13	TCNT12	TCNT11	TCNT10	TCNT9	TCNT8
Reset	0	0	0	0	0	0	0	0

Figure 15-10. Timer Count Register High (TCNTH)

Module Base + 0x0005

	7	6	5	4	3	2	1	0
R W	TCNT7	TCNT6	TCNT5	TCNT4	TCNT3	TCNT2	TCNT1	TCNT0
Reset	0	0	0	0	0	0	0	0

Figure 15-11. Timer Count Register Low (TCNTL)

Chapter 15 Timer Module (TIM16B8CV1) Block Description

Write: Used in the clearing mechanism (set bits cause corresponding bits to be cleared). Writing a zero will not affect current status of the bit.

Field	Description
7:0 C[7:0]F	Input Capture/Output Compare Channel "x" Flag — These flags are set when an input capture or output compare event occurs. Clearing requires writing a one to the corresponding flag bit when TEN is set to one.
	When TFFCA bit in TSCR register is set, a read from an input capture or a write into an output compare channel (0x0010–0x001F) will cause the corresponding channel flag CxF to be cleared.

Table 15-17. TRLG1 Field Descriptions

15.3.2.13 Main Timer Interrupt Flag 2 (TFLG2)

Module Base + 0x000F

Figure 15-21. Main Timer Interrupt Flag 2 (TFLG2)

TFLG2 indicates when interrupt conditions have occurred. To clear a bit in the flag register, write the bit to one while TEN of TSCR1 is set to one.

Read: Anytime

Write: Used in clearing mechanism (set bits cause corresponding bits to be cleared).

Any access to TCNT will clear TFLG2 register if the TFFCA bit in TSCR register is set.

Table 15-18. TRLG2 Field Descriptions

Field	k	Description
7 TOF	: 	Timer Overflow Flag — Set when 16-bit free-running timer overflows from 0xFFFF to 0x0000. Clearing this bit requires writing a one to bit 7 of TFLG2 register while TEN bit of TSCR1 is set to one. (See also TCRE control bit explanation.)

Chapter 19 64 Kbyte Flash Module (S12FTS64KV4)

19.4.1.2 Command Write Sequence

The Flash command controller is used to supervise the command write sequence to execute program, erase, and erase verify algorithms.

Before starting a command write sequence, the ACCERR and PVIOL flags in the FSTAT register must be clear and the CBEIF flag should be tested to determine the state of the address, data, and command buffers. If the CBEIF flag is set, indicating the buffers are empty, a new command write sequence can be started. If the CBEIF flag is clear, indicating the buffers are not available, a new command write sequence will overwrite the contents of the address, data, and command buffers.

A command write sequence consists of three steps which must be strictly adhered to with writes to the Flash module not permitted between the steps. However, Flash register and array reads are allowed during a command write sequence. The basic command write sequence is as follows:

- 1. Write to a valid address in the Flash array memory.
- 2. Write a valid command to the FCMD register.
- 3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the command.

The address written in step 1 will be stored in the FADDR registers and the data will be stored in the FDATA registers. When the CBEIF flag is cleared in step 3, the CCIF flag is cleared by the Flash command controller indicating that the command was successfully launched. For all command write sequences, the CBEIF flag will set after the CCIF flag is cleared indicating that the address, data, and command buffers are ready for a new command write sequence to begin. A buffered command will wait for the active operation to be completed before being launched. Once a command is launched, the completion of the command operation is indicated by the setting of the CCIF flag in the FSTAT register. The CCIF flag will set upon completion of all active and buffered commands.

Chapter 19 64 Kbyte Flash Module (S12FTS64KV4)

addresses sequentially staring with 0xFF00-0xFF01 and ending with 0xFF06–0xFF07. The values 0x0000 and 0xFFFF are not permitted as keys. When the KEYACC bit is set, reads of the Flash array will return invalid data.

The user code stored in the Flash array must have a method of receiving the backdoor key from an external stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If KEYEN[1:0] = 1:0 in the FSEC register, the MCU can be unsecured by the backdoor key access sequence described below:

- 1. Set the KEYACC bit in the FCNFG register
- 2. Write the correct four 16-bit words to Flash addresses 0xFF00–0xFF07 sequentially starting with 0xFF00
- 3. Clear the KEYACC bit in the FCNFG register
- 4. If all four 16-bit words match the backdoor key stored in Flash addresses 0xFF00–0xFF07, the MCU is unsecured and bits SEC[1:0] in the FSEC register are forced to the unsecure state of 1:0

The backdoor key access sequence is monitored by the internal security state machine. An illegal operation during the backdoor key access sequence will cause the security state machine to lock, leaving the MCU in the secured state. A reset of the MCU will cause the security state machine to exit the lock state and allow a new backdoor key access sequence to be attempted. The following illegal operations will lock the security state machine:

- 1. If any of the four 16-bit words does not match the backdoor key programmed in the Flash array
- 2. If the four 16-bit words are written in the wrong sequence
- 3. If more than four 16-bit words are written
- 4. If any of the four 16-bit words written are 0x0000 or 0xFFFF
- 5. If the KEYACC bit does not remain set while the four 16-bit words are written

After the backdoor key access sequence has been correctly matched, the MCU will be unsecured. The Flash security byte can be programmed to the unsecure state, if desired.

In the unsecure state, the user has full control of the contents of the four word backdoor key by programming bytes 0xFF00–0xFF07 of the Flash configuration field.

The security as defined in the Flash security/options byte at address 0xFF0F is not changed by using the backdoor key access sequence to unsecure. The backdoor key stored in addresses 0xFF00–0xFF07 is unaffected by the backdoor key access sequence. After the next reset sequence, the security state of the Flash module is determined by the Flash security/options byte at address 0xFF0F. The backdoor key access sequence has no effect on the program and erase protection defined in the FPROT register.

It is not possible to unsecure the MCU in special single chip mode by executing the backdoor key access sequence in background debug mode.

A.2.5 ATD Accuracy (3.3V Range)

Table A-13 specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance.

Conditions are shown in Table A-4 unless otherwise noted $V_{REF} = V_{RH} - V_{RL} = 3.328V$. Resulting to one 8 bit count = 13mV and one 10 bit count = 3.25mV $f_{ATDCLK} = 2.0MHz$							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	10-Bit Resolution	LSB	—	3.25	_	mV
2	Р	10-Bit Differential Nonlinearity	DNL	-1.5	—	1.5	Counts
3	Р	10-Bit Integral Nonlinearity	INL	-3.5	±1.5	3.5	Counts
4	Р	10-Bit Absolute Error ⁽¹⁾	AE	-5	±2.5	5	Counts
5	Р	8-Bit Resolution	LSB	—	13		mV
6	Р	8-Bit Differential Nonlinearity	DNL	-0.5	—	0.5	Counts
7	Р	8-Bit Integral Nonlinearity	INL	-1.5	±1	1.5	Counts
8	Р	8-Bit Absolute Error ¹	AE	-2.0	±1.5	2.0	Counts

Table A-13. ATD Conversion Performance

1. These values include the quantization error which is inherently 1/2 count for any A/D converter.

For the following definitions see also Figure A-1.

Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.

$$DNL(i) = \frac{V_i - V_{i-1}}{1LSB} - 1$$

The Integral Non-Linearity (INL) is defined as the sum of all DNLs:

INL(n) =
$$\sum_{i=1}^{n} DNL(i) = \frac{V_n - V_0}{1LSB} - n$$

A.3 MSCAN

Conditions are shown in Table A-4 unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Мах	Unit
1	Ρ	MSCAN Wake-up dominant pulse filtered	t _{WUP}		—	2	us
2	Ρ	MSCAN Wake-up dominant pulse pass	t _{WUP}	5	—	_	us

Table A-14. MSCAN Wake-up Pulse Characteristics

A.4 Reset, Oscillator and PLL

This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and Phase-Locked-Loop (PLL).

A.4.1 Startup

Table A-15 summarizes several startup characteristics explained in this section. Detailed description of the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.

Conditions are shown in Table A-4 unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Мах	Unit
1	Т	POR release level	V _{PORR}	—	—	2.07	V
2	Т	POR assert level	V _{PORA}	0.97	—	—	V
3	D	Reset input pulse width, minimum input time	PW _{RSTL}	2	—	_	t _{osc}
4	D	Startup from Reset	n _{RST}	192	—	196	n _{osc}
5	D	Interrupt pulse width, IRQ edge-sensitive mode	PW _{IRQ}	20		_	ns
6	D	Wait recovery startup time	t _{WRS}	_	—	14	t _{cyc}

Table A-15. Startup Characteristics

A.4.1.1 POR

The release level V_{PORR} and the assert level V_{PORA} are derived from the V_{DD} supply. They are also valid if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check are started. If after a time t_{CQOUT} no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by n_{uposc} .

A.4.1.2 LVR

The release level V_{LVRR} and the assert level V_{LVRA} are derived from the V_{DD} supply. They are also valid if the device is powered externally. After releasing the LVR reset the oscillator and the clock quality check are started. If after a time t_{CQOUT} no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by n_{uposc} .