E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	35
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12c96cpbe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	15.2.8 IOC0 — Input Capture and Output Compare Channel 0 Pin	
15.3	Memory Map and Register Definition	
	15.3.1 Module Memory Map	
	15.3.2 Register Descriptions	
15.4	Functional Description	
	15.4.1 Prescaler	
	15.4.2 Input Capture	
	15.4.3 Output Compare	
	15.4.4 Pulse Accumulator	
	15.4.5 Event Counter Mode	
	15.4.6 Gated Time Accumulation Mode	
15.5	Resets	
15.6	Interrupts	
	15.6.1 Channel [7:0] Interrupt (C[7:0]F)	
	15.6.2 Pulse Accumulator Input Interrupt (PAOVI)	
	15.6.3 Pulse Accumulator Overflow Interrupt (PAOVF)	
	15.6.4 Timer Overflow Interrupt (TOF)	

Chapter 16

Dual Output Voltage Regulator (VREG3V3V2) Block Description

Introduction	
16.1.1 Features	
16.1.2 Modes of Operation	
16.1.3 Block Diagram	
External Signal Description	
16.2.1 V _{DDR} — Regulator Power Input	
16.2.2 V_{DDA} , V_{SSA} — Regulator Reference Supply	
16.2.3 V _{DD} , V _{SS} — Regulator Output1 (Core Logic)	
16.2.4 V _{DDPLL} , V _{SSPLL} — Regulator Output2 (PLL)	
16.2.5 V_{REGEN} — Optional Regulator Enable	
Memory Map and Register Definition	
16.3.1 Module Memory Map	
16.3.2 Register Descriptions	
Functional Description	
16.4.1 REG — Regulator Core	
16.4.2 Full-Performance Mode	
16.4.3 Reduced-Power Mode	
16.4.4 LVD — Low-Voltage Detect	
16.4.5 POR — Power-On Reset	
16.4.6 LVR — Low-Voltage Reset	
16.4.7 CTRL — Regulator Control	
Resets	
16.5.1 Power-On Reset	
16.5.2 Low-Voltage Reset	
	Introduction16.1.1 Features16.1.2 Modes of Operation16.1.3 Block DiagramExternal Signal Description16.2.1 V_{DDR} — Regulator Power Input16.2.2 V_{DDA} , V_{SSA} — Regulator Reference Supply16.2.3 V_{DD} , V_{SS} — Regulator Output1 (Core Logic)16.2.4 V_{DDPLL} , V_{SSPLL} — Regulator Output2 (PLL)16.2.5 V_{REGEN} — Optional Regulator EnableMemory Map and Register Definition16.3.1 Module Memory Map16.3.2 Register DescriptionsFunctional Description16.4.1 REG — Regulator Core16.4.2 Full-Performance Mode16.4.3 Reduced-Power Mode16.4.4 LVD — Low-Voltage Detect16.4.5 POR — Power-On Reset16.4.6 LVR — Low-Voltage Reset16.4.7 CTRL — Regulator ControlResets16.5.1 Power-On Reset16.5.2 Low-Voltage Reset

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0264	ואחח	Read:			0	0	0	0	0	0
			DDII07	DDTIO						
0x026B	BDB.I	Read:	BDB.I7	BDB.I6	0	0	0	0	0	0
UNULUB	TID TIO	Write:								
0x026C	PERJ	Read:	PERJ7	PERJ6	0	0	0	0	0	0
		Write:					-	-		
0x026D	PPSJ	Read:	PPSJ7	PPSJ6	0	0	0	0	0	0
		Write:			0	0	0	0	0	0
0x026E	PIEJ	Read:	PIEJ7	PIEJ6	0	0	0	0	0	0
		write:				0	0	0	0	0
0x026F	PIFJ	Read:	PIFJ7	PIFJ6	0	0	0	0	0	0
		Write:								
0x0270	PTAD	Read: Write:	PTAD7	PTAD6	PTAD5	PTAD4	PTAD3	PTAD2	PTAD1	PTAD0
		TIAD Read: Write:	PTIAD7	PTIAD6	PTIAD5	PTIAD4	PTIAD3	PTIAD2	PTIAD1	PTIJ7
0x0271	PTIAD									
0v0272		Read:					נחעפחח	כחעפחח		
070212	DDIIAD	Write:	DDIADI	DDIADO	DDIAD3	DDNAD4	DDIADS	DDNADZ	DUNADI	DDIADU
0x0273	RDRAD	Read:	RDRAD7	RDRAD6	RDRAD5	RDRAD4	RDRAD3	RDRAD2	RDRAD1	RDRAD0
		Write:								
0x0274	PERAD	Write:	PERAD7	PERAD6	PERAD5	PERAD4	PERAD3	PERAD2	PERAD1	PERAD0
		Read:								
0x0275	PPSAD	Write:	PPSAD7	PPSAD6	PPSAD5	PPSAD4	PPSAD3	PPSAD2	PPSAD1	PPSAD0
0x0276-	Pesanuad	Read:	0	0	0	0	0	0	0	0
0x027F	i lesei veu	Write:								

0x0240–0x027F PIM (Port Interface Module) (Sheet 3 of 3)

0x0280–0x03FF Reserved Space

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0280-	Beserved	Read:	0	0	0	0	0	0	0	0
0x2FF	neserveu	Write:								
0x0300	Linimplemented	Read:	0	0	0	0	0	0	0	0
-0x03FF	Unimplemented	Write:								

The security byte resides in a portion of the Flash array.

Check the Flash Block User Guide for more details on the security configuration.

1.5.2.2 Operation of the Secured Microcontroller

1.5.2.2.1 Normal Single Chip Mode

This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked.

1.5.2.2.2 Executing from External Memory

The user may wish to execute from external space with a secured microcontroller. This is accomplished by resetting directly into expanded mode. The internal FLASH will be disabled. BDM operations will be blocked.

1.5.2.3 Unsecuring the Microcontroller

In order to unsecure the microcontroller, the internal FLASH must be erased. This can be done through an external program in expanded mode or via a sequence of BDM commands. Unsecuring is also possible via the Backdoor Key Access. Refer to Flash Block Guide for details.

Once the user has erased the FLASH, the part can be reset into special single chip mode. This invokes a program that verifies the erasure of the internal FLASH. Once this program completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to an external program (again through BDM commands). Note that if the part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be secured again.

1.5.3 Low-Power Modes

The microcontroller features three main low power modes. Consult the respective Block User Guide for information on the module behavior in stop, pseudo stop, and wait mode. An important source of information about the clock system is the Clock and Reset Generator User Guide (CRG).

1.5.3.1 Stop

Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static mode. Wake up from this mode can be done via reset or external interrupts.

1.5.3.2 Pseudo Stop

This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running and the real time interrupt (RTI) or watchdog (COP) sub module can stay active. Other peripherals are turned off. This mode consumes more current than the full stop mode, but the wake up time from this mode is significantly shorter.

Chapter 3 Module Mapping Control (MMCV4) Block Description

unimplemented locations within the register space or to locations that are removed from the map (i.e., ports A and B in expanded modes) will not cause this signal to become active. When the EMK bit is clear, this pin is used for general purpose I/O.

3.4.3 Memory Expansion

The HCS12 core architecture limits the physical address space available to 64K bytes. The program page index register allows for integrating up to 1M byte of FLASH or ROM into the system by using the six page index bits to page 16K byte blocks into the program page window located from 0x8000 to 0xBFFF in the physical memory space. The paged memory space can consist of solely on-chip memory or a combination of on-chip and off-chip memory. This partitioning is configured at system integration through the use of the paging configuration switches ($pag_sw1:pag_sw0$) at the core boundary. The options available to the integrator are as given in Table 3-16 (this table matches Table 3-12 but is repeated here for easy reference).

pag_sw1:pag_sw0	w1:pag_sw0 Off-Chip Space	
00	876K bytes	128K bytes
01	01 768K bytes	
10	512K bytes	512K bytes
11	11 0K byte	

Table 3-16. Allocated Off-Chip Memory Options

Based upon the system configuration, the program page window will consider its access to be either internal or external as defined in Table 3-17.

pag_sw1:pag_sw0	Partitioning	PIX5:0 Value	Page Window Access
00	876K off-Chip,	0x0000–0x0037	External
	128K on-Chip	0x0038-0x003F	Internal
01	768K off-chip,	0x0000-0x002F	External
	256K on-chip	0x0030-0x003F	Internal
10	512K off-chip,	0x0000-0x001F	External
	512K on-chip	0x0020-0x003F	Internal
11	0K off-chip,	N/A	External
	i ivi on-chip	0x0000-0x003F	Internal

Table 3-17. External/Internal Page Window Access

NOTE

The partitioning as defined in Table 3-17 applies only to the allocated memory space and the actual on-chip memory sizes implemented in the system may differ. Please refer to the device overview chapter for actual sizes.

4.3.2.15 Port K Data Register (PORTK)

Module Base + 0x0032

Starting address location affected by INITRG register setting.

Figure 4-19. Port K Data Register (PORTK)

Read: Anytime

Write: Anytime

This port is associated with the internal memory expansion emulation pins. When the port is not enabled to emulate the internal memory expansion, the port pins are used as general-purpose I/O. When port K is operating as a general-purpose I/O port, DDRK determines the primary direction for each port K pin. A 1 causes the associated port pin to be an output and a 0 causes the associated pin to be a high-impedance input. The value in a DDR bit also affects the source of data for reads of the corresponding PORTK register. If the DDR bit is 0 (input) the buffered pin input is read. If the DDR bit is 1 (output) the output of the port data register is read.

This register is not in the map in peripheral or expanded modes while the EMK control bit in MODE register is set. Therefore, these accesses will be echoed externally.

When inputs, these pins can be selected to be high impedance or pulled up, based upon the state of the PUPKE bit in the PUCR register.

Field	Description							
7 Port K, Bit 7	Port K, Bit 7 — This bit is used as an emulation chip select signal for the emulation of the internal memory expansion, or as general-purpose I/O, depending upon the state of the EMK bit in the MODE register. While this bit is used as a chip select, the external bit will return to its de-asserted state (V_{DD}) for approximately 1/4 cycle just after the negative edge of ECLK, unless the external access is stretched and ECLK is free-running (ESTR bit in EBICTL = 0). See the MMC block description chapter for additional details on when this signal will be active.							
6 Port K, Bit 6	Port K, Bit 6 — This bit is used as an external chip select signal for most external accesses that are not selected by $\overline{\text{ECS}}$ (see the MMC block description chapter for more details), depending upon the state the of the EMK bit in the MODE register. While this bit is used as a chip select, the external pin will return to its deasserted state (V _{DD}) for approximately 1/4 cycle just after the negative edge of ECLK, unless the external access is stretched and ECLK is free-running (ESTR bit in EBICTL = 0).							
5:0 Port K, Bits 5:0	Port K, Bits 5:0 — These six bits are used to determine which FLASH/ROM or external memory array page is being accessed. They can be viewed as expanded addresses XAB19–XAB14 of the 20-bit address used to access up to1M byte internal FLASH/ROM or external memory array. Alternatively, these bits can be used for general-purpose I/O depending upon the state of the EMK bit in the MODE register.							

Table 4-13. PORTK Field Descriptions

If a read command is issued but the data is not retrieved within 512 serial clock cycles, a soft-reset will occur causing the command to be disregarded. The data is not available for retrieval after the time-out has occurred. This is the expected behavior if the handshake protocol is not enabled. However, consider the behavior where the BDC is running in a frequency much greater than the CPU frequency. In this case, the command could time out before the data is ready to be retrieved. In order to allow the data to be retrieved even with a large clock frequency mismatch (between BDC and CPU) when the hardware handshake protocol is enabled, the time out between a read command and the data retrieval is disabled. Therefore, the host could wait for more then 512 serial clock cycles and continue to be able to retrieve the data from an issued read command. However, as soon as the handshake pulse (ACK pulse) is issued, the time-out feature is re-activated, meaning that the target will time out after 512 clock cycles. Therefore, the host needs to retrieve the data within a 512 serial clock cycles time frame after the ACK pulse had been issued. After that period, the read command is discarded and the data is no longer available for retrieval. Any falling edge of the BKGD pin after the time-out period is considered to be a new command or a SYNC request.

Note that whenever a partially issued command, or partially retrieved data, has occurred the time out in the serial communication is active. This means that if a time frame higher than 512 serial clock cycles is observed between two consecutive negative edges and the command being issued or data being retrieved is not complete, a soft-reset will occur causing the partially received command or data retrieved to be disregarded. The next falling edge of the BKGD pin, after a soft-reset has occurred, is considered by the target as the start of a new BDM command, or the start of a SYNC request pulse.

6.4.13 Operation in Wait Mode

The BDM cannot be used in wait mode if the system disables the clocks to the BDM.

There is a clearing mechanism associated with the WAIT instruction when the clocks to the BDM (CPU core platform) are disabled. As the clocks restart from wait mode, the BDM receives a soft reset (clearing any command in progress) and the ACK function will be disabled. This is a change from previous BDM modules.

6.4.14 Operation in Stop Mode

The BDM is completely shutdown in stop mode.

There is a clearing mechanism associated with the STOP instruction. STOP must be enabled and the part must go into stop mode for this to occur. As the clocks restart from stop mode, the BDM receives a soft reset (clearing any command in progress) and the ACK function will be disabled. This is a change from previous BDM modules.

Chapter 8 Analog-to-Digital Converter (ATD10B8C) Block Description

8.3.2.9 ATD Test Register 1 (ATDTEST1)

This register contains the SC bit used to enable special channel conversions.

Module Base + 0x0009

Figure 8-11. ATD Test Register 1 (ATDTEST1)

Read: Anytime, returns unpredictable values for Bit 7 and Bit 6

Write: Anytime

Table 8-14. ATDTEST1 Field Descriptions

Field	Description
0	Special Channel Conversion Bit — If this bit is set, then special channel conversion can be selected using CC,
SC	CB, and CA of ATDCTL5. Table 8-15 lists the coding.
	0 Special channel conversions disabled
	1 Special channel conversions enabled
	Note: Always write remaining bits of ATDTEST1 (Bit7 to Bit1) zero when writing SC bit. Not doing so might result
	in unpredictable ATD behavior.

Table 8-15. Special Channel Select Coding

SC	СС	СВ	СА	Analog Input Channel	
1	0	Х	Х	Reserved	
1	1	0	0	V _{RH}	
1	1	0	1	V _{RL}	
1	1	1	0	(V _{RH} +V _{RL}) / 2	
1	1	1	1	Reserved	

9.3.2.2 CRG Reference Divider Register (REFDV)

The REFDV register provides a finer granularity for the PLL multiplier steps. The count in the reference divider divides OSCCLK frequency by REFDV + 1.

Module Base + 0x0001

Figure 9-5. CRG Reference Divider Register (REFDV)

Read: anytime

Write: anytime except when PLLSEL = 1

NOTE

Write to this register initializes the lock detector bit and the track detector bit.

9.3.2.3 Reserved Register (CTFLG)

This register is reserved for factory testing of the CRGV4 module and is not available in normal modes.

Module Base + 0x0002

Figure 9-6. CRG Reserved Register (CTFLG)

Read: always reads 0x0000 in normal modes

Write: unimplemented in normal modes

NOTE

Writing to this register when in special mode can alter the CRGV4 functionality.

9.4.2 System Clocks Generator

Figure 9-17. System Clocks Generator

The clock generator creates the clocks used in the MCU (see Figure 9-17). The gating condition placed on top of the individual clock gates indicates the dependencies of different modes (stop, wait) and the setting of the respective configuration bits.

The peripheral modules use the bus clock. Some peripheral modules also use the oscillator clock. The memory blocks use the bus clock. If the MCU enters self-clock mode (see Section 9.4.7.2, "Self-Clock Mode"), oscillator clock source is switched to PLLCLK running at its minimum frequency f_{SCM} . The bus clock is used to generate the clock visible at the ECLK pin. The core clock signal is the clock for the CPU. The core clock is twice the bus clock as shown in Figure 9-18. But note that a CPU cycle corresponds to one bus clock.

PLL clock mode is selected with PLLSEL bit in the CLKSEL register. When selected, the PLL output clock drives SYSCLK for the main system including the CPU and peripherals. The PLL cannot be turned off by clearing the PLLON bit, if the PLL clock is selected. When PLLSEL is changed, it takes a maximum

CME	SCME	SCMIE	CRG Actions
1	1	1	Clock failure> - VREG enabled, - PLL enabled, - SCM activated, - Start Clock Quality Check, - SCMIF set. SCMIF generates Self-Clock Mode wakeup interrupt Exit Wait Mode in SCM using PLL clock (f _{SCM}) as system clock, - Continue to perform a additional Clock Quality Checks until OSCCLK is o.k. again.

Table 9-11. Outcome of Clock Loss in Wait Mode (continued)

9.4.10 Low-Power Operation in Stop Mode

All clocks are stopped in STOP mode, dependent of the setting of the PCE, PRE and PSTP bit. The oscillator is disabled in STOP mode unless the PSTP bit is set. All counters and dividers remain frozen but do not initialize. If the PRE or PCE bits are set, the RTI or COP continues to run in pseudo-stop mode. In addition to disabling system and core clocks the CRG requests other functional units of the MCU (e.g. voltage-regulator) to enter their individual power-saving modes (if available). This is the main difference between pseudo-stop mode and wait mode.

After executing the STOP instruction the core requests the CRG to switch the MCU into stop mode. If the PLLSEL bit remains set when entering stop mode, the CRG will switch the system and core clocks to OSCCLK by clearing the PLLSEL bit. Then the CRG disables the PLL, disables the core clock and finally disables the remaining system clocks. As soon as all clocks are switched off, stop mode is active.

If pseudo-stop mode (PSTP = 1) is entered from self-clock mode the CRG will continue to check the clock quality until clock check is successful. The PLL and the voltage regulator (VREG) will remain enabled. If full stop mode (PSTP = 0) is entered from self-clock mode an ongoing clock quality check will be stopped. A complete timeout window check will be started when stop mode is exited again.

Wake-up from stop mode also depends on the setting of the PSTP bit.

Chapter 10 Freescale's Scalable Controller Area Network (S12MSCANV2)

10.1 Introduction

Freescale's scalable controller area network (S12MSCANV2) definition is based on the MSCAN12 definition, which is the specific implementation of the MSCAN concept targeted for the M68HC12 microcontroller family.

The module is a communication controller implementing the CAN 2.0A/B protocol as defined in the Bosch specification dated September 1991. For users to fully understand the MSCAN specification, it is recommended that the Bosch specification be read first to familiarize the reader with the terms and concepts contained within this document.

Though not exclusively intended for automotive applications, CAN protocol is designed to meet the specific requirements of a vehicle serial data bus: real-time processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness, and required bandwidth.

MSCAN uses an advanced buffer arrangement resulting in predictable real-time behavior and simplified application software.

10.1.1 Glossary

ACK: Acknowledge of CAN message CAN: Controller Area Network CRC: Cyclic Redundancy Code EOF: End of Frame FIFO: First-In-First-Out Memory IFS: Inter-Frame Sequence SOF: Start of Frame CPU bus: CPU related read/write data bus CAN bus: CAN protocol related serial bus oscillator clock: Direct clock from external oscillator bus clock: CPU bus realated clock CAN clock: CAN protocol related clock

Chapter 12 Pulse-Width Modulator (PWM8B6CV1) Block Description

Read: anytime

Write: anytime (any value written causes PWM counter to be reset to 0x0000).

12.3.2.13 PWM Channel Period Registers (PWMPERx)

There is a dedicated period register for each channel. The value in this register determines the period of the associated PWM channel.

The period registers for each channel are double buffered so that if they change while the channel is enabled, the change will NOT take effect until one of the following occurs:

- The effective period ends
- The counter is written (counter resets to 0x0000)

Chapter 12 Pulse-Width Modulator (PWM8B6CV1) Block Description

Read: anytime

Write: anytime

12.3.2.15 PWM Shutdown Register (PWMSDN)

The PWMSDN register provides for the shutdown functionality of the PWM module in the emergency cases.

Module Base + 0x00E

Read: anytime

Write: anytime

Chapter 15 Timer Module (TIM16B8CV1) Block Description

15.6.2 Pulse Accumulator Input Interrupt (PAOVI)

This active high output will be asserted by the module to request a timer pulse accumulator input interrupt to be serviced by the system controller.

15.6.3 Pulse Accumulator Overflow Interrupt (PAOVF)

This active high output will be asserted by the module to request a timer pulse accumulator overflow interrupt to be serviced by the system controller.

15.6.4 Timer Overflow Interrupt (TOF)

This active high output will be asserted by the module to request a timer overflow interrupt to be serviced by the system controller.

```
NP
```

```
Chapter 17 16 Kbyte Flash Module (S12FTS16KV1)
```


Figure 17-20. RESERVED6

All bits read 0 and are not writable.

17.4 Functional Description

17.4.1 Flash Command Operations

Write operations are used for the program, erase, and erase verify algorithms described in this section. The program and erase algorithms are controlled by a state machine whose timebase FCLK is derived from the oscillator clock via a programmable divider. The FCMD register as well as the associated FADDR and FDATA registers operate as a buffer and a register (2-stage FIFO) so that a new command along with the necessary data and address can be stored to the buffer while the previous command is still in progress. This pipelined operation allows a time optimization when programming more than one word on a specific row, as the high voltage generation can be kept active in between two programming commands. The pipelined operation allows a simplification of command launching. Buffer empty as well as command completion are signalled by flags in the FSTAT register with corresponding interrupts generated, if enabled.

The next sections describe:

- How to write the FCLKDIV register
- Command write sequence used to program, erase or erase verify the Flash array
- Valid Flash commands
- Errors resulting from illegal Flash operations

17.4.1.1 Writing the FCLKDIV Register

Prior to issuing any Flash command after a reset, it is first necessary to write the FCLKDIV register to divide the oscillator clock down to within the 150-kHz to 200-kHz range. Since the program and erase timings are also a function of the bus clock, the FCLKDIV determination must take this information into account.

If we define:

- FCLK as the clock of the Flash timing control block
- Tbus as the period of the bus clock
- INT(x) as taking the integer part of x (e.g., INT(4.323) = 4),

MCU Address Range	PPAGE	Protectable Low Range	Protectable High Range	Array Relative Address ⁽¹⁾
0x4000–0x7FFF	Unpaged	0x4000–0x43FF	N.A.	0x18000-0x1BFFF
	(0x3E)	0x4000–0x47FF		
		0x4000–0x4FFF		
		0x4000–0x5FFF		
0x8000–0xBFFF	0x3E	0x8000-0x83FF	N.A.	0x18000-0x1BFFF
		0x8000–0x87FF		
		0x8000-0x8FFF		
		0x8000-0x9FFF		
	0x3F	N.A.	0xB800–0xBFFF	0x1C000-0x1FFFF
			0xB000–0xBFFF	
			0xA000–0xBFFF	
			0x8000-0xBFFF	
0xC000-0xFFFF	Unpaged	N.A.	0xF800–0xFFFF	0x1C000-0x1FFFF
	(0x3F)		0xF000–0xFFFF	
			0xE000–0xFFFF	
			0xC000-0xFFFF	
1. Inside Flash block.		1	1	1

Table 18-2.	Flash	Arrav	Memory	/ Map	Summarv
	i iusii	Anay	wichitory	, iviap	Gammary

Table 19-5. FSEC Field Descriptions

Field	Description
7–6 KEYEN[1:0]	Backdoor Key Security Enable Bits — The KEYEN[1:0] bits define the enabling of the backdoor key access to the Flash module as shown in Table 19-6.
5–2 NV[5:2]	Nonvolatile Flag Bits — The NV[5:2] bits are available to the user as nonvolatile flags.
1-0 SEC[1:0]	Flash Security Bits — The SEC[1:0] bits define the security state of the MCU as shown in Table 19-7. If the Flash module is unsecured using backdoor key access, the SEC[1:0] bits are forced to 1:0.

KEYEN[1:0]	Status of Backdoor Key Access		
00	DISABLED		
01 ⁽¹⁾	DISABLED		
10	ENABLED		
11	DISABLED		

Table 19-6. Flash KEYEN States

1. Preferred KEYEN state to disable Backdoor Key Access.

SEC[1:0]	Status of Security
00	Secured
01 ⁽¹⁾	Secured
10	Unsecured
11	Secured

Table 19-7. Flash Security States

1. Preferred SEC state to set MCU to secured state.

The security function in the Flash module is described in Section 19.4.3, "Flash Module Security".

19.3.2.3 RESERVED1

This register is reserved for factory testing and is not accessible to the user.

Module Base + 0x0002

All bits read 0 and are not writable.

Figure 19-25. Example Erase Verify Command Flow

Figure 20-24. Example Erase Verify Command Flow

Conditions are shown in Table A-4 unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Мах	Unit
1	Р	Self Clock Mode frequency	f _{SCM}	1	_	5.5	MHz
2	D	VCO locking range	f _{VCO}	8	—	50	MHz
3	D	Lock Detector transition from Acquisition to Tracking mode	$ \Delta_{trkl} $	3	_	4	%(1)
4	D	Lock Detection	$ \Delta_{Lockl} $	0	—	1.5	%1
5	D	Un-Lock Detection	$ \Delta_{unll} $	0.5	—	2.5	%1
6	D	Lock Detector transition from Tracking to Acquisition mode	$ \Delta_{untl} $	6	_	8	%1
7	С	PLLON Total Stabilization delay (Auto Mode) (2)	t _{stab}	_	0.5	_	ms
8	D	PLLON Acquisition mode stabilization delay ²	t _{acq}	_	0.3	_	ms
9	D	PLLON Tracking mode stabilization delay ²	t _{al}	_	0.2		ms
10	D	Fitting parameter VCO loop gain	K ₁	_	-100	_	MHz/V
11	D	Fitting parameter VCO loop frequency	f ₁	_	60	_	MHz
12	D	Charge pump current acquisition mode	l i _{ch} l	_	38.5		μA
13	D	Charge pump current tracking mode	l i _{ch} l	_	3.5	_	μA
14	С	Jitter fit parameter 1 ²	j ₁			1.1	%
15	С	Jitter fit parameter 2 ²	j ₂	_	_	0.13	%

Table A-17. PLL Characteristics

1. % deviation from target frequency

2. f_{OSC} = 4MHz, f_{BUS} = 25MHz equivalent f_{VCO} = 50MHz: REFDV = #\$03, SYNR = #\$018, Cs = 4.7nF, Cp = 470pF, Rs = 10K\Omega.

A.5 NVM, Flash, and EEPROM

A.5.1 NVM Timing

The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency f_{NVMOSC} is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured.

The Flash program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as f_{NVMOP} .

The minimum program and erase times shown in Table A-18 are calculated for maximum f_{NVMOP} and maximum f_{bus} . The maximum times are calculated for minimum f_{NVMOP} and a f_{bus} of 2MHz.