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Figure 1-2. MC9S12C128 and MC9S12GC128 User Configurable Memory Map
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NOTE
As stated, the bits in this register provide read visibility to the system
memory space and on-chip/off-chip partitioning allocations defined at
system integration. The actual array size for any given type of memory
block may differ from the allocated size. Please refer to the device overview
chapter for actual sizes.

Table 3-10. MEMSIZ0 Field Descriptions

Field Description

7:6
ROM_SW[1:0]

Allocated System FLASH or ROM Physical Memory Space — The allocated system FLASH or ROM
physical memory space is as given in Table 3-11.

1:0
PAG_SW[1:0]

Allocated Off-Chip FLASH or ROM Memory Space — The allocated off-chip FLASH or ROM memory space
size is as given in Table 3-12.

Table 3-11. Allocated FLASH/ROM Physical Memory Space

rom_sw1:rom_sw0
Allocated FLASH

or ROM Space

00 0K byte

01 16K bytes

10 48K bytes(1)

11 64K bytes(1)

NOTES:
1. The ROMHM software bit in the MISC register determines the accessibility of the

FLASH/ROM memory space. Please refer to Section 3.3.2.8, “Memory Size Register 1
(MEMSIZ1),” for a detailed functional description of the ROMHM bit.

Table 3-12. Allocated Off-Chip Memory Options

pag_sw1:pag_sw0 Off-Chip Space On-Chip Space

00 876K bytes 128K bytes

01 768K bytes 256K bytes

10 512K bytes 512K bytes

11 0K byte 1M byte
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3.4 Functional Description
The MMC sub-block performs four basic functions of the core operation: bus control, address decoding
and select signal generation, memory expansion, and security decoding for the system. Each aspect is
described in the following subsections.

3.4.1 Bus Control

The MMC controls the address bus and data buses that interface the core with the rest of the system. This
includes the multiplexing of the input data buses to the core onto the main CPU read data bus and control
of data flow from the CPU to the output address and data buses of the core. In addition, the MMC manages
all CPU read data bus swapping operations.

3.4.2 Address Decoding

As data flows on the core address bus, the MMC decodes the address information, determines whether the
internal core register or firmware space, the peripheral space or a memory register or array space is being
addressed and generates the correct select signal. This decoding operation also interprets the mode of
operation of the system and the state of the mapping control registers in order to generate the proper select.
The MMC also generates two external chip select signals, emulation chip select (ECS) and external chip
select (XCS).

3.4.2.1 Select Priority and Mode Considerations

Although internal resources such as control registers and on-chip memory have default addresses, each can
be relocated by changing the default values in control registers. Normally, I/O addresses, control registers,

Table 3-14. Program Page Index Register Bits

PIX5 PIX4 PIX3 PIX2 PIX1 PIX0
Program Space

Selected

0 0 0 0 0 0 16K page 0

0 0 0 0 0 1 16K page 1

0 0 0 0 1 0 16K page 2

0 0 0 0 1 1 16K page 3
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These register locations are not used (reserved). All unused registers and bits in this block return logic 0s
when read. Writes to these registers have no effect.

These registers are not in the on-chip map in special peripheral mode.

4.3.2.6 Port E Data Register (PORTE)

Read: Anytime when register is in the map

Write: Anytime when register is in the map

Port E is associated with external bus control signals and interrupt inputs. These include mode select
(MODB/IPIPE1, MODA/IPIPE0), E clock, size (LSTRB/TAGLO), read/write (R/W), IRQ, and XIRQ.
When not used for one of these specific functions, port E pins 7:2 can be used as general-purpose I/O and
pins 1:0 can be used as general-purpose input. The port E assignment register (PEAR) selects the function
of each pin and DDRE determines whether each pin is an input or output when it is configured to be
general-purpose I/O. DDRE also determines the source of data for a read of PORTE.

Some of these pins have software selectable pull resistors. IRQ and XIRQ can only be pulled up whereas
the polarity of the PE7, PE4, PE3, and PE2 pull resistors are determined by chip integration. Please refer
to the device overview chapter (Signal Property Summary) to determine the polarity of these resistors.
A single control bit enables the pull devices for all of these pins when they are configured as inputs.

This register is not in the on-chip map in special peripheral mode or in expanded modes when the EME
bit is set. Therefore, these accesses will be echoed externally.

NOTE
It is unwise to write PORTE and DDRE as a word access. If you are
changing port E pins from being inputs to outputs, the data may have extra
transitions during the write. It is best to initialize PORTE before enabling as
outputs.

Module Base + 0x0008
Starting address location affected by INITRG register setting.

7 6 5 4 3 2 1 0

R
Bit 7 6 5 4 3 2

Bit 1 Bit 0

W

Reset 0 0 0 0 0 0 u u

Alternate
Pin Function NOACC

MODB
or IPIPE1
or CLKTO

MODA
or IPIPE0

ECLK
LSTRB

or TAGLO
R/W IRQ XIRQ

= Unimplemented or Reserved u = Unaffected by reset

Figure 4-10. Port E Data Register (PORTE)
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6.4 Functional Description
The BDM receives and executes commands from a host via a single wire serial interface. There are two
types of BDM commands, namely, hardware commands and firmware commands.

Hardware commands are used to read and write target system memory locations and to enter active
background debug mode, see Section 6.4.3, “BDM Hardware Commands.” Target system memory
includes all memory that is accessible by the CPU.

Firmware commands are used to read and write CPU resources and to exit from active background debug
mode, see Section 6.4.4, “Standard BDM Firmware Commands.” The CPU resources referred to are the
accumulator (D), X index register (X), Y index register (Y), stack pointer (SP), and program counter (PC).

Hardware commands can be executed at any time and in any mode excluding a few exceptions as
highlighted, see Section 6.4.3, “BDM Hardware Commands.” Firmware commands can only be executed
when the system is in active background debug mode (BDM).

6.4.1 Security

If the user resets into special single-chip mode with the system secured, a secured mode BDM firmware
lookup table is brought into the map overlapping a portion of the standard BDM firmware lookup table.
The secure BDM firmware verifies that the on-chip EEPROM and FLASH EEPROM are erased. This
being the case, the UNSEC bit will get set. The BDM program jumps to the start of the standard BDM
firmware and the secured mode BDM firmware is turned off and all BDM commands are allowed. If the
EEPROM or FLASH do not verify as erased, the BDM firmware sets the ENBDM bit, without asserting
UNSEC, and the firmware enters a loop. This causes the BDM hardware commands to become enabled,
but does not enable the firmware commands. This allows the BDM hardware to be used to erase the
EEPROM and FLASH. After execution of the secure firmware, regardless of the results of the erase tests,
the CPU registers, INITEE and PPAGE, will no longer be in their reset state.

6.4.2 Enabling and Activating BDM

The system must be in active BDM to execute standard BDM firmware commands. BDM can be activated
only after being enabled. BDM is enabled by setting the ENBDM bit in the BDM status (BDMSTS)
register. The ENBDM bit is set by writing to the BDM status (BDMSTS) register, via the single-wire
interface, using a hardware command such as WRITE_BD_BYTE.

After being enabled, BDM is activated by one of the following1:

• Hardware BACKGROUND command

• BDM external instruction tagging mechanism

• CPU BGND instruction

• Breakpoint sub-block’s force or tag mechanism2

When BDM is activated, the CPU finishes executing the current instruction and then begins executing the
firmware in the standard BDM firmware lookup table. When BDM is activated by the breakpoint sub-

1. BDM is enabled and active immediately out of special single-chip reset.
2. This method is only available on systems that have a a breakpoint or a debug sub-block.
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NOTE
Register Address = Module Base Address + Address Offset, where the
Module Base Address is defined at the MCU level and the Address Offset is
defined at the module level.

0x001C ATDDR6H
R 0

0
0
0

0
0

0
0

0
0

0
0

BIT 9 MSB
0

BIT 8
0

W

0x001D ATDDR6L
R BIT 7

BIT 7 MSB
BIT 6
BIT 6

BIT 5
BIT 5

BIT 4
BIT 4

BIT 3
BIT 3

BIT 2
BIT 2

BIT 1
BIT 1

BIT 0
BIT 0

W

0x001E ATDDR7H
R 0

0
0
0

0
0

0
0

0
0

0
0

BIT 9 MSB
0

BIT 8
0

W

0x001F ATDDR7L
R BIT 7

BIT 7 MSB
BIT 6
BIT 6

BIT 5
BIT 5

BIT 4
BIT 4

BIT 3
BIT 3

BIT 2
BIT 2

BIT 1
BIT 1

BIT 0
BIT 0

W

Address Name Bit 7 6 5 4 3 2 1 Bit 0

= Unimplemented or Reserved

Figure 8-2. ATD Register Summary (Sheet 4 of 4)
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Definition.” All reset sources are listed in Table 9-13. Refer to the device overview chapter for related
vector addresses and priorities.

The reset sequence is initiated by any of the following events:

• Low level is detected at the RESET pin (external reset).

• Power on is detected.

• Low voltage is detected.

• COP watchdog times out.

• Clock monitor failure is detected and self-clock mode was disabled (SCME = 0).

Upon detection of any reset event, an internal circuit drives the RESET pin low for 128 SYSCLK cycles
(see Figure 9-25). Because entry into reset is asynchronous it does not require a running SYSCLK.
However, the internal reset circuit of the CRGV4 cannot sequence out of current reset condition without a
running SYSCLK. The number of 128 SYSCLK cycles might be increased by n = 3 to 6 additional
SYSCLK cycles depending on the internal synchronization latency. After 128+n SYSCLK cycles the
RESET pin is released. The reset generator of the CRGV4 waits for additional 64 SYSCLK cycles and
then samples the RESET pin to determine the originating source. Table 9-14 shows which vector will be
fetched.

NOTE
External circuitry connected to the RESET pin should not include a large
capacitance that would interfere with the ability of this signal to rise to a
valid logic 1 within 64 SYSCLK cycles after the low drive is released.

Table 9-13. Reset Summary

Reset Source Local Enable

Power-on Reset None

Low Voltage Reset None

External Reset None

Clock Monitor Reset PLLCTL (CME=1, SCME=0)

COP Watchdog Reset COPCTL (CR[2:0] nonzero)

Table 9-14. Reset Vector Selection

Sampled RESET Pin
(64 Cycles After

Release)

Clock Monitor
Reset Pending

COP Reset
Pending

Vector Fetch

1 0 0 POR / LVR / External Reset

1 1 X Clock Monitor Reset

1 0 1 COP Reset

0 X X POR / LVR / External Reset
with rise of RESET pin
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NOTE
The CANCTL0 register, except WUPE, INITRQ, and SLPRQ, is held in the
reset state when the initialization mode is active (INITRQ = 1 and
INITAK = 1). This register is writable again as soon as the initialization
mode is exited (INITRQ = 0 and INITAK = 0).

Read: Anytime

Write: Anytime when out of initialization mode; exceptions are read-only RXACT and SYNCH, RXFRM
(which is set by the module only), and INITRQ (which is also writable in initialization mode).

Table 10-1. CANCTL0 Register Field Descriptions

Field Description

7
RXFRM(1)

Received Frame Flag — This bit is read and clear only. It is set when a receiver has received a valid message
correctly, independently of the filter configuration. After it is set, it remains set until cleared by software or reset.
Clearing is done by writing a 1. Writing a 0 is ignored. This bit is not valid in loopback mode.
0 No valid message was received since last clearing this flag
1 A valid message was received since last clearing of this flag

6
RXACT

Receiver Active Status — This read-only flag indicates the MSCAN is receiving a message. The flag is
controlled by the receiver front end. This bit is not valid in loopback mode.
0 MSCAN is transmitting or idle2

1 MSCAN is receiving a message (including when arbitration is lost)(2)

5
CSWAI(3)

CAN Stops in Wait Mode — Enabling this bit allows for lower power consumption in wait mode by disabling all
the clocks at the CPU bus interface to the MSCAN module.
0 The module is not affected during wait mode
1 The module ceases to be clocked during wait mode

4
SYNCH

Synchronized Status — This read-only flag indicates whether the MSCAN is synchronized to the CAN bus and
able to participate in the communication process. It is set and cleared by the MSCAN.
0 MSCAN is not synchronized to the CAN bus
1 MSCAN is synchronized to the CAN bus

3
TIME

Timer Enable — This bit activates an internal 16-bit wide free running timer which is clocked by the bit clock rate.
If the timer is enabled, a 16-bit time stamp will be assigned to each transmitted/received message within the
active TX/RX buffer. Right after the EOF of a valid message on the CAN bus, the time stamp is written to the
highest bytes (0x000E, 0x000F) in the appropriate buffer (see Section 10.3.3, “Programmer’s Model of Message
Storage”). The internal timer is reset (all bits set to 0) when disabled. This bit is held low in initialization mode.
0 Disable internal MSCAN timer
1 Enable internal MSCAN timer

2
WUPE(4)

Wake-Up Enable — This configuration bit allows the MSCAN to restart from sleep mode when traffic on CAN is
detected (see Section 10.4.5.4, “MSCAN Sleep Mode”).
0 Wake-up disabled — The MSCAN ignores traffic on CAN
1 Wake-up enabled — The MSCAN is able to restart
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10.3.2.2 MSCAN Control Register 1 (CANCTL1)

The CANCTL1 register provides various control bits and handshake status information of the MSCAN
module as described below.

1
SLPRQ(5)

Sleep Mode Request — This bit requests the MSCAN to enter sleep mode, which is an internal power saving
mode (see Section 10.4.5.4, “MSCAN Sleep Mode”). The sleep mode request is serviced when the CAN bus is
idle, i.e., the module is not receiving a message and all transmit buffers are empty. The module indicates entry
to sleep mode by setting SLPAK = 1 (see Section 10.3.2.2, “MSCAN Control Register 1 (CANCTL1)”). SLPRQ
cannot be set while the WUPIF flag is set (see Section 10.3.2.5, “MSCAN Receiver Flag Register (CANRFLG)”).
Sleep mode will be active until SLPRQ is cleared by the CPU or, depending on the setting of WUPE, the MSCAN
detects activity on the CAN bus and clears SLPRQ itself.
0 Running — The MSCAN functions normally
1 Sleep mode request — The MSCAN enters sleep mode when CAN bus idle

0
INITRQ(6),(7)

Initialization Mode Request — When this bit is set by the CPU, the MSCAN skips to initialization mode (see
Section 10.4.5.5, “MSCAN Initialization Mode”). Any ongoing transmission or reception is aborted and
synchronization to the CAN bus is lost. The module indicates entry to initialization mode by setting INITAK = 1
(Section 10.3.2.2, “MSCAN Control Register 1 (CANCTL1)”).
The following registers enter their hard reset state and restore their default values: CANCTL0(8), CANRFLG(9),
CANRIER(10), CANTFLG, CANTIER, CANTARQ, CANTAAK, and CANTBSEL.
The registers CANCTL1, CANBTR0, CANBTR1, CANIDAC, CANIDAR0-7, and CANIDMR0-7 can only be
written by the CPU when the MSCAN is in initialization mode (INITRQ = 1 and INITAK = 1). The values of the
error counters are not affected by initialization mode.
When this bit is cleared by the CPU, the MSCAN restarts and then tries to synchronize to the CAN bus. If the
MSCAN is not in bus-off state, it synchronizes after 11 consecutive recessive bits on the CAN bus; if the MSCAN
is in bus-off state, it continues to wait for 128 occurrences of 11 consecutive recessive bits.
Writing to other bits in CANCTL0, CANRFLG, CANRIER, CANTFLG, or CANTIER must be done only after
initialization mode is exited, which is INITRQ = 0 and INITAK = 0.
0 Normal operation
1 MSCAN in initialization mode

1. The MSCAN must be in normal mode for this bit to become set.
2. See the Bosch CAN 2.0A/B specification for a detailed definition of transmitter and receiver states.
3. In order to protect from accidentally violating the CAN protocol, the TXCAN pin is immediately forced to a recessive state when

the CPU enters wait (CSWAI = 1) or stop mode (see Section 10.4.5.2, “Operation in Wait Mode” and Section 10.4.5.3,
“Operation in Stop Mode”).

4. The CPU has to make sure that the WUPE register and the WUPIE wake-up interrupt enable register (see Section 10.3.2.6,
“MSCAN Receiver Interrupt Enable Register (CANRIER)) is enabled, if the recovery mechanism from stop or wait is required.

5. The CPU cannot clear SLPRQ before the MSCAN has entered sleep mode (SLPRQ = 1 and SLPAK = 1).
6. The CPU cannot clear INITRQ before the MSCAN has entered initialization mode (INITRQ = 1 and INITAK = 1).
7. In order to protect from accidentally violating the CAN protocol, the TXCAN pin is immediately forced to a recessive state when

the initialization mode is requested by the CPU. Thus, the recommended procedure is to bring the MSCAN into sleep mode
(SLPRQ = 1 and SLPAK = 1) before requesting initialization mode.

8. Not including WUPE, INITRQ, and SLPRQ.
9. TSTAT1 and TSTAT0 are not affected by initialization mode.
10. RSTAT1 and RSTAT0 are not affected by initialization mode.

Table 10-1. CANCTL0 Register Field Descriptions (continued)

Field Description
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10.3.3.2 Data Segment Registers (DSR0-7)

The eight data segment registers, each with bits DB[7:0], contain the data to be transmitted or received.
The number of bytes to be transmitted or received is determined by the data length code in the
corresponding DLR register.

Module Base + 0x00X3

7 6 5 4 3 2 1 0

R

W

Reset: x x x x x x x x

= Unused; always read ‘x’

Figure 10-32. Identifier Register 3 — Standard Mapping

Module Base + 0x0004 (DSR0)
0x0005 (DSR1)
0x0006 (DSR2)
0x0007 (DSR3)
0x0008 (DSR4)
0x0009 (DSR5)
0x000A (DSR6)
0x000B (DSR7)

7 6 5 4 3 2 1 0

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

Reset: x x x x x x x x

Figure 10-33. Data Segment Registers (DSR0–DSR7) — Extended Identifier Mapping

Table 10-30.  DSR0–DSR7 Register Field Descriptions

Field Description

7:0
DB[7:0]

Data bits 7:0
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10.4.5.5 MSCAN Initialization Mode

In initialization mode, any on-going transmission or reception is immediately aborted and synchronization
to the CAN bus is lost, potentially causing CAN protocol violations. To protect the CAN bus system from
fatal consequences of violations, the MSCAN immediately drives the TXCAN pin into a recessive state.

NOTE
The user is responsible for ensuring that the MSCAN is not active when
initialization mode is entered. The recommended procedure is to bring the
MSCAN into sleep mode (SLPRQ = 1 and SLPAK = 1) before setting the
INITRQ bit in the CANCTL0 register. Otherwise, the abort of an on-going
message can cause an error condition and can impact other CAN bus
devices.

In initialization mode, the MSCAN is stopped. However, interface registers remain accessible. This mode
is used to reset the CANCTL0, CANRFLG, CANRIER, CANTFLG, CANTIER, CANTARQ,
CANTAAK, and CANTBSEL registers to their default values. In addition, the MSCAN enables the
configuration of the CANBTR0, CANBTR1 bit timing registers; CANIDAC; and the CANIDAR,
CANIDMR message filters. See Section 10.3.2.1, “MSCAN Control Register 0 (CANCTL0),” for a
detailed description of the initialization mode.

Figure 10-46. Initialization Request/Acknowledge Cycle

Due to independent clock domains within the MSCAN, INITRQ must be synchronized to all domains by
using a special handshake mechanism. This handshake causes additional synchronization delay (see
Section Figure 10-46., “Initialization Request/Acknowledge Cycle”).

If there is no message transfer ongoing on the CAN bus, the minimum delay will be two additional bus
clocks and three additional CAN clocks. When all parts of the MSCAN are in initialization mode, the
INITAK flag is set. The application software must use INITAK as a handshake indication for the request
(INITRQ) to go into initialization mode.

NOTE
The CPU cannot clear INITRQ before initialization mode (INITRQ = 1 and
INITAK = 1) is active.

SYNC

SYNC

Bus Clock Domain CAN Clock Domain

CPU
Init Request

INIT
Flag

INITAK
Flag

INITRQ

sync.
INITAK

sync.
INITRQ

INITAK
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Table 12-1. PWM8B6CV1 Memory Map

Address
Offset

Register Access

0x0000 PWM Enable Register (PWME) R/W

0x0001 PWM Polarity Register (PWMPOL) R/W

0x0002 PWM Clock Select Register (PWMCLK) R/W

0x0003 PWM Prescale Clock Select Register (PWMPRCLK) R/W

0x0004 PWM Center Align Enable Register (PWMCAE) R/W

0x0005 PWM Control Register (PWMCTL) R/W

0x0006 PWM Test Register (PWMTST)(1)

1. PWMTST is intended for factory test purposes only.

R/W

0x0007 PWM Prescale Counter Register (PWMPRSC)(2)

2. PWMPRSC is intended for factory test purposes only.

R/W

0x0008 PWM Scale A Register (PWMSCLA) R/W

0x0009 PWM Scale B Register (PWMSCLB) R/W

0x000A PWM Scale A Counter Register (PWMSCNTA)(3)

3. PWMSCNTA is intended for factory test purposes only.

R/W

0x000B PWM Scale B Counter Register (PWMSCNTB)(4)

4. PWMSCNTB is intended for factory test purposes only.

R/W

0x000C PWM Channel 0 Counter Register (PWMCNT0) R/W

0x000D PWM Channel 1 Counter Register (PWMCNT1) R/W

0x000E PWM Channel 2 Counter Register (PWMCNT2) R/W

0x000F PWM Channel 3 Counter Register (PWMCNT3) R/W

0x0010 PWM Channel 4 Counter Register (PWMCNT4) R/W

0x0011 PWM Channel 5 Counter Register (PWMCNT5) R/W

0x0012 PWM Channel 0 Period Register (PWMPER0) R/W

0x0013 PWM Channel 1 Period Register (PWMPER1) R/W

0x0014 PWM Channel 2 Period Register (PWMPER2) R/W

0x0015 PWM Channel 3 Period Register (PWMPER3) R/W

0x0016 PWM Channel 4 Period Register (PWMPER4) R/W

0x0017 PWM Channel 5 Period Register (PWMPER5) R/W

0x0018 PWM Channel 0 Duty Register (PWMDTY0) R/W

0x0019 PWM Channel 1 Duty Register (PWMDTY1) R/W

0x001A PWM Channel 2 Duty Register (PWMDTY2) R/W

0x001B PWM Channel 3 Duty Register (PWMDTY3) R/W

0x001C PWM Channel 4 Duty Register (PWMDTY4) R/W

0x001D PWM Channel 5 Duty Register (PWMDTY5) R/W

0x001E PWM Shutdown Register (PWMSDN) R/W
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Table 15-2. TIM16B8CV1 Memory Map

Address Offset Use Access

0x0000 Timer Input Capture/Output Compare Select (TIOS) R/W

0x0001 Timer Compare Force Register (CFORC) R/W(1)

1.  Always read 0x0000.

0x0002 Output Compare 7 Mask Register (OC7M) R/W

0x0003 Output Compare 7 Data Register (OC7D) R/W

0x0004 Timer Count Register (TCNT(hi)) R/W(2)

2. Only writable in special modes (test_mode = 1).

0x0005 Timer Count Register (TCNT(lo)) R/W2

0x0006 Timer System Control Register1 (TSCR1) R/W

0x0007 Timer Toggle Overflow Register (TTOV) R/W

0x0008 Timer Control Register1 (TCTL1) R/W

0x0009 Timer Control Register2 (TCTL2) R/W

0x000A Timer Control Register3 (TCTL3) R/W

0x000B Timer Control Register4 (TCTL4) R/W

0x000C Timer Interrupt Enable Register (TIE) R/W

0x000D Timer System Control Register2 (TSCR2) R/W

0x000E Main Timer Interrupt Flag1 (TFLG1) R/W

0x000F Main Timer Interrupt Flag2 (TFLG2) R/W

0x0010 Timer Input Capture/Output Compare Register 0 (TC0(hi)) R/W(3)

3. Write to these registers have no meaning or effect during input capture.

0x0011 Timer Input Capture/Output Compare Register 0 (TC0(lo)) R/W3

0x0012 Timer Input Capture/Output Compare Register 1 (TC1(hi)) R/W3

0x0013 Timer Input Capture/Output Compare Register 1 (TC1(lo)) R/W3

0x0014 Timer Input Capture/Output Compare Register 2 (TC2(hi)) R/W3

0x0015 Timer Input Capture/Output Compare Register 2 (TC2(lo)) R/W3

0x0016 Timer Input Capture/Output Compare Register 3 (TC3(hi)) R/W3

0x0017 Timer Input Capture/Output Compare Register 3 (TC3(lo)) R/W3

0x0018 Timer Input Capture/Output Compare Register4 (TC4(hi)) R/W3

0x0019 Timer Input Capture/Output Compare Register 4 (TC4(lo)) R/W3

0x001A Timer Input Capture/Output Compare Register 5 (TC5(hi)) R/W3

0x001B Timer Input Capture/Output Compare Register 5 (TC5(lo)) R/W3

0x001C Timer Input Capture/Output Compare Register 6 (TC6(hi)) R/W3

0x001D Timer Input Capture/Output Compare Register 6 (TC6(lo)) R/W3

0x001E Timer Input Capture/Output Compare Register 7 (TC7(hi)) R/W3

0x001F Timer Input Capture/Output Compare Register 7 (TC7(lo)) R/W3

0x0020 16-Bit Pulse Accumulator Control Register (PACTL) R/W

0x0021 Pulse Accumulator Flag Register (PAFLG) R/W

0x0022 Pulse Accumulator Count Register (PACNT(hi)) R/W

0x0023 Pulse Accumulator Count Register (PACNT(lo)) R/W

0x0024 – 0x002C Reserved — (4)

4. Write has no effect; return 0 on read

0x002D Timer Test Register (TIMTST) R/W2

0x002E – 0x002F Reserved — 4
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17.4.1.2 Command Write Sequence

The Flash command controller is used to supervise the command write sequence to execute program,
erase, and erase verify algorithms.

Before starting a command write sequence, the ACCERR and PVIOL flags in the FSTAT register must be
clear and the CBEIF flag should be tested to determine the state of the address, data, and command buffers.
If the CBEIF flag is set, indicating the buffers are empty, a new command write sequence can be started.
If the CBEIF flag is clear, indicating the buffers are not available, a new command write sequence will
overwrite the contents of the address, data, and command buffers.

A command write sequence consists of three steps which must be strictly adhered to with writes to the
Flash module not permitted between the steps. However, Flash register and array reads are allowed during
a command write sequence. The basic command write sequence is as follows:

1. Write to a valid address in the Flash array memory.

2. Write a valid command to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the command.

The address written in step 1 will be stored in the FADDR registers and the data will be stored in the
FDATA registers. When the CBEIF flag is cleared in step 3, the CCIF flag is cleared by the Flash command
controller indicating that the command was successfully launched. For all command write sequences, the
CBEIF flag will set after the CCIF flag is cleared indicating that the address, data, and command buffers
are ready for a new command write sequence to begin. A buffered command will wait for the active
operation to be completed before being launched. Once a command is launched, the completion of the
command operation is indicated by the setting of the CCIF flag in the FSTAT register. The CCIF flag will
set upon completion of all active and buffered commands.
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Figure 17-25. Example Mass Erase Command Flow
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19.4.1.3.3 Sector Erase Command

The sector erase operation will erase all addresses in a 1024 byte sector of the Flash array using an
embedded algorithm.

An example flow to execute the sector erase operation is shown in Figure 19-27. The sector erase
command write sequence is as follows:

1. Write to a Flash array address to start the command write sequence for the sector erase command.
The Flash address written determines the sector to be erased while MCU address bits [9:0] and the
data written are ignored.

2. Write the sector erase command, 0x40, to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase
command.

If a Flash sector to be erased is in a protected area of the Flash array, the PVIOL flag in the FSTAT register
will set and the sector erase command will not launch. Once the sector erase command has successfully
launched, the CCIF flag in the FSTAT register will set after the sector erase operation has completed unless
a new command write sequence has been buffered.
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Figure 20-4. Flash Memory Map

Flash Registers
MODULE BASE + 0x0000

0xFF00–0xFF0F (Flash Configuration Field)

MODULE BASE + 0x000F

0x8000

Flash Protected Low Sectors
1, 2, 4, 8 Kbytes

FLASH_START = 0x4000

0x5000

0x4400

0x6000

16K PAGED

MEMORY

0x3A 0x3B

0x3E

0x3C 0x3D 003E 0x3F

Note: 0x3A–0x3F correspond to the PPAGE register content

FLASH_END = 0xFFFF

0xF800

0xF000

0xC000

0xE000 Flash Protected High Sectors
2, 4, 8, 16 Kbytes0x3F

0x4800

Flash Array

16 bytes



Chapter 20 96 Kbyte Flash Module (S12FTS96KV1)

588 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

Figure 20-11 illustrates all possible protection scenarios. Although the protection scheme is loaded from
the Flash array after reset, it is allowed to change in normal modes. This protection scheme can be used by
applications requiring re-programming in single chip mode while providing as much protection as possible
if no re-programming is required.

Table 20-10. Flash Protection Function

FPOPEN FPHDIS FPHS[1] FPHS[0] FPLDIS FPLS[1] FPLS[0] Function(1)

1. For range sizes refer to Table 20-11 and Table 20-12 or .

1 1 x x 1 x x No protection

1 1 x x 0 x x Protect low range

1 0 x x 1 x x Protect high range

1 0 x x 0 x x Protect high and low ranges

0 1 x x 1 x x Full Flash array protected

0 0 x x 1 x x Unprotected high range

0 1 x x 0 x x Unprotected low range

0 0 x x 0 x x Unprotected high and low ranges

Table 20-11. Flash Protection Higher Address Range

FPHS[1:0]  Address Range Range Size

00 0xF800–0xFFFF 2 Kbytes

01 0xF000–0xFFFF 4 Kbytes

10 0xE000–0xFFFF 8 Kbytes

11 0xC000–0xFFFF 16 Kbytes

Table 20-12. Flash Protection Lower Address Range

FPLS[1:0]  Address Range Range Size

00 0x4000–0x43FF 1 Kbyte

01 0x4000–0x47FF 2 Kbytes

10 0x4000–0x4FFF 4 Kbytes

11 0x4000–0x5FFF 8 Kbytes
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In Figure A-9 the timing diagram for slave mode with transmission format CPHA=1 is depicted.

Figure A-9. SPI Slave Timing (CPHA=1)

In Table A-22 the timing characteristics for slave mode are listed.

Table A-22. SPI Slave Mode Timing Characteristics

Num C Characteristic Symbol Min Typ Max Unit

1 D SCK Frequency fsck DC — 1/4 fbus

1 P SCK Period tsck 4 — tbus

2 D Enable Lead Time tlead 4 — — tbus

3 D Enable Lag Time tlag 4 — — tbus

4 D Clock (SCK) High or Low Time twsck 4 — — tbus

5 D Data Setup Time (Inputs) tsu 8 — — ns

6 D Data Hold Time (Inputs) thi 8 — — ns

7 D Slave Access Time (time to data active) ta — — 20 ns

8 D Slave MISO Disable Time tdis — — 22 ns

9 D
Data Valid after SCK Edge

tvsck — —
30 + tbus

(1)

1. tbus added due to internal synchronization delay

ns

10 D Data Valid after SS fall tvss — — 30 + tbus
1 ns

11 D Data Hold Time (Outputs) tho 20 — — ns

12 D Rise and Fall Time Inputs trfi — — 8 ns

13 D Rise and Fall Time Outputs trfo — — 8 ns
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