
Freescale Semiconductor - MC9S12C96MFAE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor HCS12

Core Size 16-Bit

Speed 25MHz

Connectivity CANbus, EBI/EMI, SCI, SPI

Peripherals POR, PWM, WDT

Number of I/O 31

Program Memory Size 96KB (96K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 2.35V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 48-LQFP

Supplier Device Package 48-LQFP (7x7)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12c96mfae

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc9s12c96mfae-4421391
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 17
Rev 01.24

Chapter 1
MC9S12C and MC9S12GC Device Overview (MC9S12C128)

1.1 Introduction
The MC9S12C-Family / MC9S12GC-Family are 48/52/80 pin Flash-based MCU families, which deliver
the power and flexibility of the 16-bit core to a whole new range of cost and space sensitive, general
purpose industrial and automotive network applications. All MC9S12C-Family / MC9S12GC-Family
members feature standard on-chip peripherals including a 16-bit central processing unit (CPU12), up to
128K bytes of Flash EEPROM, up to 4K bytes of RAM, an asynchronous serial communications interface
(SCI), a serial peripheral interface (SPI), an 8-channel 16-bit timer module (TIM), a 6-channel 8-bit pulse
width modulator (PWM), an 8-channel, 10-bit analog-to-digital converter (ADC).

The MC9S12C128-Family members also feature a CAN 2.0 A, B software compatible module
(MSCAN12).

All MC9S12C-Family / MC9S12GC-Family devices feature full 16-bit data paths throughout. The
inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational
requirements. In addition to the I/O ports available in each module, up to 10 dedicated I/O port bits are
available with wake-up capability from stop or wait mode. The devices are available in 48-, 52-, and 80-
pin QFP packages, with the 80-pin version pin compatible to the HCS12 A, B, and D Family derivatives.

1.1.1 Features
• 16-bit HCS12 core:

— HCS12 CPU
– Upward compatible with M68HC11 instruction set

– Interrupt stacking and programmer’s model identical to M68HC11

– Instruction queue

– Enhanced indexed addressing

— MMC (memory map and interface)
— INT (interrupt control)
— BDM (background debug mode)
— DBG12 (enhanced debug12 module, including breakpoints and change-of-flow trace buffer)
— MEBI (multiplexed expansion bus interface) available only in 80-pin package version

• Wake-up interrupt inputs:
— Up to 12 port bits available for wake up interrupt function with digital filtering

Chapter 1 MC9S12C and MC9S12GC Device Overview (MC9S12C128)

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 27
 Rev 01.24

1.2.2 Detailed Register Map

The detailed register map of the MC9S12C128
 is listed in address order below.

0x0000–0x000F MEBI Map 1 of 3 (HCS12 Multiplexed External Bus Interface)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0000 PORTA
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

0x0001 PORTB
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

0x0002 DDRA
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

0x0003 DDRB
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

0x0004 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0005 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0006 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0007 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0008 PORTE
Read:

Bit 7 6 5 4 3 2
Bit 1 Bit 0

Write:

0x0009 DDRE
Read:

Bit 7 6 5 4 3 Bit 2
0 0

Write:

0x000A PEAR
Read:

NOACCE
0

PIPOE NECLK LSTRE RDWE
0 0

Write:

0x000B MODE
Read:

MODC MODB MODA
0

IVIS
0

EMK EME
Write:

0x000C PUCR
Read:

PUPKE
0 0

PUPEE
0 0

PUPBE PUPAE
Write:

0x000D RDRIV
Read:

RDPK
0 0

RDPE
0 0

RDPB RDPA
Write:

0x000E EBICTL
Read: 0 0 0 0 0 0 0

ESTR
Write:

0x000F Reserved
Read: 0 0 0 0 0 0 0 0
Write:

Chapter 1 MC9S12C and MC9S12GC Device Overview (MC9S12C128)

70 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

Figure 1-19. Recommended PCB Layout for 52 LQFP Pierce Oscillator

Chapter 2 Port Integration Module (PIM9C32) Block Description

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 105
 Rev 01.24

2.4.1.4 Reduced Drive Register

If the port is used as an output the register allows the configuration of the drive strength.

2.4.1.5 Pull Device Enable Register

This register turns on a pull-up or pull-down device. It becomes only active if the pin is used as an input
or as a wired-or output.

2.4.1.6 Polarity Select Register

This register selects either a pull-up or pull-down device if enabled. It becomes only active if the pin is
used as an input. A pull-up device can be activated if the pin is used as a wired-OR output.

2.4.2 Port Descriptions

2.4.2.1 Port T

This port is associated with the Standard Capture Timer. PWM output channels can be rerouted from port
P to port pins T. In all modes, port T pins can be used for either general-purpose I/O, Standard Capture
Timer I/O or as PWM channels module, if so configured by MODRR.

During reset, port T pins are configured as high-impedance inputs.

2.4.2.2 Port S

This port is associated with the serial SCI module. Port S pins PS[3:0] can be used either for general-
purpose I/O, or with the SCI subsystem.

During reset, port S pins are configured as inputs with pull-up.

2.4.2.3 Port M

This port is associated with the MSCAN and SPI module. Port M pins PM[5:0] can be used either for
general-purpose I/O, with the MSCAN or SPI subsystems.

During reset, port M pins are configured as inputs with pull-up.

2.4.2.4 Port AD

This port is associated with the ATD module. Port AD pins can be used either for general-purpose I/O, or
for the ATD subsystem. There are 2 data port registers associated with the Port AD: PTAD[7:0], located
in the PIM and PORTAD[7:0] located in the ATD.

To use PTAD[n] as a standard input port, the corresponding DDRD[n] must be cleared. To use PTAD[n]
as a standard output port, the corresponding DDRD[n] must be set

NOTE: To use PORTAD[n], located in the ATD as an input port register, DDRD[n] must be cleared and
ATDDIEN[n] must be set. Please refer to ATD Block Guide for details.

Chapter 4 Multiplexed External Bus Interface (MEBIV3)

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 147
 Rev 01.24

4.3.2.12 External Bus Interface Control Register (EBICTL)

Read: Anytime (provided this register is in the map)

Write: Refer to individual bit descriptions below

The EBICTL register is used to control miscellaneous functions (i.e., stretching of external E clock).

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these
accesses will be echoed externally.

Table 4-10. RDRIV Field Descriptions

Field Description

7
RDRK

Reduced Drive of Port K
0 All port K output pins have full drive enabled.
1 All port K output pins have reduced drive enabled.

4
RDPE

Reduced Drive of Port E
0 All port E output pins have full drive enabled.
1 All port E output pins have reduced drive enabled.

1
RDPB

Reduced Drive of Port B
0 All port B output pins have full drive enabled.
1 All port B output pins have reduced drive enabled.

0
RDPA

Reduced Drive of Ports A
0 All port A output pins have full drive enabled.
1 All port A output pins have reduced drive enabled.

Module Base + 0x000E
Starting address location affected by INITRG register setting.

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
ESTR

W

Reset:
Peripheral

All other modes
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

= Unimplemented or Reserved

Figure 4-16. External Bus Interface Control Register (EBICTL)

Table 4-11. EBICTL Field Descriptions

Field Description

0
ESTR

E Clock Stretches — This control bit determines whether the E clock behaves as a simple free-running clock or
as a bus control signal that is active only for external bus cycles.
Normal and Emulation: write once
Special: write anytime
0 E never stretches (always free running).
1 E stretches high during stretched external accesses and remains low during non-visible internal accesses.
This bit has no effect in single-chip modes.

Chapter 6 Background Debug Module (BDMV4) Block Description

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 171
 Rev 01.24

Table 6-2. BDMSTS Field Descriptions

Field Description

7
ENBDM

Enable BDM — This bit controls whether the BDM is enabled or disabled. When enabled, BDM can be made
active to allow firmware commands to be executed. When disabled, BDM cannot be made active but BDM
hardware commands are allowed.
0 BDM disabled
1 BDM enabled
Note: ENBDM is set by the firmware immediately out of reset in special single-chip mode. In secure mode, this

bit will not be set by the firmware until after the EEPROM and FLASH erase verify tests are complete.

6
BDMACT

BDM Active Status — This bit becomes set upon entering BDM. The standard BDM firmware lookup table is
then enabled and put into the memory map. BDMACT is cleared by a carefully timed store instruction in the
standard BDM firmware as part of the exit sequence to return to user code and remove the BDM memory from
the map.
0 BDM not active
1 BDM active

5
ENTAG

Tagging Enable — This bit indicates whether instruction tagging in enabled or disabled. It is set when the
TAGGO command is executed and cleared when BDM is entered. The serial system is disabled and the tag
function enabled 16 cycles after this bit is written. BDM cannot process serial commands while tagging is active.
0 Tagging not enabled or BDM active
1 Tagging enabled

4
SDV

Shift Data Valid — This bit is set and cleared by the BDM hardware. It is set after data has been transmitted as
part of a firmware read command or after data has been received as part of a firmware write command. It is
cleared when the next BDM command has been received or BDM is exited. SDV is used by the standard BDM
firmware to control program flow execution.
0 Data phase of command not complete
1 Data phase of command is complete

3
TRACE

TRACE1 BDM Firmware Command is Being Executed — This bit gets set when a BDM TRACE1 firmware
command is first recognized. It will stay set as long as continuous back-to-back TRACE1 commands are
executed. This bit will get cleared when the next command that is not a TRACE1 command is recognized.
0 TRACE1 command is not being executed
1 TRACE1 command is being executed

Chapter 6 Background Debug Module (BDMV4) Block Description

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 177
 Rev 01.24

firmware. The standard BDM firmware watches for serial commands and executes them as they are
received.

The firmware commands are shown in Table 6-6.

6.4.5 BDM Command Structure

Hardware and firmware BDM commands start with an 8-bit opcode followed by a 16-bit address and/or a
16-bit data word depending on the command. All the read commands return 16 bits of data despite the byte
or word implication in the command name.

NOTE
8-bit reads return 16-bits of data, of which, only one byte will contain valid
data. If reading an even address, the valid data will appear in the MSB. If
reading an odd address, the valid data will appear in the LSB.

Table 6-6. Firmware Commands

Command(1)

1. If enabled, ACK will occur when data is ready for transmission for all BDM READ commands and will occur after the write is
complete for all BDM WRITE commands.

Opcode (hex) Data Description

READ_NEXT 62 16-bit data out Increment X by 2 (X = X + 2), then read word X points to.

READ_PC 63 16-bit data out Read program counter.

READ_D 64 16-bit data out Read D accumulator.

READ_X 65 16-bit data out Read X index register.

READ_Y 66 16-bit data out Read Y index register.

READ_SP 67 16-bit data out Read stack pointer.

WRITE_NEXT 42 16-bit data in Increment X by 2 (X = X + 2), then write word to location pointed to by X.

WRITE_PC 43 16-bit data in Write program counter.

WRITE_D 44 16-bit data in Write D accumulator.

WRITE_X 45 16-bit data in Write X index register.

WRITE_Y 46 16-bit data in Write Y index register.

WRITE_SP 47 16-bit data in Write stack pointer.

GO 08 None Go to user program. If enabled, ACK will occur when leaving active
background mode.

GO_UNTIL(2)

2. Both WAIT (with clocks to the S12 CPU core disabled) and STOP disable the ACK function. The GO_UNTIL command will not
get an Acknowledge if one of these two CPU instructions occurs before the “UNTIL” instruction. This can be a problem for any
instruction that uses ACK, but GO_UNTIL is a lot more difficult for the development tool to time-out.

0C None Go to user program. If enabled, ACK will occur upon returning to active
background mode.

TRACE1 10 None Execute one user instruction then return to active BDM. If enabled, ACK
will occur upon returning to active background mode.

TAGGO 18 None Enable tagging and go to user program. There is no ACK pulse related to
this command.

Chapter 7 Debug Module (DBGV1) Block Description

214 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

NOTE
BDM should not be entered from a breakpoint unless the ENABLE bit is set
in the BDM. Even if the ENABLE bit in the BDM is cleared, the CPU
actually executes the BDM firmware code. It checks the ENABLE and
returns if ENABLE is not set. If the BDM is not serviced by the monitor then
the breakpoint would be re-asserted when the BDM returns to normal CPU
flow.

There is no hardware to enforce restriction of breakpoint operation if the
BDM is not enabled.

When program control returns from a tagged breakpoint through an RTI or
a BDM GO command, it will return to the instruction whose tag generated
the breakpoint. Unless breakpoints are disabled or modified in the service
routine or active BDM session, the instruction will be tagged again and the
breakpoint will be repeated. In the case of BDM breakpoints, this situation
can also be avoided by executing a TRACE1 command before the GO to
increment the program flow past the tagged instruction.

7.4.1.4 Using Comparator C in BKP Mode

The original BKP_ST12_A module supports two breakpoints. The DBG_ST12_A module can be used in
BKP mode and allow a third breakpoint using comparator C. Four additional bits, BKCEN, TAGC,
RWCEN, and RWC in DBGC2 in conjunction with additional comparator C address registers, DBGCCX,
DBGCCH, and DBGCCL allow the user to set up a third breakpoint. Using PAGSEL in DBGCCX for
expanded memory will work differently than the way paged memory is done using comparator A and B in
BKP mode. See Section 7.3.2.5, “Debug Comparator C Extended Register (DBGCCX),” for more
information on using comparator C.

7.4.2 DBG Operating in DBG Mode

Enabling the DBG module in DBG mode, allows the arming, triggering, and storing of data in the trace
buffer and can be used to cause CPU breakpoints. The DBG module is made up of three main blocks, the
comparators, trace buffer control logic, and the trace buffer.

NOTE
In general, there is a latency between the triggering event appearing on the
bus and being detected by the DBG circuitry. In general, tagged triggers will
be more predictable than forced triggers.

7.4.2.1 Comparators

The DBG contains three comparators, A, B, and C. Comparator A compares the core address bus with the
address stored in DBGCAH and DBGCAL. Comparator B compares the core address bus with the address
stored in DBGCBH and DBGCBL except in full mode, where it compares the data buses to the data stored
in DBGCBH and DBGCBL. Comparator C can be used as a breakpoint generator or as the address
comparison unit in the loop1 mode. Matches on comparator A, B, and C are signaled to the trace buffer

Chapter 7 Debug Module (DBGV1) Block Description

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 221
 Rev 01.24

the trigger is at the address of a change-of-flow address the trigger event will not be stored in the trace
buffer.

7.4.2.9 Reading Data from Trace Buffer

The data stored in the trace buffer can be read using either the background debug module (BDM) module
or the CPU provided the DBG module is enabled and not armed. The trace buffer data is read out first-in
first-out. By reading CNT in DBGCNT the number of valid words can be determined. CNT will not
decrement as data is read from DBGTBH:DBGTBL. The trace buffer data is read by reading
DBGTBH:DBGTBL with a 16-bit read. Each time DBGTBH:DBGTBL is read, a pointer in the DBG will
be incremented to allow reading of the next word.

Reading the trace buffer while the DBG module is armed will return invalid data and no shifting of the
RAM pointer will occur.

NOTE
The trace buffer should be read with the DBG module enabled and in the
same capture mode that the data was recorded. The contents of the trace
buffer counter register (DBGCNT) are resolved differently in detail mode
verses the other modes and may lead to incorrect interpretation of the trace
buffer data.

7.4.3 Breakpoints

There are two ways of getting a breakpoint in DBG mode. One is based on the trigger condition of the
trigger mode using comparator A and/or B, and the other is using comparator C. External breakpoints
generated using the TAGHI and TAGLO external pins are disabled in DBG mode.

7.4.3.1 Breakpoint Based on Comparator A and B

A breakpoint request to the CPU can be enabled by setting DBGBRK in DBGC1. The value of BEGIN in
DBGC1 determines when the breakpoint request to the CPU will occur. When BEGIN in DBGC1 is set,
begin-trigger is selected and the breakpoint request will not occur until the trace buffer is filled with
64 words. When BEGIN in DBGC1 is cleared, end-trigger is selected and the breakpoint request will occur
immediately at the trigger cycle.

There are two types of breakpoint requests supported by the DBG module, tagged and forced. Tagged
breakpoints are associated with opcode addresses and allow breaking just before a specific instruction
executes. Forced breakpoints are not associated with opcode addresses and allow breaking at the next
instruction boundary. The type of breakpoint based on comparators A and B is determined by TRGSEL in
the DBGC1 register (TRGSEL = 1 for tagged breakpoint, TRGSEL = 0 for forced breakpoint). Table 7-26
illustrates the type of breakpoint that will occur based on the debug run.

Chapter 9 Clocks and Reset Generator (CRGV4) Block Description

260 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

9.3.2.6 CRG Clock Select Register (CLKSEL)

This register controls CRG clock selection. Refer to Figure 9-17 for details on the effect of each bit.

Read: anytime

Write: refer to each bit for individual write conditions

Module Base + 0x0005

7 6 5 4 3 2 1 0

R
PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI

W

Reset 0 0 0 0 0 0 0 0

Figure 9-9. CRG Clock Select Register (CLKSEL)

Table 9-4. CLKSEL Field Descriptions

Field Description

7
PLLSEL

PLL Select Bit — Write anytime. Writing a 1 when LOCK = 0 and AUTO = 1, or TRACK = 0 and AUTO = 0 has
no effect. This prevents the selection of an unstable PLLCLK as SYSCLK. PLLSEL bit is cleared when the MCU
enters self-clock mode, stop mode or wait mode with PLLWAI bit set.
0 System clocks are derived from OSCCLK (Bus Clock = OSCCLK / 2).
1 System clocks are derived from PLLCLK (Bus Clock = PLLCLK / 2).

6
PSTP

Pseudo-Stop Bit — Write: anytime — This bit controls the functionality of the oscillator during stop mode.
0 Oscillator is disabled in stop mode.
1 Oscillator continues to run in stop mode (pseudo-stop). The oscillator amplitude is reduced. Refer to oscillator

block description for availability of a reduced oscillator amplitude.
Note: Pseudo-stop allows for faster stop recovery and reduces the mechanical stress and aging of the resonator

in case of frequent stop conditions at the expense of a slightly increased power consumption.
Note: Lower oscillator amplitude exhibits lower power consumption but could have adverse effects during any

electro-magnetic susceptibility (EMS) tests.

5
SYSWAI

System Clocks Stop in Wait Mode Bit — Write: anytime
0 In wait mode, the system clocks continue to run.
1 In wait mode, the system clocks stop.
Note: RTI and COP are not affected by SYSWAI bit.

4
ROAWAI

Reduced Oscillator Amplitude in Wait Mode Bit — Write: anytime — Refer to oscillator block description
chapter for availability of a reduced oscillator amplitude. If no such feature exists in the oscillator block then
setting this bit to 1 will not have any effect on power consumption.
0 Normal oscillator amplitude in wait mode.
1 Reduced oscillator amplitude in wait mode.
Note: Lower oscillator amplitude exhibits lower power consumption but could have adverse effects during any

electro-magnetic susceptibility (EMS) tests.

3
PLLWAI

PLL Stops in Wait Mode Bit — Write: anytime — If PLLWAI is set, the CRGV4 will clear the PLLSEL bit before
entering wait mode. The PLLON bit remains set during wait mode but the PLL is powered down. Upon exiting
wait mode, the PLLSEL bit has to be set manually if PLL clock is required.
While the PLLWAI bit is set the AUTO bit is set to 1 in order to allow the PLL to automatically lock on the selected
target frequency after exiting wait mode.
0 PLL keeps running in wait mode.
1 PLL stops in wait mode.

Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV2)

294 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

10.3.2.2 MSCAN Control Register 1 (CANCTL1)

The CANCTL1 register provides various control bits and handshake status information of the MSCAN
module as described below.

1
SLPRQ(5)

Sleep Mode Request — This bit requests the MSCAN to enter sleep mode, which is an internal power saving
mode (see Section 10.4.5.4, “MSCAN Sleep Mode”). The sleep mode request is serviced when the CAN bus is
idle, i.e., the module is not receiving a message and all transmit buffers are empty. The module indicates entry
to sleep mode by setting SLPAK = 1 (see Section 10.3.2.2, “MSCAN Control Register 1 (CANCTL1)”). SLPRQ
cannot be set while the WUPIF flag is set (see Section 10.3.2.5, “MSCAN Receiver Flag Register (CANRFLG)”).
Sleep mode will be active until SLPRQ is cleared by the CPU or, depending on the setting of WUPE, the MSCAN
detects activity on the CAN bus and clears SLPRQ itself.
0 Running — The MSCAN functions normally
1 Sleep mode request — The MSCAN enters sleep mode when CAN bus idle

0
INITRQ(6),(7)

Initialization Mode Request — When this bit is set by the CPU, the MSCAN skips to initialization mode (see
Section 10.4.5.5, “MSCAN Initialization Mode”). Any ongoing transmission or reception is aborted and
synchronization to the CAN bus is lost. The module indicates entry to initialization mode by setting INITAK = 1
(Section 10.3.2.2, “MSCAN Control Register 1 (CANCTL1)”).
The following registers enter their hard reset state and restore their default values: CANCTL0(8), CANRFLG(9),
CANRIER(10), CANTFLG, CANTIER, CANTARQ, CANTAAK, and CANTBSEL.
The registers CANCTL1, CANBTR0, CANBTR1, CANIDAC, CANIDAR0-7, and CANIDMR0-7 can only be
written by the CPU when the MSCAN is in initialization mode (INITRQ = 1 and INITAK = 1). The values of the
error counters are not affected by initialization mode.
When this bit is cleared by the CPU, the MSCAN restarts and then tries to synchronize to the CAN bus. If the
MSCAN is not in bus-off state, it synchronizes after 11 consecutive recessive bits on the CAN bus; if the MSCAN
is in bus-off state, it continues to wait for 128 occurrences of 11 consecutive recessive bits.
Writing to other bits in CANCTL0, CANRFLG, CANRIER, CANTFLG, or CANTIER must be done only after
initialization mode is exited, which is INITRQ = 0 and INITAK = 0.
0 Normal operation
1 MSCAN in initialization mode

1. The MSCAN must be in normal mode for this bit to become set.
2. See the Bosch CAN 2.0A/B specification for a detailed definition of transmitter and receiver states.
3. In order to protect from accidentally violating the CAN protocol, the TXCAN pin is immediately forced to a recessive state when

the CPU enters wait (CSWAI = 1) or stop mode (see Section 10.4.5.2, “Operation in Wait Mode” and Section 10.4.5.3,
“Operation in Stop Mode”).

4. The CPU has to make sure that the WUPE register and the WUPIE wake-up interrupt enable register (see Section 10.3.2.6,
“MSCAN Receiver Interrupt Enable Register (CANRIER)) is enabled, if the recovery mechanism from stop or wait is required.

5. The CPU cannot clear SLPRQ before the MSCAN has entered sleep mode (SLPRQ = 1 and SLPAK = 1).
6. The CPU cannot clear INITRQ before the MSCAN has entered initialization mode (INITRQ = 1 and INITAK = 1).
7. In order to protect from accidentally violating the CAN protocol, the TXCAN pin is immediately forced to a recessive state when

the initialization mode is requested by the CPU. Thus, the recommended procedure is to bring the MSCAN into sleep mode
(SLPRQ = 1 and SLPAK = 1) before requesting initialization mode.

8. Not including WUPE, INITRQ, and SLPRQ.
9. TSTAT1 and TSTAT0 are not affected by initialization mode.
10. RSTAT1 and RSTAT0 are not affected by initialization mode.

Table 10-1. CANCTL0 Register Field Descriptions (continued)

Field Description

Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV2)

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 297
 Rev 01.24

10.3.2.3 MSCAN Bus Timing Register 0 (CANBTR0)

The CANBTR0 register configures various CAN bus timing parameters of the MSCAN module.

Read: Anytime
Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)

Module Base + 0x0002

7 6 5 4 3 2 1 0

R
SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0

W

Reset: 0 0 0 0 0 0 0 0

Figure 10-6. MSCAN Bus Timing Register 0 (CANBTR0)

Table 10-3. CANBTR0 Register Field Descriptions

Field Description

7:6
SJW[1:0]

Synchronization Jump Width — The synchronization jump width defines the maximum number of time quanta
(Tq) clock cycles a bit can be shortened or lengthened to achieve resynchronization to data transitions on the
CAN bus (see Table 10-4).

5:0
BRP[5:0]

Baud Rate Prescaler — These bits determine the time quanta (Tq) clock which is used to build up the bit timing
(see Table 10-5).

Table 10-4. Synchronization Jump Width

SJW1 SJW0 Synchronization Jump Width

0 0 1 Tq clock cycle

0 1 2 Tq clock cycles

1 0 3 Tq clock cycles

1 1 4 Tq clock cycles

Table 10-5. Baud Rate Prescaler

BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 Prescaler value (P)

0 0 0 0 0 0 1

0 0 0 0 0 1 2

0 0 0 0 1 0 3

0 0 0 0 1 1 4

: : : : : : :

1 1 1 1 1 1 64

Chapter 13 Serial Communications Interface (S12SCIV2) Block Description

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 395
 Rev 01.24

13.4.1 Data Format

The SCI uses the standard NRZ mark/space data format illustrated in Figure 13-10 below.

Figure 13-10. SCI Data Formats

Each data character is contained in a frame that includes a start bit, eight or nine data bits, and a stop bit.
Clearing the M bit in SCI control register 1 configures the SCI for 8-bit data characters.A frame with eight
data bits has a total of 10 bits. Setting the M bit configures the SCI for nine-bit data characters. A frame
with nine data bits has a total of 11 bits

When the SCI is configured for 9-bit data characters, the ninth data bit is the T8 bit in SCI data register
high (SCIDRH). It remains unchanged after transmission and can be used repeatedly without rewriting it.
A frame with nine data bits has a total of 11 bits.

Table 13-9. Example of 9-Bit Data Formats

Table 13-8. Example of 8-Bit Data Formats

Start
Bit

Data
Bits

Address
Bits

Parity
Bits

Stop
Bit

1 8 0 0 1

1 7 0 1 1

1 7 1(1)

1. The address bit identifies the frame as an address character. See
Section 13.4.4.6, “Receiver Wakeup”.

0 1

Start
Bit

Data
Bits

Address
Bits

Parity
Bits

Stop
Bit

1 9 0 0 1

1 8 0 1 1

1 8 1(1)

1. The address bit identifies the frame as an address character. See
Section 13.4.4.6, “Receiver Wakeup”.

0 1

BIT 5
START

BIT BIT 0 BIT 1

NEXT

STOP
BIT

START
BIT

9-BIT DATA FORMAT

BIT 2 BIT 3 BIT 4 BIT 6 BIT 7

PARITY
OR DATA

BIT

PARITY
OR DATA

BIT

BIT M IN SCICR1 SET

8-BIT DATA FORMAT
BIT M IN SCICR1 CLEAR

BIT 5BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 6 BIT 7 BIT 8 STOP
BIT

NEXT
START

BIT
START

BIT

Chapter 13 Serial Communications Interface (S12SCIV2) Block Description

402 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and
RT10. Table 13-12 summarizes the results of the data bit samples.

NOTE
The RT8, RT9, and RT10 samples do not affect start bit verification. If any
or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a
successful start bit verification, the noise flag (NF) is set and the receiver
assumes that the bit is a start bit (logic 0).

To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 13-13
summarizes the results of the stop bit samples.

Table 13-13. Stop Bit Recovery

100 Yes 1

101 No 0

110 No 0

111 No 0

Table 13-12. Data Bit Recovery

RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag

000 0 0

001 0 1

010 0 1

011 1 1

100 0 1

101 1 1

110 1 1

111 1 0

RT8, RT9, and RT10 Samples Framing Error Flag Noise Flag

000 1 0

001 1 1

010 1 1

011 0 1

100 1 1

101 0 1

110 0 1

111 0 0

Table 13-11. Start Bit Verification

RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag

Chapter 15 Timer Module (TIM16B8CV1) Block Description

442 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

15.3.2.1 Timer Input Capture/Output Compare Select (TIOS)

Read: Anytime

0x000D
TSCR2

R
TOI

0 0 0
TCRE PR2 PR1 PR0

W

0x000E
TFLG1

R
C7F C6F C5F C4F C3F C2F C1F C0F

W

0x000F
TFLG2

R
TOF

0 0 0 0 0 0 0

W

0x0010–0x001F
TCxH–TCxL

R
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

W

R
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

W

0x0020
PACTL

R 0
PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI

W

0x0021
PAFLG

R 0 0 0 0 0 0
PAOVF PAIF

W

0x0022
PACNTH

R
PACNT15 PACNT14 PACNT13 PACNT12 PACNT11 PACNT10 PACNT9 PACNT8

W

0x0023
PACNTL

R
PACNT7 PACNT6 PACNT5 PACNT4 PACNT3 PACNT2 PACNT1 PACNT0

W

0x0024–0x002F
Reserved

R

W

Module Base + 0x0000

7 6 5 4 3 2 1 0

R
IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0

W

Reset 0 0 0 0 0 0 0 0

Figure 15-6. Timer Input Capture/Output Compare Select (TIOS)

Register
Name

Bit 7 6 5 4 3 2 1 Bit 0

= Unimplemented or Reserved

Figure 15-5. TIM16B8CV1 Register Summary (continued)

Chapter 18 32 Kbyte Flash Module (S12FTS32KV1)

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 523
 Rev 01.24

18.4.1.2 Command Write Sequence

The Flash command controller is used to supervise the command write sequence to execute program,
erase, and erase verify algorithms.

Before starting a command write sequence, the ACCERR and PVIOL flags in the FSTAT register must be
clear and the CBEIF flag should be tested to determine the state of the address, data, and command buffers.
If the CBEIF flag is set, indicating the buffers are empty, a new command write sequence can be started.
If the CBEIF flag is clear, indicating the buffers are not available, a new command write sequence will
overwrite the contents of the address, data, and command buffers.

A command write sequence consists of three steps which must be strictly adhered to with writes to the
Flash module not permitted between the steps. However, Flash register and array reads are allowed during
a command write sequence. The basic command write sequence is as follows:

1. Write to a valid address in the Flash array memory.

2. Write a valid command to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the command.

The address written in step 1 will be stored in the FADDR registers and the data will be stored in the
FDATA registers. When the CBEIF flag is cleared in step 3, the CCIF flag is cleared by the Flash command
controller indicating that the command was successfully launched. For all command write sequences, the
CBEIF flag will set after the CCIF flag is cleared indicating that the address, data, and command buffers
are ready for a new command write sequence to begin. A buffered command will wait for the active
operation to be completed before being launched. Once a command is launched, the completion of the
command operation is indicated by the setting of the CCIF flag in the FSTAT register. The CCIF flag will
set upon completion of all active and buffered commands.

Chapter 18 32 Kbyte Flash Module (S12FTS32KV1)

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 529
 Rev 01.24

18.4.1.3.3 Sector Erase Command

The sector erase operation will erase all addresses in a 512 byte sector of the Flash array using an
embedded algorithm.

An example flow to execute the sector erase operation is shown in Figure 18-24. The sector erase
command write sequence is as follows:

1. Write to a Flash array address to start the command write sequence for the sector erase command.
The Flash address written determines the sector to be erased while MCU address bits [8:0] and the
data written are ignored.

2. Write the sector erase command, 0x40, to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase
command.

If a Flash sector to be erased is in a protected area of the Flash array, the PVIOL flag in the FSTAT register
will set and the sector erase command will not launch. Once the sector erase command has successfully
launched, the CCIF flag in the FSTAT register will set after the sector erase operation has completed unless
a new command write sequence has been buffered.

Chapter 20 96 Kbyte Flash Module (S12FTS96KV1)

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 581
 Rev 01.24

Table 20-2. Flash Array Memory Map Summary

MCU Address
Range

PPAGE
Protectable
Low Range

Protectable
High Range

Array Relative
Address(1)

1. Inside Flash block.

0x0000–0x3FFF(2)

2. If allowed by MCU.

Unpaged
(0x3D)

N.A. N.A. 0x14000–0x17FFF

0x4000–0x7FFF Unpaged
(0x3E)

0x4000–0x43FF N.A. 0x18000–0x1BFFF

0x4000–0x47FF

0x4000–0x4FFF

0x4000–0x5FFF

0x8000–0xBFFF 0x38 N.A. N.A. 0x00000–0x03FFF

0x39 N.A. N.A. 0x04000–0x07FFF

0x3A N.A. N.A. 0x08000–0x0BFFF

0x3B N.A. N.A. 0x0C000–0x0FFFF

0x3C N.A. N.A. 0x10000–0x13FFF

0x3D N.A. N.A. 0x14000–0x17FFF

0x3E 0x8000–0x83FF N.A. 0x18000–0x1BFFF

0x8000–0x87FF

0x8000–0x8FFF

0x8000–0x9FFF

0x3F N.A. 0xB800–0xBFFF 0x1C000–0x1FFFF

0xB000–0xBFFF

0xA000–0xBFFF

0x8000–0xBFFF

0xC000–0xFFFF Unpaged
(0x3F)

N.A. 0xF800–0xFFFF 0x1C000–0x1FFFF

0xF000–0xFFFF

0xE000–0xFFFF

0xC000–0xFFFF

Chapter 21 128 Kbyte Flash Module (S12FTS128K1V1)

640 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

Figure 21-24. Example Sector Erase Command Flow

Write: Flash Sector Address

Write: FCMD register
Sector Erase Command 0x40

Write: FSTAT register
Clear CBEIF 0x80

1.

2.

3.

Clear ACCERR/PVIOL 0x30
Write: FSTAT registeryes

no

Access Error and
Protection Violation

 and Dummy Data

Read: FSTAT register

Read: FSTAT register

no

START

yes

Check

CBEIF
Set?

Address, Data,
Command
Buffer Empty Check

ACCERR/
PVIOL
Set?

EXIT

Write: FCLKDIV register

Read: FCLKDIV register

yes

no
Clock Register
Written
Check

FDIVLD
Set?

NOTE: FCLKDIV needs to
be set once after each reset.

noBit Polling for
Command Completion
Check

yes

CCIF
Set?

Chapter 21 128 Kbyte Flash Module (S12FTS128K1V1)

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 645
 Rev 01.24

addresses sequentially staring with 0xFF00-0xFF01 and ending with 0xFF06–0xFF07. The values 0x0000
and 0xFFFF are not permitted as keys. When the KEYACC bit is set, reads of the Flash array will return
invalid data.

The user code stored in the Flash array must have a method of receiving the backdoor key from an external
stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If KEYEN[1:0] = 1:0 in the FSEC register, the MCU can be unsecured by the backdoor key access
sequence described below:

1. Set the KEYACC bit in the FCNFG register

2. Write the correct four 16-bit words to Flash addresses 0xFF00–0xFF07 sequentially starting with
0xFF00

3. Clear the KEYACC bit in the FCNFG register

4. If all four 16-bit words match the backdoor key stored in Flash addresses 0xFF00–0xFF07, the
MCU is unsecured and bits SEC[1:0] in the FSEC register are forced to the unsecure state of 1:0

The backdoor key access sequence is monitored by the internal security state machine. An illegal operation
during the backdoor key access sequence will cause the security state machine to lock, leaving the MCU
in the secured state. A reset of the MCU will cause the security state machine to exit the lock state and
allow a new backdoor key access sequence to be attempted. The following illegal operations will lock the
security state machine:

1. If any of the four 16-bit words does not match the backdoor key programmed in the Flash array

2. If the four 16-bit words are written in the wrong sequence

3. If more than four 16-bit words are written

4. If any of the four 16-bit words written are 0x0000 or 0xFFFF

5. If the KEYACC bit does not remain set while the four 16-bit words are written

After the backdoor key access sequence has been correctly matched, the MCU will be unsecured. The
Flash security byte can be programmed to the unsecure state, if desired.

In the unsecure state, the user has full control of the contents of the four word backdoor key by
programming bytes 0xFF00–0xFF07 of the Flash configuration field.

The security as defined in the Flash security/options byte at address 0xFF0F is not changed by using the
backdoor key access sequence to unsecure. The backdoor key stored in addresses 0xFF00–0xFF07 is
unaffected by the backdoor key access sequence. After the next reset sequence, the security state of the
Flash module is determined by the Flash security/options byte at address 0xFF0F. The backdoor key access
sequence has no effect on the program and erase protection defined in the FPROT register.

It is not possible to unsecure the MCU in special single chip mode by executing the backdoor key access
sequence in background debug mode.

