
Freescale Semiconductor - MC9S12GC128MPBE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor HCS12

Core Size 16-Bit

Speed 25MHz

Connectivity EBI/EMI, SCI, SPI

Peripherals POR, PWM, WDT

Number of I/O 35

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 2.35V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 52-LQFP

Supplier Device Package 52-QFP (10x10)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12gc128mpbe

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc9s12gc128mpbe-4381171
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Chapter 1 MC9S12C and MC9S12GC Device Overview (MC9S12C128)

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 33
 Rev 01.24

0x005F TC7 (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

0x0060 PACTL
Read: 0

PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI
Write:

0x0061 PAFLG
Read: 0 0 0 0 0 0

PAOVF PAIF
Write:

0x0062 PACNT (hi)
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

0x0063 PACNT (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

0x0064 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0065 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0066 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0067 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0068 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0069 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x006A Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x006B Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x006C Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x006D Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x006E Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x006F Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0070–0x007F Reserved

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0070–
0x007F

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Chapter 1 MC9S12C and MC9S12GC Device Overview (MC9S12C128)

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 41
 Rev 01.24

0x0180–0x023F Reserved

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0180–
0x023F

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0240–0x027F PIM (Port Interface Module) (Sheet 1 of 3)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0240 PTT
Read:

PTT7 PTT6 PTT5 PTT4 PTT3 PTT2 PTT1 PTT0
Write:

0x0241 PTIT
Read: PTIT7 PTIT6 PTIT5 PTIT4 PTIT3 PTIT2 PTIT1 PTIT0
Write:

0x0242 DDRT
Read:

DDRT7 DDRT7 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0
Write:

0x0243 RDRT
Read:

RDRT7 RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0
Write:

0x0244 PERT
Read:

PERT7 PERT6 PERT5 PERT4 PERT3 PERT2 PERT1 PERT0
Write:

0x0245 PPST
Read:

PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0
Write:

0x0246 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0247 MODRR
Read: 0 0 0

MODRR4 MODRR3 MODRR2 MODRR1 MODRR0
Write:

0x0248 PTS
Read: 0 0 0 0

PTS3 PTS2 PTS1 PTS0
Write:

0x0249 PTIS
Read: 0 0 0 0 PTIS3 PTIS2 PTIS1 PTIS0
Write:

0x024A DDRS
Read: 0 0 0 0

DDRS3 DDRS2 DDRS1 DDRS0
Write:

0x024B RDRS
Read: 0 0 0 0

RDRS3 RDRS2 RDRS1 RDRS0
Write:

0x024C PERS
Read: 0 0 0 0

PERS3 PERS2 PERS1 PERS0
Write:

0x024D PPSS
Read: 0 0 0 0

PPSS3 PPSS2 PPSS1 PPSS0
Write:

0x024E WOMS
Read: 0 0 0 0

WOMS3 WOMS2 WOMS1 WOMS0
Write:

0x024F Reserved
Read: 0 0 0 0 0 0 0 0
Write:

0x0250 PTM
Read: 0 0

PTM5 PTM4 PTM3 PTM2 PTM1 PTM0
Write:

0x0251 PTIM
Read: 0 0 PTIM5 PTIM4 PTIM3 PTIM2 PTIM1 PTIM0
Write:

0x0252 DDRM
Read: 0 0

DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0
Write:

Chapter 3 Module Mapping Control (MMCV4) Block Description

118 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

3.3.2.7 Memory Size Register 0 (MEMSIZ0)

Read: Anytime

Write: Writes have no effect

Reset: Defined at chip integration, see device overview section.

The MEMSIZ0 register reflects the state of the register, EEPROM and RAM memory space configuration
switches at the core boundary which are configured at system integration. This register allows read
visibility to the state of these switches.

Module Base + 0x001C
Starting address location affected by INITRG register setting.

7 6 5 4 3 2 1 0

R REG_SW0 0 EEP_SW1 EEP_SW0 0 RAM_SW2 RAM_SW1 RAM_SW0

W

Reset — — — — — — — —

= Unimplemented or Reserved

Figure 3-9. Memory Size Register 0 (MEMSIZ0)

Table 3-7. MEMSIZ0 Field Descriptions

Field Description

7
REG_SW0

Allocated System Register Space
0 Allocated system register space size is 1K byte
1 Allocated system register space size is 2K byte

5:4
EEP_SW[1:0]

Allocated System EEPROM Memory Space — The allocated system EEPROM memory space size is as
given in Table 3-8.

2
RAM_SW[2:0]

Allocated System RAM Memory Space — The allocated system RAM memory space size is as given in
Table 3-9.

Table 3-8. Allocated EEPROM Memory Space

eep_sw1:eep_sw0 Allocated EEPROM Space

00 0K byte

01 2K bytes

10 4K bytes

11 8K bytes

Table 3-9. Allocated RAM Memory Space

ram_sw2:ram_sw0
Allocated

RAM Space
RAM

Mappable Region
INITRM

Bits Used
RAM Reset

Base Address(1)

000 2K bytes 2K bytes RAM[15:11] 0x0800

001 4K bytes 4K bytes RAM[15:12] 0x0000

010 6K bytes 8K bytes(2) RAM[15:13] 0x0800

Chapter 9 Clocks and Reset Generator (CRGV4) Block Description

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 265
 Rev 01.24

9.3.2.10 Reserved Register (FORBYP)

NOTE
This reserved register is designed for factory test purposes only, and is not
intended for general user access. Writing to this register when in special
modes can alter the CRG’s functionality.

Read: always read 0x0000 except in special modes

Write: only in special modes

9.3.2.11 Reserved Register (CTCTL)

NOTE
This reserved register is designed for factory test purposes only, and is not
intended for general user access. Writing to this register when in special test
modes can alter the CRG’s functionality.

Read: always read 0x0080 except in special modes

Write: only in special modes

Module Base + 0x0009

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-13. Reserved Register (FORBYP)

Module Base + 0x000A

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-14. Reserved Register (CTCTL)

Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV2)

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 309
 Rev 01.24

NOTE
Reading this register when in any other mode other than sleep or
initialization mode may return an incorrect value. For MCUs with dual
CPUs, this may result in a CPU fault condition.

Writing to this register when in special modes can alter the MSCAN
functionality.

10.3.2.15 MSCAN Transmit Error Counter (CANTXERR)

This register reflects the status of the MSCAN transmit error counter.

Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and
INITAK = 1)

Write: Unimplemented

NOTE
Reading this register when in any other mode other than sleep or
initialization mode, may return an incorrect value. For MCUs with dual
CPUs, this may result in a CPU fault condition.

Writing to this register when in special modes can alter the MSCAN
functionality.

Module Base + 0x000F

7 6 5 4 3 2 1 0

R TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 10-18. MSCAN Transmit Error Counter (CANTXERR)

Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV2)

326 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

The MSCAN then schedules the message for transmission and signals the successful transmission of the
buffer by setting the associated TXE flag. A transmit interrupt (see Section 10.4.7.2, “Transmit Interrupt”)
is generated1 when TXEx is set and can be used to drive the application software to re-load the buffer.

If more than one buffer is scheduled for transmission when the CAN bus becomes available for arbitration,
the MSCAN uses the local priority setting of the three buffers to determine the prioritization. For this
purpose, every transmit buffer has an 8-bit local priority field (PRIO). The application software programs
this field when the message is set up. The local priority reflects the priority of this particular message
relative to the set of messages being transmitted from this node. The lowest binary value of the PRIO field
is defined to be the highest priority. The internal scheduling process takes place whenever the MSCAN
arbitrates for the CAN bus. This is also the case after the occurrence of a transmission error.

When a high priority message is scheduled by the application software, it may become necessary to abort
a lower priority message in one of the three transmit buffers. Because messages that are already in
transmission cannot be aborted, the user must request the abort by setting the corresponding abort request
bit (ABTRQ) (see Section 10.3.2.9, “MSCAN Transmitter Message Abort Request Register
(CANTARQ)”.) The MSCAN then grants the request, if possible, by:

1. Setting the corresponding abort acknowledge flag (ABTAK) in the CANTAAK register.

2. Setting the associated TXE flag to release the buffer.

3. Generating a transmit interrupt. The transmit interrupt handler software can determine from the
setting of the ABTAK flag whether the message was aborted (ABTAK = 1) or sent (ABTAK = 0).

10.4.2.3 Receive Structures

The received messages are stored in a five stage input FIFO. The five message buffers are alternately
mapped into a single memory area (see Figure 10-38). The background receive buffer (RxBG) is
exclusively associated with the MSCAN, but the foreground receive buffer (RxFG) is addressable by the
CPU (see Figure 10-38). This scheme simplifies the handler software because only one address area is
applicable for the receive process.

All receive buffers have a size of 15 bytes to store the CAN control bits, the identifier (standard or
extended), the data contents, and a time stamp, if enabled (see Section 10.3.3, “Programmer’s Model of
Message Storage”).

The receiver full flag (RXF) (see Section 10.3.2.5, “MSCAN Receiver Flag Register (CANRFLG)”)
signals the status of the foreground receive buffer. When the buffer contains a correctly received message
with a matching identifier, this flag is set.

On reception, each message is checked to see whether it passes the filter (see Section 10.4.3, “Identifier
Acceptance Filter”) and simultaneously is written into the active RxBG. After successful reception of a
valid message, the MSCAN shifts the content of RxBG into the receiver FIFO2, sets the RXF flag, and
generates a receive interrupt (see Section 10.4.7.3, “Receive Interrupt”) to the CPU3. The user’s receive
handler must read the received message from the RxFG and then reset the RXF flag to acknowledge the
interrupt and to release the foreground buffer. A new message, which can follow immediately after the IFS
field of the CAN frame, is received into the next available RxBG. If the MSCAN receives an invalid
1. The transmit interrupt occurs only if not masked. A polling scheme can be applied on TXEx also.
2. Only if the RXF flag is not set.
3. The receive interrupt occurs only if not masked. A polling scheme can be applied on RXF also.

Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV2)

332 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

If the bus clock is generated from a PLL, it is recommended to select the oscillator clock rather than the
bus clock due to jitter considerations, especially at the faster CAN bus rates.

For microcontrollers without a clock and reset generator (CRG), CANCLK is driven from the crystal
oscillator (oscillator clock).

A programmable prescaler generates the time quanta (Tq) clock from CANCLK. A time quantum is the
atomic unit of time handled by the MSCAN.

Eqn. 10-2

A bit time is subdivided into three segments as described in the Bosch CAN specification. (see Figure 10-
43):

• SYNC_SEG: This segment has a fixed length of one time quantum. Signal edges are expected to
happen within this section.

• Time Segment 1: This segment includes the PROP_SEG and the PHASE_SEG1 of the CAN
standard. It can be programmed by setting the parameter TSEG1 to consist of 4 to 16 time quanta.

• Time Segment 2: This segment represents the PHASE_SEG2 of the CAN standard. It can be
programmed by setting the TSEG2 parameter to be 2 to 8 time quanta long.

Eqn. 10-3

Figure 10-43. Segments within the Bit Time

Tq
fCANCLK

Prescaler value()--=

Bit Rate
fTq

number of Time Quanta()---=

SYNC_SEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8

8 ... 25 Time Quanta

= 1 Bit Time

NRZ Signal

Sample Point
(single or triple sampling)

 (PROP_SEG + PHASE_SEG1) (PHASE_SEG2)

Transmit Point

Chapter 12 Pulse-Width Modulator (PWM8B6CV1) Block Description

364 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

12.3.2.12 PWM Channel Counter Registers (PWMCNTx)

Each channel has a dedicated 8-bit up/down counter which runs at the rate of the selected clock source.
The counter can be read at any time without affecting the count or the operation of the PWM channel. In
left aligned output mode, the counter counts from 0 to the value in the period register – 1. In center aligned
output mode, the counter counts from 0 up to the value in the period register and then back down to 0.

Any value written to the counter causes the counter to reset to 0x0000, the counter direction to be set to
up, the immediate load of both duty and period registers with values from the buffers, and the output to
change according to the polarity bit. The counter is also cleared at the end of the effective period (see
Section 12.4.2.5, “Left Aligned Outputs,” and Section 12.4.2.6, “Center Aligned Outputs,” for more
details). When the channel is disabled (PWMEx = 0), the PWMCNTx register does not count. When a
channel becomes enabled (PWMEx = 1), the associated PWM counter starts at the count in the
PWMCNTx register. For more detailed information on the operation of the counters, reference
Section 12.4.2.4, “PWM Timer Counters.”

In concatenated mode, writes to the 16-bit counter by using a 16-bit access or writes to either the low- or
high-order byte of the counter will reset the 16-bit counter. Reads of the 16-bit counter must be made by
16-bit access to maintain data coherency.

NOTE
Writing to the counter while the channel is enabled can cause an irregular
PWM cycle to occur.

Module Base + 0x000C

7 6 5 4 3 2 1 0

R Bit 7 6 5 4 3 2 1 Bit 0

W 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0

Figure 12-15. PWM Channel Counter Registers (PWMCNT0)

Module Base + 0x000D

7 6 5 4 3 2 1 0

R Bit 7 6 5 4 3 2 1 Bit 0

W 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0

Figure 12-16. PWM Channel Counter Registers (PWMCNT1)

Chapter 13 Serial Communications Interface (S12SCIV2) Block Description

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 387
 Rev 01.24

13.3.2.1 SCI Baud Rate Registers (SCIBDH and SCHBDL)

The SCI Baud Rate Register is used by the counter to determine the baud rate of the SCI. The formula for
calculating the baud rate is:

SCI baud rate = SCI module clock / (16 x BR)

where:

BR is the content of the SCI baud rate registers, bits SBR12 through SBR0. The baud rate registers
can contain a value from 1 to 8191.

Read: Anytime. If only SCIBDH is written to, a read will not return the correct data until SCIBDL is
written to as well, following a write to SCIBDH.

Write: Anytime

 Module Base + 0x_0000

7 6 5 4 3 2 1 0

R 0 0 0
SBR12 SBR11 SBR10 SBR9 SBR8

W

Reset 0 0 0 0 0 0 0 0

Module Base + 0x_0001

7 6 5 4 3 2 1 0

R
SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

W

Reset 0 0 0 0 0 1 0 0

= Unimplemented or Reserved

Figure 13-3. SCI Baud Rate Registers (SCIBDH and SCIBDL)

Table 13-1. SCIBDH AND SCIBDL Field Descriptions

Field Description

4–0
7–0

SBR[12:0]

SCI Baud Rate Bits — The baud rate for the SCI is determined by these 13 bits.
Note: The baud rate generator is disabled until the TE bit or the RE bit is set for the first time after reset. The

baud rate generator is disabled when BR = 0.
Writing to SCIBDH has no effect without writing to SCIBDL, since writing to SCIBDH puts the data in a
temporary location until SCIBDL is written to.

Chapter 13 Serial Communications Interface (S12SCIV2) Block Description

394 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

13.4 Functional Description
This section provides a complete functional description of the SCI block, detailing the operation of the
design from the end user perspective in a number of subsections.

Figure 13-9 shows the structure of the SCI module. The SCI allows full duplex, asynchronous, NRZ serial
communication between the CPU and remote devices, including other CPUs. The SCI transmitter and
receiver operate independently, although they use the same baud rate generator. The CPU monitors the
status of the SCI, writes the data to be transmitted, and processes received data.

Figure 13-9. SCI Block Diagram

SCI DATA

RECEIVE
SHIFT REGISTER

SCI DATA
REGISTER

TRANSMIT
SHIFT REGISTER

REGISTER

BAUD RATE
GENERATOR

SBR12–SBR0

BUS

TRANSMIT
CONTROL÷16

RECEIVE
AND WAKEUP

DATA FORMAT
CONTROL

CONTROL

T8

PF

FE

NF

RDRF

IDLE

TIE

OR

TCIE

TDRE

TC

R8

RAFLOOPS

RWU

RE

PE

ILT

PT

WAKE

M

CLOCK

ILIE

RIE

RXD

RSRC

SBK

LOOPS

TE

RSRC

TXD

R
D

R
F/

O
R

 IR
Q

TD
R

E
IR

Q

ID
LE

 IR
Q

TC
 IR

Q

IRQ

TO CPU

Chapter 13 Serial Communications Interface (S12SCIV2) Block Description

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 397
 Rev 01.24

13.4.3 Transmitter

Figure 13-11. Transmitter Block Diagram

13.4.3.1 Transmitter Character Length

The SCI transmitter can accommodate either 8-bit or 9-bit data characters. The state of the M bit in SCI
control register 1 (SCICR1) determines the length of data characters. When transmitting 9-bit data, bit T8
in SCI data register high (SCIDRH) is the ninth bit (bit 8).

13.4.3.2 Character Transmission

To transmit data, the MCU writes the data bits to the SCI data registers (SCIDRH/SCIDRL), which in turn
are transferred to the transmitter shift register. The transmit shift register then shifts a frame out through
the Tx output signal, after it has prefaced them with a start bit and appended them with a stop bit. The SCI
data registers (SCIDRH and SCIDRL) are the write-only buffers between the internal data bus and the
transmit shift register.

The SCI also sets a flag, the transmit data register empty flag (TDRE), every time it transfers data from the
buffer (SCIDRH/L) to the transmitter shift register.The transmit driver routine may respond to this flag by

PE

PT

H 8 7 6 5 4 3 2 1 0 L

11-BIT TRANSMIT SHIFT REGISTERST
O

P

ST
AR

T

T8

TDRE

TIE

TCIE

SBK

TC

PARITY
GENERATION

M
SB

SCI DATA REGISTERS

LO
AD

 F
R

O
M

 S
C

ID
R

SH
IF

T
EN

AB
LE

PR
EA

M
BL

E
(A

LL
 O

N
ES

)

BR
EA

K
(A

LL
 0

s)

TRANSMITTER CONTROL

M

INTERNAL BUS

SBR12–SBR0

BAUD DIVIDER ÷ 16

TDRE INTERRUPT REQUEST

TC INTERRUPT REQUEST

BUS

LOOP

RSRC

CLOCK

TE

TO
CONTROL RXD

LOOPS

TXD

Chapter 13 Serial Communications Interface (S12SCIV2) Block Description

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 403
 Rev 01.24

In Figure 13-14 the verification samples RT3 and RT5 determine that the first low detected was noise and
not the beginning of a start bit. The RT clock is reset and the start bit search begins again. The noise flag
is not set because the noise occurred before the start bit was found.

Figure 13-14. Start Bit Search Example 1

In Figure 13-15, verification sample at RT3 is high. The RT3 sample sets the noise flag. Although the
perceived bit time is misaligned, the data samples RT8, RT9, and RT10 are within the bit time and data
recovery is successful.

Figure 13-15. Start Bit Search Example 2

RESET RT CLOCK

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T4

R
T5

R
T1

R
T1

R
T2

R
T3

R
T4

R
T7

R
T6

R
T5

R
T1

0

R
T9

R
T8

R
T1

4

R
T1

3

R
T1

2

R
T1

1

R
T1

5

R
T1

6

R
T1

R
T2

R
T3

SAMPLES

RT CLOCK

RT CLOCK COUNT

START BIT

Rx Input Signal

1 1011 1 1 0 0 00 0

LSB

0 0

RESET RT CLOCK

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T4

R
T5

R
T6

R
T7

R
T8

R
T1

1

R
T1

0

R
T9

R
T1

4

R
T1

3

R
T1

2

R
T2

R
T1

R
T1

6

R
T1

5

R
T3

R
T4

R
T5

R
T6

R
T7

SAMPLES

RT CLOCK

RT CLOCK COUNT

ACTUAL START BIT

Rx Input Signal

1 1111 1 0 0 00

LSB

00

PERCEIVED START BIT

Chapter 17 16 Kbyte Flash Module (S12FTS16KV1)

Freescale Semiconductor MC9S12C-Family / MC9S12GC-Family 479
 Rev 01.24

To change the Flash protection that will be loaded on reset, the upper sector of the Flash array must be
unprotected, then the Flash protection byte located at Flash address 0xFF0D must be written to.

A protected Flash sector is disabled by FPHDIS while the size of the protected sector is defined by
FPHS[1:0] in the FPROT register.

Trying to alter any of the protected areas will result in a protect violation error and the PVIOL flag will be
set in the FSTAT register (see Section 17.3.2.6). A mass erase of the whole Flash array is only possible
when protection is fully disabled by setting the FPOPEN and FPHDIS bits. An attempt to mass erase a
Flash array while protection is enabled will set the PVIOL flag in the FSTAT register.

Table 17-8. FPROT Field Descriptions

Field Description

7
FPOPEN

Protection Function for Program or Erase — The FPOPEN bit is used to either select an address range to be
protected using the FPHDIS and FPHS[1:0] bits or to select the same address range to be unprotected as shown
in Table 17-9.
0 The FPHDIS bit allows a Flash address range to be unprotected
1 The FPHDIS bit allows a Flash address range to be protected

6
NV6

Nonvolatile Flag Bit — The NV6 bit should remain in the erased state for future enhancements.

5
FPHDIS

Flash Protection Higher Address Range Disable — The FPHDIS bit determines whether there is a
protected/unprotected area in the higher space of the Flash address map.
0 Protection/unprotection enabled
1 Protection/unprotection disabled

4–3
FPHS[1:0]

Flash Protection Higher Address Size — The FPHS[1:0] bits determine the size of the protected/unprotected
sector as shown in Table 17-10. The FPHS[1:0] bits can only be written to while the FPHDIS bit is set.

2–0
NV[2:0]

Nonvolatile Flag Bits — The NV[2:0] bits should remain in the erased state for future enhancements.

Table 17-9. Flash Protection Function

FPOPEN FPHDIS FPHS1 FPHS0 Function(1)

1. For range sizes refer to Table 17-10.

1 1 x x No protection

1 0 x x Protect high range

0 1 x x Full Flash array protected

0 0 x x Unprotected high range

Table 17-10. Flash Protection Higher Address Range

FPHS[1:0] Address Range Range Size

00 0xF800–0xFFFF 2 Kbytes

01 0xF000–0xFFFF 4 Kbytes

10 0xE000–0xFFFF 8 Kbytes

11 0xC000–0xFFFF 16 Kbytes

Chapter 18 32 Kbyte Flash Module (S12FTS32KV1)

526 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

Figure 18-22. Example Erase Verify Command Flow

Write: Flash Array Address

Write: FCMD register
Erase Verify Command 0x05

Write: FSTAT register
Clear CBEIF 0x80

1.

2.

3.

Clear ACCERR/PVIOL 0x30
Write: FSTAT registeryes

no

Access Error and
Protection Violation

no

 and Dummy Data

Bit Polling for
Command Completion
Check

Read: FSTAT register

yes

Read: FSTAT register

no

START

yes

Check

CBEIF
Set?

Address, Data,
Command
Buffer Empty Check

CCIF
Set?

ACCERR/
PVIOL
Set?

noErase Verify
Status

yes

EXIT Flash Array
Not Erased

EXIT Flash Array
Erased

BLANK
Set?

Write: FCLKDIV register

Read: FCLKDIV register

yes

no
Clock Register
Written
Check

FDIVLD
Set?

NOTE: FCLKDIV needs to
be set once after each reset.

Chapter 19 64 Kbyte Flash Module (S12FTS64KV4)

552 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

19.3.2.6 Flash Status Register (FSTAT)

The FSTAT register defines the status of the Flash command controller and the results of command
execution.

In normal modes, bits CBEIF, PVIOL, and ACCERR are readable and writable, bits CCIF and BLANK
are readable and not writable, remaining bits, including FAIL and DONE, read 0 and are not writable. In
special modes, FAIL is readable and writable while DONE is readable but not writable. FAIL must be clear
in special modes when starting a command write sequence.

6 X X X X

7 X X X X X X X X
1. Allowed transitions marked with X.

Module Base + 0x0005

7 6 5 4 3 2 1 0

R
CBEIF

CCIF
PVIOL ACCERR

0 BLANK
FAIL

DONE

W

Reset 1 1 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 19-12. Flash Status Register (FSTAT)

Table 19-14. FSTAT Field Descriptions

Field Description

7
CBEIF

Command Buffer Empty Interrupt Flag — The CBEIF flag indicates that the address, data and command
buffers are empty so that a new command write sequence can be started. The CBEIF flag is cleared by writing
a 1 to CBEIF. Writing a 0 to the CBEIF flag has no effect on CBEIF. Writing a 0 to CBEIF after writing an aligned
word to the Flash address space but before CBEIF is cleared will abort a command write sequence and cause
the ACCERR flag in the FSTAT register to be set. Writing a 0 to CBEIF outside of a command write sequence
will not set the ACCERR flag. The CBEIF flag is used together with the CBEIE bit in the FCNFG register to
generate an interrupt request (see Figure 19-29).
0 Buffers are full
1 Buffers are ready to accept a new command

6
CCIF

Command Complete Interrupt Flag — The CCIF flag indicates that there are no more commands pending. The
CCIF flag is cleared when CBEIF is clear and sets automatically upon completion of all active and pending
commands. The CCIF flag does not set when an active commands completes and a pending command is
fetched from the command buffer. Writing to the CCIF flag has no effect. The CCIF flag is used together with the
CCIE bit in the FCNFG register to generate an interrupt request (see Figure 19-29).
0 Command in progress
1 All commands are completed

Table 19-13. Flash Protection Scenario Transitions

From
Protection
Scenario

To Protection Scenario(1)

0 1 2 3 4 5 6 7

Chapter 19 64 Kbyte Flash Module (S12FTS64KV4)

566 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

19.4.1.3.3 Sector Erase Command

The sector erase operation will erase all addresses in a 1024 byte sector of the Flash array using an
embedded algorithm.

An example flow to execute the sector erase operation is shown in Figure 19-27. The sector erase
command write sequence is as follows:

1. Write to a Flash array address to start the command write sequence for the sector erase command.
The Flash address written determines the sector to be erased while MCU address bits [9:0] and the
data written are ignored.

2. Write the sector erase command, 0x40, to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase
command.

If a Flash sector to be erased is in a protected area of the Flash array, the PVIOL flag in the FSTAT register
will set and the sector erase command will not launch. Once the sector erase command has successfully
launched, the CCIF flag in the FSTAT register will set after the sector erase operation has completed unless
a new command write sequence has been buffered.

Chapter 19 64 Kbyte Flash Module (S12FTS64KV4)

568 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

19.4.1.3.4 Mass Erase Command

The mass erase operation will erase all addresses in a Flash array using an embedded algorithm.

An example flow to execute the mass erase operation is shown in Figure 19-28. The mass erase command
write sequence is as follows:

1. Write to a Flash array address to start the command write sequence for the mass erase command.
The address and data written will be ignored.

2. Write the mass erase command, 0x41, to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the mass erase
command.

If a Flash array to be erased contains any protected area, the PVIOL flag in the FSTAT register will set and
the mass erase command will not launch. Once the mass erase command has successfully launched, the
CCIF flag in the FSTAT register will set after the mass erase operation has completed unless a new
command write sequence has been buffered.

Chapter 20 96 Kbyte Flash Module (S12FTS96KV1)

582 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

Table 20-3. Flash Array Memory Map Summary

MCU Address
Range

PPAGE
Protectable
Low Range

Protectable
High Range

Array Relative
Address(1)

1. Inside Flash block.

0x0000–0x3FFF(2)

2. If allowed by MCU.

Unpaged
(0x3D)

N.A. N.A. 0x14000–0x17FFF

0x4000–0x7FFF Unpaged
(0x3E)

0x4000–0x43FF N.A. 0x18000–0x1BFFF

0x4000–0x47FF

0x4000–0x4FFF

0x4000–0x5FFF

0x8000–0xBFFF 0x3A N.A. N.A. 0x08000–0x0BFFF

0x3B N.A. N.A. 0x0C000–0x0FFFF

0x3C N.A. N.A. 0x10000–0x13FFF

0x3D N.A. N.A. 0x14000–0x17FFF

0x3E 0x8000–0x83FF N.A. 0x18000–0x1BFFF

0x8000–0x87FF

0x8000–0x8FFF

0x8000–0x9FFF

0x3F N.A. 0xB800–0xBFFF 0x1C000–0x1FFFF

0xB000–0xBFFF

0xA000–0xBFFF

0x8000–0xBFFF

0xC000–0xFFFF Unpaged
(0x3F)

N.A. 0xF800–0xFFFF 0x1C000–0x1FFFF

0xF000–0xFFFF

0xE000–0xFFFF

0xC000–0xFFFF

Chapter 20 96 Kbyte Flash Module (S12FTS96KV1)

592 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

20.3.2.8 RESERVED2

This register is reserved for factory testing and is not accessible to the user.

All bits read 0 and are not writable.

20.3.2.9 Flash Address Register (FADDR)

FADDRHI and FADDRLO are the Flash address registers.
\

\\

Table 20-15. FCMD Field Descriptions

Field Description

6, 5, 2, 0
CMDB[6:5]
CMDB[2]
CMDB[0]

Valid Flash commands are shown in Table 20-16. An attempt to execute any command other than those listed in
Table 20-16 will set the ACCERR bit in the FSTAT register (see Section 20.3.2.6).

Table 20-16. Valid Flash Command List

CMDB NVM Command

0x05 Erase verify

0x20 Word program

0x40 Sector erase

0x41 Mass erase

Module Base + 0x0007

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-14. RESERVED2

Module Base + 0x0008

7 6 5 4 3 2 1 0

R
FABHI

W

Reset 0 0 0 0 0 0 0 0

Figure 20-15. Flash Address High Register (FADDRHI)

Chapter 21 128 Kbyte Flash Module (S12FTS128K1V1)

636 MC9S12C-Family / MC9S12GC-Family Freescale Semiconductor
Rev 01.24

Figure 21-22. Example Erase Verify Command Flow

Write: Flash Array Address

Write: FCMD register
Erase Verify Command 0x05

Write: FSTAT register
Clear CBEIF 0x80

1.

2.

3.

Clear ACCERR/PVIOL 0x30
Write: FSTAT registeryes

no

Access Error and
Protection Violation

no

 and Dummy Data

Bit Polling for
Command Completion
Check

Read: FSTAT register

yes

Read: FSTAT register

no

START

yes

Check

CBEIF
Set?

Address, Data,
Command
Buffer Empty Check

CCIF
Set?

ACCERR/
PVIOL
Set?

noErase Verify
Status

yes

EXIT Flash Array
Not Erased

EXIT Flash Array
Erased

BLANK
Set?

Write: FCLKDIV register

Read: FCLKDIV register

yes

no
Clock Register
Written
Check

FDIVLD
Set?

NOTE: FCLKDIV needs to
be set once after each reset.

