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0xFFDE, 0xFFDF Standard timer overflow I bit TMSK2 (TOI) 0x00DE

0xFFDC, 0xFFDD Pulse accumulator A overflow I bit PACTL (PAOVI) 0x00DC

0xFFDA, 0xFFDB Pulse accumulator input edge I bit PACTL (PAI) 0x00DA

0xFFD8, 0xFFD9 SPI I bit SPICR1 (SPIE, SPTIE) 0x00D8

0xFFD6, 0xFFD7 SCI I bit
SCICR2

(TIE, TCIE, RIE, ILIE)
0x00D6

0xFFD4, 0xFFD5 Reserved

0xFFD2, 0xFFD3 ATD I bit ATDCTL2 (ASCIE) 0x00D2

0xFFD0, 0xFFD1 Reserved

0xFFCE, 0xFFCF Port J I bit PIEP (PIEP7-6) 0x00CE

0xFFCC, 0xFFCD Reserved

0xFFCA, 0xFFCB Reserved

0xFFC8, 0xFFC9 Reserved

0xFFC6, 0xFFC7 CRG PLL lock I bit PLLCR (LOCKIE) 0x00C6

0xFFC4, 0xFFC5 CRG self clock mode I bit PLLCR (SCMIE) 0x00C4

0xFFBA to 0xFFC3 Reserved

0xFFB8, 0xFFB9 FLASH I bit FCNFG (CCIE, CBEIE) 0x00B8

0xFFB6, 0xFFB7 CAN wake-up(1) I bit CANRIER (WUPIE) 0x00B6

0xFFB4, 0xFFB5 CAN errors1 I bit CANRIER (CSCIE, OVRIE) 0x00B4

0xFFB2, 0xFFB3 CAN receive1 I bit CANRIER (RXFIE) 0x00B2

0xFFB0, 0xFFB1 CAN transmit1 I bit CANTIER (TXEIE[2:0]) 0x00B0

0xFF90 to 0xFFAF Reserved

0xFF8E, 0xFF8F Port P I bit PIEP (PIEP7-0) 0x008E

0xFF8C, 0xFF8D Reserved

0xFF8C, 0xFF8D PWM Emergency Shutdown I bit PWMSDN(PWMIE) 0x008C

0xFF8A, 0xFF8B VREG LVI I bit CTRL0 (LVIE) 0x008A

0xFF80 to 0xFF89 Reserved
1. Not available on MC9S12GC Family members

Table 1-9. Interrupt Vector Locations (continued)

Vector Address Interrupt Source
CCR
Mask

Local Enable
HPRIO Value

to Elevate
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Figure 1-20. Recommended PCB Layout for 80QFP Pierce Oscillator
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Figure 6-8. BDM Target-to-Host Serial Bit Timing (Logic 1)

Figure 6-9 shows the host receiving a logic 0 from the target. Because the host is asynchronous to the
target, there is up to a one clock-cycle delay from the host-generated falling edge on BKGD to the start of
the bit time as perceived by the target. The host initiates the bit time but the target finishes it. Because the
target wants the host to receive a logic 0, it drives the BKGD pin low for 13 target clock cycles then briefly
drives it high to speed up the rising edge. The host samples the bit level about 10 target clock cycles after
starting the bit time.

Figure 6-9. BDM Target-to-Host Serial Bit Timing (Logic 0)
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Chapter 7
Debug Module (DBGV1) Block Description

7.1 Introduction
This section describes the functionality of the debug (DBG) sub-block of the HCS12 core platform.

The DBG module is designed to be fully compatible with the existing BKP_HCS12_A module (BKP
mode) and furthermore provides an on-chip trace buffer with flexible triggering capability (DBG mode).
The DBG module provides for non-intrusive debug of application software. The DBG module is optimized
for the HCS12 16-bit architecture.

7.1.1 Features

The DBG module in BKP mode includes these distinctive features:

• Full or dual breakpoint mode

— Compare on address and data (full)

— Compare on either of two addresses (dual)

• BDM or SWI breakpoint

— Enter BDM on breakpoint (BDM)

— Execute SWI on breakpoint (SWI)

• Tagged or forced breakpoint

— Break just before a specific instruction will begin execution (TAG)

— Break on the first instruction boundary after a match occurs (Force)

• Single, range, or page address compares

— Compare on address (single)

— Compare on address 256 byte (range)

— Compare on any 16K page (page)

• At forced breakpoints compare address on read or write

• High and/or low byte data compares

• Comparator C can provide an additional tag or force breakpoint (enhancement for BKP mode)
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Left Justified Result Data

0x0010 ATDDR0H
R BIT 9 MSB

BIT 7 MSB
BIT 8
BIT 6

BIT 7
BIT 5

BIT 6
BIT 4

BIT 5
BIT 3

BIT 4
BIT 2

BIT 3
BIT 1

BIT 2
BIT 0

W

0x0011 ATDDR0L
R BIT 1

u
BIT 0

u
0
0

0
0

0
0

0
0

0
0

0
0

W

0x0012 ATDDR1H
R BIT 9 MSB

BIT 7 MSB
BIT 8
BIT 6

BIT 7
BIT 5

BIT 6
BIT 4

BIT 5
BIT 3

BIT 4
BIT 2

BIT 3
BIT 1

BIT 2
BIT 0

W

0x0013 ATDDR1L
R BIT 1

u
BIT 0

u
0
0

0
0

0
0

0
0

0
0

0
0

W

0x0014 ATDDR2H
R BIT 9 MSB

BIT 7 MSB
BIT 8
BIT 6

BIT 7
BIT 5

BIT 6
BIT 4

BIT 5
BIT 3

BIT 4
BIT 2

BIT 3
BIT 1

BIT 2
BIT 0

W

0x0015 ATDDR2L
R BIT 1

u
BIT 0

u
0
0

0
0

0
0

0
0

0
0

0
0

W

0x0016 ATDDR3H
R BIT 9 MSB

BIT 7 MSB
BIT 8
BIT 6

BIT 7
BIT 5

BIT 6
BIT 4

BIT 5
BIT 3

BIT 4
BIT 2

BIT 3
BIT 1

BIT 2
BIT 0

W

0x0017 ATDDR3L
R BIT 1

u
BIT 0

u
0
0

0
0

0
0

0
0

0
0

0
0

W

0x0018 ATDDR4H
R BIT 9 MSB

BIT 7 MSB
BIT 8
BIT 6

BIT 7
BIT 5

BIT 6
BIT 4

BIT 5
BIT 3

BIT 4
BIT 2

BIT 3
BIT 1

BIT 2
BIT 0

W

0x0019 ATDDR4L
R BIT 1

u
BIT 0

u
0
0

0
0

0
0

0
0

0
0

0
0

W

0x001A ATDDR5H
R BIT 9 MSB

BIT 7 MSB
BIT 8
BIT 6

BIT 7
BIT 5

BIT 6
BIT 4

BIT 5
BIT 3

BIT 4
BIT 2

BIT 3
BIT 1

BIT 2
BIT 0

W

0x001B ATDDR5L
R BIT 1

u
BIT 0

u
0
0

0
0

0
0

0
0

0
0

0
0

W

0x001C ATDDR6H
R BIT 9 MSB

BIT 7 MSB
BIT 8
BIT 6

BIT 7
BIT 5

BIT 6
BIT 4

BIT 5
BIT 3

BIT 4
BIT 2

BIT 3
BIT 1

BIT 2
BIT 0

W

0x001D ATDDR6L
R BIT 1

u
BIT 0

u
0
0

0
0

0
0

0
0

0
0

0
0

W

Address Name Bit 7 6 5 4 3 2 1 Bit 0

= Unimplemented or Reserved

Figure 8-2. ATD Register Summary (Sheet 2 of 4)
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8.5.1.3 Step 3

Configure how many conversions you want to perform in one sequence and define other settings in
ATDCTL3.

Example: Write S4C=1 to do 4 conversions per sequence.

8.5.1.4 Step 4

Configure resolution, sampling time and ATD clock speed in ATDCTL4.

Example: Use default for resolution and sampling time by leaving SRES8, SMP1 and SMP0 clear. For a
bus clock of 40MHz write 9 to PR4-0, this gives an ATD clock of 0.5*40MHz/(9+1) = 2MHz which is
within the allowed range for fATDCLK.

8.5.1.5 Step 5

Configure starting channel, single/multiple channel, continuous or single sequence and result data format
in ATDCTL5. Writing ATDCTL5 will start the conversion, so make sure your write ATDCTL5 in the last
step.

Example: Leave CC,CB,CA clear to start on channel AN0. Write MULT=1 to convert channel AN0 to
AN3 in a sequence (4 conversion per sequence selected in ATDCTL3).

8.5.2 Aborting an A/D conversion

8.5.2.1 Step 1

Disable the ATD Interrupt by writing ASCIE=0 in ATDCTL2. This will also abort any ongoing conversion
sequence.

It is important to clear the interrupt enable at this point, prior to step 3, as depending on the device clock
gating it may not always be possible to clear it or the SCF flag once the module is disabled (ADPU=0).

8.5.2.2 Step 2

Clear the SCF flag by writing a 1 in ATDSTAT0.

(Remaining flags will be cleared with the next start of a conversions, but SCF flag should be cleared to
avoid SCF interrupt.)

8.5.2.3 Step 3

Power down ATD by writing ADPU=0 in ATDCTL2.

8.6 Resets
At reset the ATD10B8C is in a power down state. The reset state of each individual bit is listed within
Section 8.3.2, “Register Descriptions” which details the registers and their bit-field.
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9.1.2 Modes of Operation

This subsection lists and briefly describes all operating modes supported by the CRG.

• Run mode

All functional parts of the CRG are running during normal run mode. If RTI or COP functionality
is required the individual bits of the associated rate select registers (COPCTL, RTICTL) have to be
set to a nonzero value.

• Wait mode

This mode allows to disable the system and core clocks depending on the configuration of the
individual bits in the CLKSEL register.

• Stop mode

Depending on the setting of the PSTP bit, stop mode can be differentiated between full stop mode
(PSTP = 0) and pseudo-stop mode (PSTP = 1).

— Full stop mode

The oscillator is disabled and thus all system and core clocks are stopped. The COP and the
RTI remain frozen.

— Pseudo-stop mode

The oscillator continues to run and most of the system and core clocks are stopped. If the
respective enable bits are set the COP and RTI will continue to run, else they remain frozen.

• Self-clock mode

Self-clock mode will be entered if the clock monitor enable bit (CME) and the self-clock mode
enable bit (SCME) are both asserted and the clock monitor in the oscillator block detects a loss of
clock. As soon as self-clock mode is entered the CRGV4 starts to perform a clock quality check.
Self-clock mode remains active until the clock quality check indicates that the required quality of
the incoming clock signal is met (frequency and amplitude). Self-clock mode should be used for
safety purposes only. It provides reduced functionality to the MCU in case a loss of clock is causing
severe system conditions.

9.1.3 Block Diagram

Figure 9-1 shows a block diagram of the CRGV4.
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10.3.3.2 Data Segment Registers (DSR0-7)

The eight data segment registers, each with bits DB[7:0], contain the data to be transmitted or received.
The number of bytes to be transmitted or received is determined by the data length code in the
corresponding DLR register.

Module Base + 0x00X3

7 6 5 4 3 2 1 0

R

W

Reset: x x x x x x x x

= Unused; always read ‘x’

Figure 10-32. Identifier Register 3 — Standard Mapping

Module Base + 0x0004 (DSR0)
0x0005 (DSR1)
0x0006 (DSR2)
0x0007 (DSR3)
0x0008 (DSR4)
0x0009 (DSR5)
0x000A (DSR6)
0x000B (DSR7)

7 6 5 4 3 2 1 0

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

Reset: x x x x x x x x

Figure 10-33. Data Segment Registers (DSR0–DSR7) — Extended Identifier Mapping

Table 10-30.  DSR0–DSR7 Register Field Descriptions

Field Description

7:0
DB[7:0]

Data bits 7:0
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13.3.2.3 SCI Control Register 2 (SCICR2)

Read: Anytime

Write: Anytime

Table 13-3. Loop Functions

LOOPS RSRC Function

0 x Normal operation

1 0 Loop mode with Rx input internally connected to Tx output

1 1 Single-wire mode with Rx input connected to TXD

 Module Base + 0x_0003

7 6 5 4 3 2 1 0

R
TIE TCIE RIE ILIE TE RE RWU SBK

W

Reset 0 0 0 0 0 0 0 0

Figure 13-5. SCI Control Register 2 (SCICR2)

Table 13-4. SCICR2 Field Descriptions

Field Description

7
TIE

Transmitter Interrupt Enable Bit — TIE enables the transmit data register empty flag, TDRE, to generate
interrupt requests.
0 TDRE interrupt requests disabled
1 TDRE interrupt requests enabled

6
TCIE

Transmission Complete Interrupt Enable Bit — TCIE enables the transmission complete flag, TC, to generate
interrupt requests.
0 TC interrupt requests disabled
1 TC interrupt requests enabled

5
RIE

Receiver Full Interrupt Enable Bit — RIE enables the receive data register full flag, RDRF, or the overrun flag,
OR, to generate interrupt requests.
0 RDRF and OR interrupt requests disabled
1 RDRF and OR interrupt requests enabled

4
ILIE

Idle Line Interrupt Enable Bit — ILIE enables the idle line flag, IDLE, to generate interrupt requests.
0 IDLE interrupt requests disabled
1 IDLE interrupt requests enabled

3
TE

Transmitter Enable Bit — TE enables the SCI transmitter and configures the TXD pin as being controlled by
the SCI. The TE bit can be used to queue an idle preamble.
0 Transmitter disabled
1 Transmitter enabled

2
RE

Receiver Enable Bit — RE enables the SCI receiver.
0 Receiver disabled
1 Receiver enabled
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In master mode, with slave select output enabled the SS line is always deasserted and reasserted between
successive transfers for at least minimum idle time.

14.4.3.3 CPHA = 1 Transfer Format

Some peripherals require the first SCK edge before the first data bit becomes available at the data out pin,
the second edge clocks data into the system. In this format, the first SCK edge is issued by setting the
CPHA bit at the beginning of the 8-cycle transfer operation.

The first edge of SCK occurs immediately after the half SCK clock cycle synchronization delay. This first
edge commands the slave to transfer its first data bit to the serial data input pin of the master.

A half SCK cycle later, the second edge appears on the SCK pin. This is the latching edge for both the
master and slave.

When the third edge occurs, the value previously latched from the serial data input pin is shifted into the
LSB or MSB of the SPI shift register, depending on LSBFE bit. After this edge, the next bit of the master
data is coupled out of the serial data output pin of the master to the serial input pin on the slave.

This process continues for a total of 16 edges on the SCK line with data being latched on even numbered
edges and shifting taking place on odd numbered edges.

Data reception is double buffered, data is serially shifted into the SPI shift register during the transfer and
is transferred to the parallel SPI Data Register after the last bit is shifted in.

After the 16th SCK edge:

• Data that was previously in the SPI Data Register of the master is now in the data register of the
slave, and data that was in the data register of the slave is in the master.

• The SPIF flag bit in SPISR is set indicating that the transfer is complete.

Figure 14-10 shows two clocking variations for CPHA = 1. The diagram may be interpreted as a master or
slave timing diagram because the SCK, MISO, and MOSI pins are connected directly between the master
and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the
master. The SS line is the slave select input to the slave. The SS pin of the master must be either high or
reconfigured as a general-purpose output not affecting the SPI.

The SS line can remain active low between successive transfers (can be tied low at all times). This format
is sometimes preferred in systems having a single fixed master and a single slave that drive the MISO data
line.

• Back-to-back transfers in master mode

In master mode, if a transmission has completed and a new data byte is available in the SPI Data Register,
this byte is send out immediately without a trailing and minimum idle time.

The SPI interrupt request flag (SPIF) is common to both the master and slave modes. SPIF gets set one
half SCK cycle after the last SCK edge.
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15.3.2.15 16-Bit Pulse Accumulator Control Register (PACTL)

When PAEN is set, the PACT is enabled.The PACT shares the input pin with IOC7.

Read: Any time

Write: Any time

Module Base + 0x0020

7 6 5 4 3 2 1 0

R 0
PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI

W

Reset 0 0 0 0 0 0 0 0

Unimplemented or Reserved

Figure 15-24. 16-Bit Pulse Accumulator Control Register (PACTL)

Table 15-19. PACTL Field Descriptions

Field Description

6
PAEN

Pulse Accumulator System Enable — PAEN is independent from TEN. With timer disabled, the pulse
accumulator can function unless pulse accumulator is disabled.
0 16-Bit Pulse Accumulator system disabled.
1 Pulse Accumulator system enabled.

5
PAMOD

Pulse Accumulator Mode — This bit is active only when the Pulse Accumulator is enabled (PAEN = 1). See
Table 15-20.
0 Event counter mode.
1 Gated time accumulation mode.

4
PEDGE

Pulse Accumulator Edge Control — This bit is active only when the Pulse Accumulator is enabled (PAEN = 1).
For PAMOD bit = 0 (event counter mode). See Table 15-20.
0 Falling edges on IOC7 pin cause the count to be incremented.
1 Rising edges on IOC7 pin cause the count to be incremented.
For PAMOD bit = 1 (gated time accumulation mode).
0 IOC7 input pin high enables M (bus clock) divided by 64 clock to Pulse Accumulator and the trailing falling

edge on IOC7 sets the PAIF flag.
1 IOC7 input pin low enables M (bus clock) divided by 64 clock to Pulse Accumulator and the trailing rising edge

on IOC7 sets the PAIF flag.

3:2
CLK[1:0]

Clock Select Bits — Refer to Table 15-21.

1
PAOVI

Pulse Accumulator Overflow Interrupt Enable
0 Interrupt inhibited.
1 Interrupt requested if PAOVF is set.

0
PAI

Pulse Accumulator Input Interrupt Enable
0 Interrupt inhibited.
1 Interrupt requested if PAIF is set.
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17.1.3 Modes of Operation

See Section 17.4.2, “Operating Modes” for a description of the Flash module operating modes. For
program and erase operations, refer to Section 17.4.1, “Flash Command Operations”.

17.1.4 Block Diagram

Figure 17-1 shows a block diagram of the FTS16K module.

Figure 17-1. FTS16K Block Diagram

17.2 External Signal Description
The FTS16K module contains no signals that connect off-chip.

FTS16K

Oscillator
Clock

Command
Complete
Interrupt

Command
Buffer Empty
Interrupt

Flash Array

8K * 16 Bits

sector 0
sector 1

sector 31

Clock
Divider FCLK

Protection

Security

Command Pipeline

cmd2
addr2
data2

cmd1
addr1
data1

Registers

Flash
Interface
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17.3 Memory Map and Registers
This section describes the FTS16K memory map and registers.

17.3.1 Module Memory Map

The FTS16K memory map is shown in Figure 17-2. The HCS12 architecture places the Flash array
addresses between 0xC000 and 0xFFFF. The content of the HCS12 Core PPAGE register is used to map
the logical page ranging from address 0x8000 to 0xBFFF to a physical 16K byte page in the Flash array
memory.1 The FPROT register (see Section 17.3.2.5) can be set to globally protect the entire Flash array
or one growing downward from the Flash array end address. The higher address area is mainly targeted to
hold the boot loader code since it covers the vector space. Default protection settings as well as security
information that allows the MCU to restrict access to the Flash module are stored in the Flash configuration
field described in Table 17-1.

1. By placing 0x3F in the HCS12 Core PPAGE register, the 16 Kbyte page can be seen twice in the MCU memory map.

Table 17-1. Flash Configuration Field

Flash Address
Size

(bytes)
Description

0xFF00–0xFF07 8 Backdoor Key to unlock security

0xFF08–0xFF0C 5 Reserved

0xFF0D 1 Flash Protection byte
Refer to Section 17.3.2.5, “Flash Protection Register (FPROT)”

0xFF0E 1 Reserved

0xFF0F 1 Flash Security/Options byte
Refer to Section 17.3.2.2, “Flash Security Register (FSEC)”
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All bits read 0 and are not writable.

18.3.2.12 RESERVED4

This register is reserved for factory testing and is not accessible to the user.

All bits read 0 and are not writable.

18.3.2.13 RESERVED5

This register is reserved for factory testing and is not accessible to the user.

All bits read 0 and are not writable.

18.3.2.14 RESERVED6

This register is reserved for factory testing and is not accessible to the user.

Module Base + 0x000C

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 18-17. RESERVED3

Module Base + 0x000D

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 18-18. RESERVED4

Module Base + 0x000E

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 18-19. RESERVED5
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19.4.1.2 Command Write Sequence

The Flash command controller is used to supervise the command write sequence to execute program,
erase, and erase verify algorithms.

Before starting a command write sequence, the ACCERR and PVIOL flags in the FSTAT register must be
clear and the CBEIF flag should be tested to determine the state of the address, data, and command buffers.
If the CBEIF flag is set, indicating the buffers are empty, a new command write sequence can be started.
If the CBEIF flag is clear, indicating the buffers are not available, a new command write sequence will
overwrite the contents of the address, data, and command buffers.

A command write sequence consists of three steps which must be strictly adhered to with writes to the
Flash module not permitted between the steps. However, Flash register and array reads are allowed during
a command write sequence. The basic command write sequence is as follows:

1. Write to a valid address in the Flash array memory.

2. Write a valid command to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the command.

The address written in step 1 will be stored in the FADDR registers and the data will be stored in the
FDATA registers. When the CBEIF flag is cleared in step 3, the CCIF flag is cleared by the Flash command
controller indicating that the command was successfully launched. For all command write sequences, the
CBEIF flag will set after the CCIF flag is cleared indicating that the address, data, and command buffers
are ready for a new command write sequence to begin. A buffered command will wait for the active
operation to be completed before being launched. Once a command is launched, the completion of the
command operation is indicated by the setting of the CCIF flag in the FSTAT register. The CCIF flag will
set upon completion of all active and buffered commands.
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21.4.1.2 Command Write Sequence

The Flash command controller is used to supervise the command write sequence to execute program,
erase, and erase verify algorithms.

Before starting a command write sequence, the ACCERR and PVIOL flags in the FSTAT register must be
clear and the CBEIF flag should be tested to determine the state of the address, data, and command buffers.
If the CBEIF flag is set, indicating the buffers are empty, a new command write sequence can be started.
If the CBEIF flag is clear, indicating the buffers are not available, a new command write sequence will
overwrite the contents of the address, data, and command buffers.

A command write sequence consists of three steps which must be strictly adhered to with writes to the
Flash module not permitted between the steps. However, Flash register and array reads are allowed during
a command write sequence. The basic command write sequence is as follows:

1. Write to a valid address in the Flash array memory.

2. Write a valid command to the FCMD register.

3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the command.

The address written in step 1 will be stored in the FADDR registers and the data will be stored in the
FDATA registers. When the CBEIF flag is cleared in step 3, the CCIF flag is cleared by the Flash command
controller indicating that the command was successfully launched. For all command write sequences, the
CBEIF flag will set after the CCIF flag is cleared indicating that the address, data, and command buffers
are ready for a new command write sequence to begin. A buffered command will wait for the active
operation to be completed before being launched. Once a command is launched, the completion of the
command operation is indicated by the setting of the CCIF flag in the FSTAT register. The CCIF flag will
set upon completion of all active and buffered commands.
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A.1.7 Operating Conditions

This chapter describes the operating conditions of the devices. Unless otherwise noted those conditions
apply to all the following data.

NOTE
Instead of specifying ambient temperature all parameters are specified for
the more meaningful silicon junction temperature. For power dissipation
calculations refer to Section A.1.8, “Power Dissipation and Thermal
Characteristics”

.

Table A-4. Operating Conditions

Rating Symbol Min Typ Max Unit

I/O, Regulator and Analog Supply Voltage VDD5 2.97 5 5.5 V

Digital Logic Supply Voltage (1)

1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The operating
conditions apply when this regulator is disabled and the device is powered from an external source.
Using an external regulator, with the internal voltage regulator disabled, an external LVR must be provided.

VDD 2.35 2.5 2.75 V

PLL Supply Voltage 1 VDDPLL 2.35 2.5 2.75 V

Voltage Difference VDDX to VDDA ∆VDDX –0.1 0 0.1 V

Voltage Difference VSSX to VSSR and VSSA ∆VSSX –0.1 0 0.1 V

Bus Frequency fbus
(2)

2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper operation.

0.25 — 25 MHz

Bus Frequency fbus
(3)

3. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper operation.

0.25 — 16 MHz

Operating Junction Temperature Range T
J

–40 — 140 °C
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Figure A-10. Voltage Regulator — Chip Power-up and Voltage Drops (not scaled)

A.7.3 Output Loads

A.7.3.1 Resistive Loads

The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits allows no
external DC loads.

A.7.3.2 Capacitive Loads

The capacitive loads are specified in Table A-24. Ceramic capacitors with X7R dielectricum are required.

Table A-24. Voltage Regulator — Capacitive Loads

Num Characteristic Symbol Min Typical Max Unit

1 VDD external capacitive load CDDext 400 440 12000 nF

2 VDDPLL external capacitive load CDDPLLext 90 220 5000 nF

VLVID

VLVIA

VLVRD

VLVRA

VPORD

LVI

POR

LVR

t

V VDDA

VDD

LVI enabled LVI disabled due to LVR


