


#### Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XF

| Product Status                | Active                                                                                           |
|-------------------------------|--------------------------------------------------------------------------------------------------|
| Core Processor                | ARM® Cortex®-M0                                                                                  |
| Core Size                     | 32-Bit Single-Core                                                                               |
| Speed                         | 48MHz                                                                                            |
| Connectivity                  | I <sup>2</sup> C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART                       |
| Peripherals                   | Bluetooth, Brown-out Detect/Reset, Cap Sense, DMA LCD, LVD, POR, PWM, SmartCard, SmartSense, WDT |
| Number of I/O                 | 36                                                                                               |
| Program Memory Size           | 256KB (256K x 8)                                                                                 |
| Program Memory Type           | FLASH                                                                                            |
| EEPROM Size                   | -                                                                                                |
| RAM Size                      | 32K x 8                                                                                          |
| Voltage - Supply<br>(Vcc/Vdd) | 1.71V ~ 5.5V                                                                                     |
| Data Converters               | A/D 16x12b SAR; D/A 2xIDAC                                                                       |
| Oscillator Type               | Internal                                                                                         |
| Operating Temperature         | -40°C ~ 105°C (TA)                                                                               |
| Mounting Type                 | Surface Mount                                                                                    |
| Package / Case                | 56-UFQFN Exposed Pad                                                                             |
| Supplier Device Package       | 56-QFN (7x7)                                                                                     |
| Purchase URL                  | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4248lqq-bl583                     |
|                               |                                                                                                  |

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong




# Contents

| Functional Definition               | 5  |
|-------------------------------------|----|
| CPU and Memory Subsystem            | 5  |
| System Resources                    | 5  |
| Bluetooth Smart Radio and Subsystem | 6  |
| Analog Blocks                       | 7  |
| Fixed-Function Digital              | 8  |
| GPIO                                | 8  |
| Special-Function Peripherals        | 9  |
| Pinouts                             | 10 |
| Power                               | 15 |
| Development Support                 | 16 |
| Documentation                       | 16 |
| Online                              | 16 |
| Tools                               | 16 |
| Electrical Specifications           | 17 |
| Absolute Maximum Ratings            | 17 |
| Device Level Specifications         | 17 |
| Analog Peripherals                  | 22 |
| Digital Peripherals                 | 26 |

| Memory                                  | 30 |
|-----------------------------------------|----|
| System Resources                        |    |
| Ordering Information                    |    |
| Part Numbering Conventions              |    |
| Packaging                               |    |
| WLCSP Compatibility                     | 41 |
| Acronyms                                |    |
| Document Conventions                    | 47 |
| Units of Measure                        | 47 |
| Revision History                        | 48 |
| Sales, Solutions, and Legal Information | 49 |
| Worldwide Sales and Design Support      | 49 |
| Products                                |    |
| PSoC® Solutions                         | 49 |
| Cypress Developer Community             | 49 |
| Technical Support                       |    |
|                                         |    |







The PSoC 4100\_BLE devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The Arm SWD interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debugging.

The PSoC Creator IDE provides fully integrated programming and debugging support for the PSoC 4100\_BLE devices. The SWD interface is fully compatible with industry-standard third-party tools. With the ability to disable debug features, very robust flash protection, and allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, the PSoC 4100\_BLE family provides a level of security not possible with multi-chip application solutions or with microcontrollers. Debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with the new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4100\_BLE with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4100 BLE allows the customer to make.



### *Timer/Counter/PWM Block*

The timer/counter/PWM block consists of four 16-bit counters with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow the use as deadband programmable complementary PWM outputs. It also has a kill input to force outputs to a predetermined state; for example, this is used in motor-drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

### Serial Communication Blocks (SCB)

PSoC 4100\_BLE has two SCBs, each of which can implement an I $^2$ C, UART, or SPI interface.

**I<sup>2</sup>C Mode**: The hardware I<sup>2</sup>C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast-Mode Plus) and has flexible buffering options to reduce the interrupt overhead and latency for the CPU. It also supports EzI<sup>2</sup>C that creates a mailbox address range in the memory of PSoC 4100\_BLE and effectively reduces the I<sup>2</sup>C communication to reading from and writing to an array in the memory. In addition, the block supports an 8-deep FIFO for receive and transmit, which, by increasing the time given for the CPU to read the data, greatly reduces the need for clock stretching caused by the CPU not having read the data on time. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I<sup>2</sup>C peripheral is compatible with I<sup>2</sup>C Standard-mode, Fast-mode, and Fast-Mode Plus devices as defined in the NXP I<sup>2</sup>C-bus specification and user manual (UM10204). The I<sup>2</sup>C bus I/O is implemented with GPIOs in open-drain modes.

SCB1 is fully compliant with Standard-mode (100 kHz), Fast-mode (400 kHz), and Fast-Mode Plus (1 MHz) I<sup>2</sup>C signaling specifications when routed to GPIO pins P5.0 and P5.1, except for hot swap capability during I2C active communication. The remaining GPIOs do not meet the hot-swap specification (V<sub>DD</sub> off; draw < 10- $\mu$ A current) for Fast mode and Fast-Mode Plus, I<sub>OL</sub> spec (20 mA) for Fast-Mode Plus, hysteresis spec (0.05 × V<sub>DD</sub>) for Fast mode and Fast-Mode Plus, and minimum fall-time spec for Fast mode and Fast-Mode Plus.

- GPIO cells, including P5.0 and P5.1, cannot be hot-swapped or powered up independent of the rest of the I<sup>2</sup>C system.
- The GPIO pins P5.0 and P5.1 are overvoltage-tolerant but cannot be hot-swapped or powered up independent of the rest of the I<sup>2</sup>C system.
- Fast-Mode Plus has an  $I_{OL}$  specification of 20 mA at a  $V_{OL}$  of 0.4 V. The GPIO cells can sink a maximum of 8 mA  $I_{OL}$  with a  $V_{OL}$  maximum of 0.6 V.

Fast mode and Fast-Mode Plus specify minimum Fall times, which are not met with the GPIO cell; the Slow-Strong mode can help meet this spec depending on the bus load.

**UART Mode**: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows the addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

**SPI Mode**: The SPI mode supports full Motorola SPI, TI Secure Simple Pairing (SSP) (essentially adds a start pulse that is used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO for transmit and receive.

## GPIO

PSoC 4100\_BLE has 36 GPIOs. The GPIO block implements the following:

- Eight drive-strength modes:
  - □ Analog input mode (input and output buffers disabled) □ Input only
  - Weak pull-up with strong pull-down
  - Strong pull-up with weak pull-down
  - Open drain with strong pull-down
  - Open drain with strong pull-up
  - Strong pull-up with strong pull-down
  - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Pins 0 and 1 of Port 5 are overvoltage-tolerant Pins
- Individual control of input and output buffer enabling/disabling in addition to drive-strength modes
- Hold mode for latching the previous state (used for retaining the I/O state in Deep-Sleep and Hibernate modes)
- Selectable slew rates for dV/dt-related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix (HSIOM) is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin may be routed to any UDB through the DSI network.

Data output and pin-state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4100\_BLE since it has 4.5 ports).



| Pin | Name | Туре   | Description                                       |
|-----|------|--------|---------------------------------------------------|
| 40  | P2.3 | GPIO   | Port 2 Pin 3, lcd, csd                            |
| 41  | P2.4 | GPIO   | Port 2 Pin 4, lcd, csd                            |
| 42  | P2.5 | GPIO   | Port 2 Pin 5, lcd, csd                            |
| 43  | P2.6 | GPIO   | Port 2 Pin 6, lcd, csd                            |
| 44  | P2.7 | GPIO   | Port 2 Pin 7, lcd, csd                            |
| 45  | VREF | REF    | 1.024-V reference                                 |
| 46  | VDDA | POWER  | 1.71-V to 5.5-V analog supply                     |
| 47  | P3.0 | GPIO   | Port 3 Pin 0, lcd, csd                            |
| 48  | P3.1 | GPIO   | Port 3 Pin 1, lcd, csd                            |
| 49  | P3.2 | GPIO   | Port 3 Pin 2, lcd, csd                            |
| 50  | P3.3 | GPIO   | Port 3 Pin 3, lcd, csd                            |
| 51  | P3.4 | GPIO   | Port 3 Pin 4, lcd, csd                            |
| 52  | P3.5 | GPIO   | Port 3 Pin 5, lcd, csd                            |
| 53  | P3.6 | GPIO   | Port 3 Pin 6, lcd, csd                            |
| 54  | P3.7 | GPIO   | Port 3 Pin 7, lcd, csd                            |
| 55  | VSSA | GROUND | Analog ground                                     |
| 56  | VCCD | POWER  | Regulated 1.8-V supply, connect to 1-µF capacitor |
| 57  | EPAD | GROUND | Ground paddle for the QFN package                 |

## Table 1. PSoC 4100\_BLE Pin List (QFN Package) (continued)

## Table 2. PSoC 4100\_BLE Pin List (WLCSP Package)

| Pin | Name         | Туре   | Pin Description                                   |
|-----|--------------|--------|---------------------------------------------------|
| A1  | VREF         | REF    | 1.024-V reference                                 |
| A2  | VSSA         | GROUND | Analog ground                                     |
| A3  | P3.3         | GPIO   | Port 3 Pin 3, lcd, csd                            |
| A4  | P3.7         | GPIO   | Port 3 Pin 7, lcd, csd                            |
| A5  | VSSD         | GROUND | Digital ground                                    |
| A6  | VSSA         | GROUND | Analog ground                                     |
| A7  | VCCD         | POWER  | Regulated 1.8-V supply, connect to 1-µF capacitor |
| A8  | VDDD         | POWER  | 1.71-V to 5.5-V radio supply                      |
| B1  | P2.3         | GPI    | Port 2 Pin 3, lcd, csd                            |
| B2  | VSSA         | GROUND | Analog ground                                     |
| B3  | P2.7         | GPIO   | Port 2 Pin 7, lcd, csd                            |
| B4  | P3.4         | GPIO   | Port 3 Pin 4, lcd, csd                            |
| B5  | P3.5         | GPIO   | Port 3 Pin 5, lcd, csd                            |
| B6  | P3.6         | GPIO   | Port 3 Pin 6, lcd, csd                            |
| B7  | XTAL32I/P6.1 | CLOCK  | 32.768-kHz crystal or external clock input        |
| B8  | XTAL320/P6.0 | CLOCK  | 32.768-kHz crystal                                |
| C1  | VSSA         | GROUND | Analog ground                                     |
| C2  | P2.2         | GPIO   | Port 2 Pin 2, lcd, csd                            |
| C3  | P2.6         | GPIO   | Port 2 Pin 6, lcd, csd                            |
| C4  | P3.0         | GPIO   | Port 3 Pin 0, lcd, csd                            |
| C5  | P3.1         | GPIO   | Port 3 Pin 1, lcd, csd                            |



## Table 2. PSoC 4100\_BLE Pin List (WLCSP Package) (continued)

| Pin Name |         | Туре    | Pin Description                        |
|----------|---------|---------|----------------------------------------|
| C6       | P3.2    | GPIO    | Port 3 Pin 2, lcd, csd                 |
| C7       | XRES    | RESET   | Reset, active LOW                      |
| C8       | P4.0    | GPIO    | Port 4 Pin 0, lcd, csd                 |
| D1       | P1.7    | GPIO    | Port 1 Pin 7, lcd, csd                 |
| D2       | VDDA    | POWER   | 1.71-V to 5.5-V analog supply          |
| D3       | P2.0    | GPIO    | Port 2 Pin 0, lcd, csd                 |
| D4       | P2.1    | GPIO    | Port 2 Pin 1, lcd, csd                 |
| D5       | P2.5    | GPIO    | Port 2 Pin 5, lcd, csd                 |
| D6       | VSSD    | GROUND  | Digital ground                         |
| D7       | P4.1    | GPIO    | Port 4 Pin 1, lcd, csd                 |
| D8       | P5.0    | GPIO    | Port 5 Pin 0, lcd, csd                 |
| E1       | P1.2    | GPIO    | Port 1 Pin 2, lcd, csd                 |
| E2       | P1.3    | GPIO    | Port 1 Pin 3, lcd, csd                 |
| E3       | P1.4    | GPIO    | Port 1 Pin 4, lcd, csd                 |
| E4       | P1.5    | GPIO    | Port 1 Pin 5, lcd, csd                 |
| E5       | P1.6    | GPIO    | Port 1 Pin 6, lcd, csd                 |
| E6       | P2.4    | GPIO    | Port 2 Pin 4, lcd, csd                 |
| E7       | P5.1    | GPIO    | Port 5 Pin 1, lcd, csd                 |
| E8       | VSSD    | GROUND  | Digital ground                         |
| F1       | VSSD    | GROUND  | Digital ground                         |
| F2       | P0.7    | GPIO    | Port 0 Pin 7, lcd, csd                 |
| F3       | P0.3    | GPIO    | Port 0 Pin 3, lcd, csd                 |
| F4       | P1.0    | GPIO    | Port 1 Pin 0, lcd, csd                 |
| F5       | P1.1    | GPIO    | Port 1 Pin 1, lcd, csd                 |
| F6       | VSSR    | GROUND  | Radio ground                           |
| F7       | VSSR    | GROUND  | Radio ground                           |
| F8       | VDDR    | POWER   | 1.9-V to 5.5-V radio supply            |
| G1       | P0.6    | GPIO    | Port 0 Pin 6, lcd, csd                 |
| G2       | VDDD    | POWER   | 1.71-V to 5.5-V digital supply         |
| G3       | P0.2    | GPIO    | Port 0 Pin 2, lcd, csd                 |
| G4       | VSSD    | GROUND  | Digital ground                         |
| G5       | VSSR    | GROUND  | Radio ground                           |
| G6       | VSSR    | GROUND  | Radio ground                           |
| G7       | GANT    | GROUND  | Antenna shielding ground               |
| G8       | VSSR    | GROUND  | Radio ground                           |
| H1       | P0.5    | GPIO    | Port 0 Pin 5, lcd, csd                 |
| H2       | P0.1    | GPIO    | Port 0 Pin 1, lcd, csd                 |
| H3       | XTAL24O | CLOCK   | 24-MHz crystal                         |
| H4       | XTAL24I | CLOCK   | 24-MHz crystal or external clock input |
| H5       | VSSR    | GROUND  | Radio ground                           |
| H6       | VSSR    | GROUND  | Radio ground                           |
| H7       | ANT     | ANTENNA | Antenna pin                            |
| J1       | P0.4    | GPIO    | Port 0 Pin 4, lcd, csd                 |



| Table 2. | PSoC 4100 | BLE Pin List | t (WLCSP | Package) | (continued) |
|----------|-----------|--------------|----------|----------|-------------|
|----------|-----------|--------------|----------|----------|-------------|

| Pin | Name       | Туре  | Pin Description             |
|-----|------------|-------|-----------------------------|
| J2  | P0.0       | GPIO  | Port 0 Pin 0, lcd, csd      |
| J3  | VDDR       | POWER | 1.9-V to 5.5-V radio supply |
| J6  | VDDR       | POWER | 1.9-V to 5.5-V radio supply |
| J7  | No Connect | -     | -                           |

High-speed I/O matrix (HSIOM) is a group of high-speed switches that routes GPIOs to the resources inside the device. These resources include CapSense, TCPWMs, I<sup>2</sup>C, SPI, UART, and LCD. HSIOM\_PORT\_SELx are 32-bit-wide registers that control the routing of GPIOs. Each register controls one port; four dedicated bits are assigned to each GPIO in the port. This provides up to 16 different options for GPIO routing as shown in Table 3.

### Table 3. HSIOM Port Settings

| Value | Description                                                                   |
|-------|-------------------------------------------------------------------------------|
| 0     | Firmware-controlled GPIO                                                      |
| 1     | Output is firmware-controlled, but Output Enable (OE) is controlled from DSI. |
| 2     | Both output and OE are controlled from DSI.                                   |
| 3     | Output is controlled from DSI, but OE is firmware-controlled.                 |
| 4     | Pin is a CSD sense pin                                                        |
| 5     | Pin is a CSD shield pin                                                       |
| 6     | Pin is connected to AMUXA                                                     |
| 7     | Pin is connected to AMUXB                                                     |
| 8     | Pin-specific Active function #0                                               |
| 9     | Pin-specific Active function #1                                               |
| 10    | Pin-specific Active function #2                                               |
| 11    | Reserved                                                                      |
| 12    | Pin is an LCD common pin                                                      |
| 13    | Pin is an LCD segment pin                                                     |
| 14    | Pin-specific Deep-Sleep function #0                                           |
| 15    | Pin-specific Deep-Sleep function #1                                           |

The selection of peripheral function for different GPIO pins is given in Table 4.

## Table 4. Port Pin Connections

|      |               |      | Digital (HSIOM_PORT_SELx.SELy) ('x' denotes port number and 'y' denotes pin number) |                  |                           |                 |                  |  |  |  |
|------|---------------|------|-------------------------------------------------------------------------------------|------------------|---------------------------|-----------------|------------------|--|--|--|
| Name | Analog        | 0    | 8                                                                                   | 9                | 10                        | 14              | 15               |  |  |  |
|      |               | GPIO | Active #0                                                                           | Active #1        | Active #2                 | Deep-Sleep #0   | Deep-Sleep #1    |  |  |  |
| P0.0 | COMP0_INP     | GPIO | TCPWM0_P[3]                                                                         | SCB1_UART_RX[1]  |                           | SCB1_I2C_SDA[1] | SCB1_SPI_MOSI[1] |  |  |  |
| P0.1 | COMP0_INN     | GPIO | TCPWM0_N[3]                                                                         | SCB1_UART_TX[1]  |                           | SCB1_I2C_SCL[1] | SCB1_SPI_MISO[1] |  |  |  |
| P0.2 |               | GPIO | TCPWM1_P[3]                                                                         | SCB1_UART_RTS[1] |                           | COMP0_OUT[0]    | SCB1_SPI_SS0[1]  |  |  |  |
| P0.3 |               | GPIO | TCPWM1_N[3]                                                                         | SCB1_UART_CTS[1] |                           | COMP1_OUT[0]    | SCB1_SPI_SCLK[1] |  |  |  |
| P0.4 | COMP1_INP     | GPIO | TCPWM1_P[0]                                                                         | SCB0_UART_RX[1]  | EXT_CLK[0]/<br>ECO_OUT[0] | SCB0_I2C_SDA[1] | SCB0_SPI_MOSI[1] |  |  |  |
| P0.5 | COMP1_INN     | GPIO | TCPWM1_N[0]                                                                         | SCB0_UART_TX[1]  |                           | SCB0_I2C_SCL[1] | SCB0_SPI_MISO[1] |  |  |  |
| P0.6 |               | GPIO | TCPWM2_P[0]                                                                         | SCB0_UART_RTS[1] |                           | SWDIO[0]        | SCB0_SPI_SS0[1]  |  |  |  |
| P0.7 |               | GPIO | TCPWM2_N[0]                                                                         | SCB0_UART_CTS[1] |                           | SWDCLK[0]       | SCB0_SPI_SCLK[1] |  |  |  |
| P1.0 | CTBm1_OA0_INP | GPIO | TCPWM0_P[1]                                                                         |                  |                           | COMP0_OUT[1]    | WCO_OUT[2]       |  |  |  |
| P1.1 | CTBm1_OA0_INN | GPIO | TCPWM0_N[1]                                                                         |                  |                           | COMP1_OUT[1]    | SCB1_SPI_SS1     |  |  |  |
| P1.2 | CTBm1_OA0_OUT | GPIO | TCPWM1_P[1]                                                                         |                  |                           |                 | SCB1_SPI_SS2     |  |  |  |
| P1.3 | CTBm1_OA1_OUT | GPIO | TCPWM1_N[1]                                                                         |                  |                           |                 | SCB1_SPI_SS3     |  |  |  |



# **Electrical Specifications**

## **Absolute Maximum Ratings**

## Table 5. Absolute Maximum Ratings<sup>[1]</sup>

| Spec ID# | Parameter                   | Description                                                                                                        | Min                 | Тур | Max                  | Units | Details/<br>Conditions                       |
|----------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------|-----|----------------------|-------|----------------------------------------------|
| SID1     | V <sub>DDD_ABS</sub>        | Analog, digital, or radio supply relative to $V_{SS}$ ( $V_{SSD}$ = $V_{SSA}$ )                                    | -0.5                | _   | 6                    | V     | Absolute max                                 |
| SID2     | V <sub>CCD_ABS</sub>        | Direct digital core voltage input relative to $V_{\text{SSD}}$                                                     | -0.5                | _   | 1.95                 | V     | Absolute max                                 |
| SID3     | V <sub>GPIO_ABS</sub>       | GPIO voltage                                                                                                       | -0.5                | -   | V <sub>DD</sub> +0.5 | V     | Absolute max                                 |
| SID4     | I <sub>GPIO_ABS</sub>       | Maximum current per GPIO                                                                                           | -25                 | -   | 25                   | mA    | Absolute max                                 |
| SID5     | I <sub>GPIO_injection</sub> | GPIO injection current, Max for V <sub>IH</sub> > V <sub>DDD</sub> , and Min for V <sub>IL</sub> < V <sub>SS</sub> | -0.5                | _   | 0.5                  | mA    | Absolute max,<br>current injected<br>per pin |
| BID57    | ESD_HBM                     | Electrostatic discharge human body model                                                                           | 2200 <sup>[2]</sup> | -   | -                    | V     |                                              |
| BID58    | ESD_CDM                     | Electrostatic discharge charged device model                                                                       | 500                 | _   | -                    | V     |                                              |
| BID61    | LU                          | Pin current for latch-up                                                                                           | -200                | _   | 200                  | mA    |                                              |

## **Device Level Specifications**

All specifications are valid for -40 °C ≤ TA ≤ 105 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

## Table 6. DC Specifications

| Spec ID#    | Parameter                   | Description                                                           | Min  | Тур | Max  | Units | Details/<br>Conditions                |
|-------------|-----------------------------|-----------------------------------------------------------------------|------|-----|------|-------|---------------------------------------|
| SID6        | V <sub>DD</sub>             | Power supply input voltage ( $V_{DDA} = V_{DDD} = V_{DD}$ )           | 1.8  | -   | 5.5  | V     | With regulator<br>enabled             |
| SID7        | V <sub>DD</sub>             | Power supply input voltage unregulated $(V_{DDA} = V_{DDD} = V_{DD})$ | 1.71 | 1.8 | 1.89 | V     | Internally unregulated<br>Supply      |
| SID8        | V <sub>DDR</sub>            | Radio supply voltage (Radio ON)                                       | 1.9  | -   | 5.5  | V     |                                       |
| SID8A       | V <sub>DDR</sub>            | Radio supply voltage (Radio OFF)                                      | 1.71 | -   | 5.5  | V     |                                       |
| SID9        | V <sub>CCD</sub>            | Digital regulator output voltage (for core logic)                     | _    | 1.8 | -    | V     |                                       |
| SID10       | C <sub>VCCD</sub>           | Digital regulator output bypass capacitor                             | 1    | 1.3 | 1.6  | μF    | X5R ceramic or better                 |
| Active Mode | e, V <sub>DD</sub> = 1.71 V | to 5.5 V                                                              |      |     |      |       | •                                     |
| SID13       | I <sub>DD3</sub>            | Execute from flash; CPU at 3 MHz                                      | _    | 1.7 | -    | mA    | T = 25 °C,<br>V <sub>DD</sub> = 3.3 V |
| SID14       | I <sub>DD4</sub>            | Execute from flash; CPU at 3 MHz                                      | -    | -   | -    | mA    | T = -40 C to 105 °C                   |
| SID15       | I <sub>DD5</sub>            | Execute from flash; CPU at 6 MHz                                      | _    | 2.5 | -    | mA    | T = 25 °C,<br>V <sub>DD</sub> = 3.3 V |
| SID16       | I <sub>DD6</sub>            | Execute from flash; CPU at 6 MHz                                      | -    | -   | -    | mA    | T = -40 °C to 105 °C                  |
| SID17       | I <sub>DD7</sub>            | Execute from flash; CPU at 12 MHz                                     | _    | 4   | -    | mA    | T = 25 °C,<br>V <sub>DD</sub> = 3.3 V |
| SID18       | I <sub>DD8</sub>            | Execute from flash; CPU at 12 MHz                                     | _    | -   | _    | mA    | T = -40 °C to 105 °C                  |

Notes

Usage above the absolute maximum conditions listed in Table 5 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.
 This does not apply to the RF pins (ANT, XTALI, and XTALO). RF pins (ANT, XTALI, and XTALO) are tested for 500-V HBM.



## Table 6. DC Specifications (continued)

| Spec ID#    | Parameter                  | Description                           | Min | Тур  | Max | Units | Details/<br>Conditions                       |
|-------------|----------------------------|---------------------------------------|-----|------|-----|-------|----------------------------------------------|
| SID19       | I <sub>DD9</sub>           | Execute from flash; CPU at 24 MHz     | _   | 7.1  | _   | mA    | T = 25 °C,<br>V <sub>DD</sub> = 3.3 V        |
| SID20       | I <sub>DD10</sub>          | Execute from flash; CPU at 24 MHz     | -   | -    | _   | mA    | T = -40 °C to 105 °C                         |
| SID21       | I <sub>DD11</sub>          | Execute from flash; CPU at 48 MHz     | _   | 13.4 | -   | mA    | T = 25 °C,<br>V <sub>DD</sub> = 3.3 V        |
| SID22       | I <sub>DD12</sub>          | Execute from flash; CPU at 48 MHz     | -   | -    | -   | mA    | T = -40 °C to 105 °C                         |
| Sleep Mode, | V <sub>DD</sub> = 1.8 V to | o 5.5 V                               |     |      |     |       |                                              |
| SID23       | I <sub>DD13</sub>          | IMO on                                | -   | _    | -   | mA    | T = 25 °C,<br>VDD = 3.3 V, SYSCLK<br>= 3 MHz |
| Sleep Mode, | $V_{DD}$ and $V_{DD}$      | <sub>R</sub> = 1.9 V to 5.5 V         |     |      |     |       |                                              |
| SID24       | I <sub>DD14</sub>          | ECO on                                | _   | _    | _   | mA    | T = 25 °C,<br>VDD = 3.3 V, SYSCLK<br>= 3 MHz |
| Deep-Sleep  | Mode, V <sub>DD</sub> = 1  | .8 V to 3.6 V                         | -   |      |     |       |                                              |
| SID25       | I <sub>DD15</sub>          | WDT with WCO on                       | _   | 1.3  | _   | μA    | T = 25 °C,<br>V <sub>DD</sub> = 3.3 V        |
| SID26       | I <sub>DD16</sub>          | WDT with WCO on                       | -   | -    | -   | μΑ    | T = -40 °C to 105 °C                         |
| Deep-Sleep  | Mode, V <sub>DD</sub> = 3  | 3.6 V to 5.5 V                        |     |      |     |       |                                              |
| SID27       | I <sub>DD17</sub>          | WDT with WCO on                       | _   | -    | _   | μA    | T = 25 °C,<br>V <sub>DD</sub> = 5 V          |
| SID28       | I <sub>DD18</sub>          | WDT with WCO on                       | -   | -    | -   | μA    | T = -40 °C to 105 °C                         |
| Deep-Sleep  | Mode, V <sub>DD</sub> = 1  | 1.71 V to 1.89 V (Regulator Bypassed) |     |      |     |       |                                              |
| SID29       | I <sub>DD19</sub>          | WDT with WCO on                       | -   | -    | -   | μΑ    | T = 25 °C                                    |
| SID30       | I <sub>DD20</sub>          | WDT with WCO on                       | -   | -    | -   | μA    | T = -40 °C to 105 °C                         |
| Deep-Sleep  | Mode, V <sub>DD</sub> = 2  | 2.5 V to 3.6 V                        |     |      |     |       |                                              |
| SID31       | I <sub>DD21</sub>          | Opamp on                              | _   | -    | _   | μA    | T = 25 °C,<br>V <sub>DD</sub> = 3.3 V        |
| SID32       | I <sub>DD22</sub>          | Opamp on                              | -   | -    | -   | μA    | T = -40 °C to 105 °C                         |
| Deep-Sleep  | Mode, V <sub>DD</sub> = 3  | 3.6 V to 5.5 V                        |     |      |     |       |                                              |
| SID33       | I <sub>DD23</sub>          | Opamp on                              | _   | -    | _   | μA    | T = 25 °C,<br>V <sub>DD</sub> = 5 V          |
| SID34       | I <sub>DD24</sub>          | Opamp on                              | -   | -    | -   | μA    | T = -40 °C to 105 °C                         |
| Hibernate M | ode, V <sub>DD</sub> = 1.8 | 3 V to 3.6 V                          |     |      |     |       |                                              |
| SID37       | I <sub>DD27</sub>          | GPIO and reset active                 | -   | 150  | -   | nA    | T = 25 °C,<br>V <sub>DD</sub> = 3.3 V        |
| SID38       | I <sub>DD28</sub>          | GPIO and reset active                 | -   | -    | -   | nA    | T = -40 °C to 105 °C                         |
| Hibernate M | ode, V <sub>DD</sub> = 3.6 | V to 5.5 V                            | •   | •    | •   | •     | •                                            |
| SID39       | I <sub>DD29</sub>          | GPIO and reset active                 | -   | -    | -   | nA    | T = 25 °C,<br>V <sub>DD</sub> = 5 V          |
| SID40       | I <sub>DD30</sub>          | GPIO and reset active                 | -   | -    | -   | nA    | T = -40 °C to 105 °C                         |
| Hibernate M |                            | 1 V to 1.89 V (Regulator Bypassed)    |     |      |     | •     | 1                                            |
| SID41       | I <sub>DD31</sub>          | GPIO and reset active                 | _   | _    | _   | nA    | T = 25 °C                                    |
| SID42       | I <sub>DD32</sub>          | GPIO and reset active                 | -   | _    | _   | nA    | T = -40 °C to 105 °C                         |
|             |                            |                                       |     |      |     |       |                                              |



## GPIO

## Table 8. GPIO DC Specifications

| Spec ID# | Parameter             | Description                                         | Min                   | Тур | Max                  | Units | Details/<br>Conditions                                         |
|----------|-----------------------|-----------------------------------------------------|-----------------------|-----|----------------------|-------|----------------------------------------------------------------|
| SID58    | V <sub>IH</sub>       | Input voltage HIGH threshold                        | 0.7 × V <sub>DD</sub> | -   | -                    | V     | CMOS input                                                     |
| SID59    | V <sub>IL</sub>       | Input voltage LOW threshold                         | -                     | -   | $0.3 \times V_{DD}$  | V     | CMOS input                                                     |
| SID60    | V <sub>IH</sub>       | LVTTL input, V <sub>DD</sub> < 2.7 V                | $0.7 \times V_{DD}$   | Ι   | -                    | V     |                                                                |
| SID61    | V <sub>IL</sub>       | LVTTL input, V <sub>DD</sub> < 2.7 V                | _                     | -   | 0.3× V <sub>DD</sub> | V     |                                                                |
| SID62    | V <sub>IH</sub>       | LVTTL input, V <sub>DD</sub> ≥ 2.7 V                | 2.0                   | -   | -                    | V     |                                                                |
| SID63    | V <sub>IL</sub>       | LVTTL input, V <sub>DD</sub> ≥ 2.7 V                | _                     | -   | 0.8                  | V     |                                                                |
| SID64    | V <sub>OH</sub>       | Output voltage HIGH level                           | V <sub>DD</sub> –0.6  | -   | -                    | V     | I <sub>OH</sub> = 4 mA at<br>3.3-V V <sub>DD</sub>             |
| SID65    | V <sub>OH</sub>       | Output voltage HIGH level                           | V <sub>DD</sub> –0.5  | -   | -                    | V     | I <sub>OH</sub> = 1 mA at<br>1.8-V V <sub>DD</sub>             |
| SID66    | V <sub>OL</sub>       | Output voltage LOW level                            | -                     | -   | 0.6                  | V     | I <sub>OL</sub> = 8 mA at<br>3.3-V V <sub>DD</sub>             |
| SID67    | V <sub>OL</sub>       | Output voltage LOW level                            | -                     | -   | 0.6                  | V     | I <sub>OL</sub> = 4 mA at<br>1.8-V V <sub>DD</sub>             |
| SID68    | V <sub>OL</sub>       | Output voltage LOW level                            | -                     | -   | 0.4                  | V     | I <sub>OL</sub> = 3 mA at<br>3.3-V V <sub>DD</sub>             |
| SID69    | R <sub>PULLUP</sub>   | Pull-up resistor                                    | 3.5                   | 5.6 | 8.5                  | kΩ    |                                                                |
| SID70    | R <sub>PULLDOWN</sub> | Pull-down resistor                                  | 3.5                   | 5.6 | 8.5                  | kΩ    |                                                                |
| SID71    | IIL                   | Input leakage current (absolute value)              | -                     | -   | 2                    | nA    | 25 °C,<br>V <sub>DD</sub> = 3.3 V                              |
| SID72    | I <sub>IL_CTBM</sub>  | Input leakage on CTBm input pins                    | -                     | -   | 4                    | nA    |                                                                |
| SID73    | C <sub>IN</sub>       | Input capacitance                                   | _                     | -   | 7                    | pF    |                                                                |
| SID74    | V <sub>HYSTTL</sub>   | Input hysteresis LVTTL                              | 25                    | 40  |                      | mV    | V <sub>DD</sub> > 2.7 V                                        |
| SID75    | V <sub>HYSCMOS</sub>  | Input hysteresis CMOS                               | $0.05 \times V_{DD}$  | -   | -                    | mV    |                                                                |
| SID76    | I <sub>DIODE</sub>    | Current through protection diode to $V_{DD}/V_{SS}$ | -                     | -   | 100                  | μA    | Except for<br>overvoltage-toler<br>ant pins (P5.0 and<br>P5.1) |
| SID77    | I <sub>TOT_GPIO</sub> | Maximum total source or sink chip current           | -                     | -   | 200                  | mA    |                                                                |

## Table 9. GPIO AC Specifications

| Spec ID# | Parameter          | Description                   | Min | Тур | Max | Units | Details/<br>Conditions                                |
|----------|--------------------|-------------------------------|-----|-----|-----|-------|-------------------------------------------------------|
| SID78    | T <sub>RISEF</sub> | Rise time in Fast-Strong mode | 2   | -   | 12  | ns    | 3.3-V V <sub>DDD</sub> ,<br>C <sub>LOAD</sub> = 25 pF |
| SID79    | T <sub>FALLF</sub> | Fall time in Fast-Strong mode | 2   | -   | 12  | ns    | 3.3-V V <sub>DDD</sub> ,<br>C <sub>LOAD</sub> = 25 pF |
| SID80    | T <sub>RISES</sub> | Rise time in Slow-Strong mode | 10  | -   | 60  | ns    | 3.3-V V <sub>DDD</sub> ,<br>C <sub>LOAD</sub> = 25 pF |
| SID81    | T <sub>FALLS</sub> | Fall time in Slow-Strong mode | 10  | -   | 60  | ns    | 3.3-V V <sub>DDD</sub> ,<br>C <sub>LOAD</sub> = 25 pF |

Note

3.  $V_{IH}$  must not exceed  $V_{DDD}$  + 0.2 V.



## Table 9. GPIO AC Specifications (continued)

| Spec ID# | Parameter            | Description                                                                | Min | Тур | Max  | Units | Details/<br>Conditions                     |
|----------|----------------------|----------------------------------------------------------------------------|-----|-----|------|-------|--------------------------------------------|
| SID82    | F <sub>GPIOUT1</sub> | GPIO Fout; 3.3 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V.<br>Fast-Strong mode  | -   | -   | 33   | MHz   | 90/10%, 25-pF<br>load, 60/40 duty<br>cycle |
| SID83    | F <sub>GPIOUT2</sub> | GPIO Fout; 1.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.3 V.<br>Fast-Strong mode  | -   | -   | 16.7 | MHz   | 90/10%, 25-pF<br>load, 60/40 duty<br>cycle |
| SID84    | F <sub>GPIOUT3</sub> | GPIO Fout; 3.3 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V.<br>Slow-Strong mode  | -   | -   | 7    | MHz   | 90/10%, 25-pF<br>load, 60/40 duty<br>cycle |
| SID85    | F <sub>GPIOUT4</sub> | GPIO Fout; 1.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.3 V. Slow-Strong mode     | -   | -   | 3.5  | MHz   | 90/10%, 25-pF<br>load, 60/40 duty<br>cycle |
| SID86    | F <sub>GPIOIN</sub>  | GPIO input operating frequency; 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V | -   | _   | 48   | MHz   | 90/10% V <sub>IO</sub>                     |

## Table 10. OVT GPIO DC Specifications (P5\_0 and P5\_1 Only)

| Spec ID# | Parameter       | Description                                                                  | Min | Тур | Мах | Units | Details/<br>Conditions                                      |
|----------|-----------------|------------------------------------------------------------------------------|-----|-----|-----|-------|-------------------------------------------------------------|
| SID71A   | IIL             | Input leakage current (absolute value),<br>V <sub>IH</sub> > V <sub>DD</sub> | -   | -   | 10  | μA    | 25 °C,<br>V <sub>DD</sub> = 0 V, V <sub>IH</sub> =<br>3.0 V |
| SID66A   | V <sub>OL</sub> | Output voltage LOW level                                                     | -   | -   | 0.4 | V     | I <sub>OL</sub> = 20 mA, V <sub>DD</sub><br>> 2.9 V         |

## Table 11. OVT GPIO AC Specifications (P5\_0 and P5\_1 Only)

| Spec ID# | Parameter              | Description                                                                     | Min | Тур | Max | Units | Details/<br>Conditions                            |
|----------|------------------------|---------------------------------------------------------------------------------|-----|-----|-----|-------|---------------------------------------------------|
| SID78A   | T <sub>RISE_OVFS</sub> | Output rise time in Fast-Strong mode                                            | 1.5 | _   | 12  | ns    | 25-pF load,<br>10%–90%,<br>V <sub>DD</sub> =3.3 V |
| SID79A   | T <sub>FALL_OVFS</sub> | Output fall time in Fast-Strong mode                                            | 1.5 | _   | 12  | ns    | 25-pF load,<br>10%–90%,<br>V <sub>DD</sub> =3.3 V |
| SID80A   | T <sub>RISSS</sub>     | Output rise time in Slow-Strong mode                                            | 10  | -   | 60  | ns    | 25-pF load,<br>10%–90%,<br>V <sub>DD</sub> =3.3 V |
| SID81A   | T <sub>FALLSS</sub>    | Output fall time in Slow-Strong mode                                            | 10  | _   | 60  | ns    | 25-pF load,<br>10%–90%,<br>V <sub>DD</sub> =3.3 V |
| SID82A   | F <sub>GPIOUT1</sub>   | GPIO $F_{OUT}$ ; 3.3 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V<br>Fast-Strong mode  | -   | -   | 24  | MHz   | 90/10%, 25-pF<br>load, 60/40 duty<br>cycle        |
| SID83A   | F <sub>GPIOUT2</sub>   | GPIO $F_{OUT}$ ; 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 3.3 V<br>Fast-Strong mode | -   | -   | 16  | MHz   | 90/10%, 25-pF<br>load, 60/40 duty<br>cycle        |



## CSD

## Table 20. CSD Block Specifications

| Spec ID# | Parameter              | Description                                    | Min  | Тур | Max | Units | Details/<br>Conditions                                                                                     |
|----------|------------------------|------------------------------------------------|------|-----|-----|-------|------------------------------------------------------------------------------------------------------------|
| SID179   | V <sub>CSD</sub>       | Voltage range of operation                     | 1.71 | _   | 5.5 | V     |                                                                                                            |
| SID180   | IDAC1                  | DNL for 8-bit resolution                       | -1   | _   | 1   | LSB   |                                                                                                            |
| SID181   | IDAC1                  | INL for 8-bit resolution                       | -3   | _   | 3   | LSB   |                                                                                                            |
| SID182   | IDAC2                  | DNL for 7-bit resolution                       | -1   | _   | 1   | LSB   |                                                                                                            |
| SID183   | IDAC2                  | INL for 7-bit resolution                       | -3   | _   | 3   | LSB   |                                                                                                            |
| SID184   | SNR                    | Ratio of counts of finger to noise             | 5    | _   | _   | Ratio | Capacitance range of<br>9 pF to 35 pF, 0.1-pF<br>sensitivity. Radio is<br>not operating during<br>the scan |
| SID185   | I <sub>DAC1_CRT1</sub> | Output current of IDAC1 (8 bits) in High range | _    | 612 | _   | μA    |                                                                                                            |
| SID186   | I <sub>DAC1_CRT2</sub> | Output current of IDAC1 (8 bits) in Low range  | _    | 306 | _   | μA    |                                                                                                            |
| SID187   | I <sub>DAC2_CRT1</sub> | Output current of IDAC2 (7 bits) in High range | _    | 305 | _   | μA    |                                                                                                            |
| SID188   | I <sub>DAC2_CRT2</sub> | Output current of IDAC2 (7 bits) in Low range  | _    | 153 | _   | μA    |                                                                                                            |

## **Digital Peripherals**

Timer

## Table 21. Timer DC Specifications

| Spec ID | Parameter | Description                          | Min | Тур | Max | Units | <b>Details/Conditions</b> |
|---------|-----------|--------------------------------------|-----|-----|-----|-------|---------------------------|
| SID189  | <b>I</b>  | Block current consumption at 3 MHz   | -   | -   | 42  | μA    | 16-bit timer, 85 °C       |
| SID189A | TIM1      |                                      | -   | -   | 46  | μA    | 16-bit timer, 105 °C      |
| SID190  |           | Block current consumption at 12 MHz  | -   | -   | 130 | μA    | 16-bit timer, 85 °C       |
| SID190A | TIM2      | BIOCK current consumption at 12 MHz  | -   | -   | 137 | μA    | 16-bit timer, 105 °C      |
| SID191  |           | Block current consumption at 48 MHz  | -   | -   | 535 | μA    | 16-bit timer, 85 °C       |
| SID191A | TIM3      | Block current consumption at 40 Minz | -   | -   | 560 | μA    | 16-bit timer, 105 °C      |

## Table 22. Timer AC Specifications

| Spec ID | Parameter               | Description                    | Min                  | Тур | Max | Units | <b>Details/Conditions</b> |
|---------|-------------------------|--------------------------------|----------------------|-----|-----|-------|---------------------------|
| SID192  | T <sub>TIMFREQ</sub>    | Operating frequency            | F <sub>CLK</sub>     | -   | 48  | MHz   |                           |
| SID193  | T <sub>CAPWINT</sub>    | Capture pulse width (internal) | $2 \times T_{CLK}$   | -   | -   | ns    |                           |
| SID194  | T <sub>CAPWEXT</sub>    | Capture pulse width (external) | 2 × T <sub>CLK</sub> | -   | -   | ns    |                           |
| SID195  | T <sub>TIMRES</sub>     | Timer resolution               | T <sub>CLK</sub>     | -   | -   | ns    |                           |
| SID196  | T <sub>TENWIDINT</sub>  | Enable pulse width (internal)  | 2 × T <sub>CLK</sub> | _   | -   | ns    |                           |
| SID197  | T <sub>TENWIDEXT</sub>  | Enable pulse width (external)  | 2 × T <sub>CLK</sub> | -   | -   | ns    |                           |
| SID198  | T <sub>TIMRESWINT</sub> | Reset pulse width (internal)   | 2 × T <sub>CLK</sub> | -   | -   | ns    |                           |
| SID199  | T <sub>TIMRESEXT</sub>  | Reset pulse width (external)   | $2 \times T_{CLK}$   | _   | -   | ns    |                           |



## Table 50. External Clock Specifications

| Spec ID | Parameter  | Description                                | Min | Тур | Max | Units | Details/Conditions    |
|---------|------------|--------------------------------------------|-----|-----|-----|-------|-----------------------|
| SID301  | ExtClkFreq | External clock input frequency             | 0   | -   | 48  | MHz   | CMOS input level only |
| SID302  | ExtClkDuty | Duty cycle; Measured at V <sub>DD</sub> /2 | 45  | -   | 55  | %     | CMOS input level only |

## Table 51. UDB AC Specifications

| Spec ID    | Parameter                 | Description                                            | Min | Тур | Max | Units | <b>Details/Conditions</b> |  |  |  |  |
|------------|---------------------------|--------------------------------------------------------|-----|-----|-----|-------|---------------------------|--|--|--|--|
| Data Path  | Data Path performance     |                                                        |     |     |     |       |                           |  |  |  |  |
| SID303     | F <sub>MAX-TIMER</sub>    | Max frequency of 16-bit timer in a UDB pair            | -   | -   | 48  | MHz   |                           |  |  |  |  |
| SID304     | F <sub>MAX-ADDER</sub>    | Max frequency of 16-bit adder in a UDB pair            | -   | -   | 48  | MHz   |                           |  |  |  |  |
| SID305     | F <sub>MAX_CRC</sub>      | Max frequency of 16-bit CRC/PRS in a UDB pair          | -   | -   | 48  | MHz   |                           |  |  |  |  |
| PLD Perfo  | rmance in UDB             |                                                        |     |     |     |       |                           |  |  |  |  |
| SID306     | F <sub>MAX_PLD</sub>      | Max frequency of 2-pass PLD function in a UDB pair     | -   | -   | 48  | MHz   |                           |  |  |  |  |
| Clock to C | utput Performance         | 9                                                      |     |     |     |       |                           |  |  |  |  |
| SID307     | T <sub>CLK_OUT_UDB1</sub> | Prop. delay for clock in to data out at 25 °C, Typical | -   | 15  | _   | ns    |                           |  |  |  |  |
| SID308     | T <sub>CLK_OUT_UDB2</sub> | Prop. delay for clock in to data out,<br>Worst case    | _   | 25  | _   | ns    |                           |  |  |  |  |

## Table 52. BLE Subsystem

| Spec ID#         | Parameter                 | Description                                                                                 | Min | Тур | Мах | Units | Details/<br>Conditions                   |  |  |  |  |  |
|------------------|---------------------------|---------------------------------------------------------------------------------------------|-----|-----|-----|-------|------------------------------------------|--|--|--|--|--|
| <b>RF Receiv</b> | RF Receiver Specification |                                                                                             |     |     |     |       |                                          |  |  |  |  |  |
| SID340           | RXS, IDLE                 | RX sensitivity with idle transmitter                                                        | -   | -89 | -   | dBm   |                                          |  |  |  |  |  |
| SID340A          |                           | RX sensitivity with idle transmitter excluding Balun loss                                   | -   | -91 | -   | dBm   | Guaranteed by design simulation          |  |  |  |  |  |
| SID341           | RXS, DIRTY                | RX sensitivity with dirty transmitter                                                       | _   | -87 | -70 | dBm   | RF-PHY Specification<br>(RCV-LE/CA/01/C) |  |  |  |  |  |
| SID342           | RXS, HIGHGAIN             | RX sensitivity in high-gain mode with idle transmitter                                      | -   | -91 | _   | dBm   |                                          |  |  |  |  |  |
| SID343           | PRXMAX                    | Maximum input power                                                                         | -10 | -1  | -   | dBm   | RF-PHY Specification<br>(RCV-LE/CA/06/C) |  |  |  |  |  |
| SID344           | CI1                       | Cochannel interference,<br>Wanted signal at –67 dBm and Inter-<br>ferer at FRX              | -   | 9   | 21  | dB    | RF-PHY Specification<br>(RCV-LE/CA/03/C) |  |  |  |  |  |
| SID345           | CI2                       | Adjacent channel interference<br>Wanted signal at –67 dBm and Inter-<br>ferer at FRX ±1 MHz | _   | 3   | 15  | dB    | RF-PHY Specification<br>(RCV-LE/CA/03/C) |  |  |  |  |  |
| SID346           | CI3                       | Adjacent channel interference<br>Wanted signal at –67 dBm and Inter-<br>ferer at FRX ±2 MHz | _   | -29 | _   | dB    | RF-PHY Specification<br>(RCV-LE/CA/03/C) |  |  |  |  |  |



## Table 52. BLE Subsystem (continued)

| Spec ID#            | Parameter | Description        | Min | Тур | Max | Units | Details/<br>Conditions |
|---------------------|-----------|--------------------|-----|-----|-----|-------|------------------------|
| RSSI Specifications |           |                    |     |     |     |       |                        |
| SID386              | RSSI, ACC | RSSI accuracy      | -   | ±5  | -   | dB    |                        |
| SID387              | RSSI, RES | RSSI resolution    | -   | 1   | -   | dB    |                        |
| SID388              | RSSI, PER | RSSI sample period | -   | 6   | -   | μs    |                        |

## Table 53. ECO Specifications

| Spec ID# | Parameter           | Description                    | Min | Тур  | Мах | Units | Details/<br>Conditions     |
|----------|---------------------|--------------------------------|-----|------|-----|-------|----------------------------|
| SID389   | F <sub>ECO</sub>    | Crystal frequency              | _   | 24   | _   | MHz   |                            |
| SID390   | F <sub>TOL</sub>    | Frequency tolerance            | -50 | _    | 50  | ppm   |                            |
| SID391   | ESR                 | Equivalent series resistance   | _   | _    | 60  | Ω     |                            |
| SID392   | PD                  | Drive level                    | -   | _    | 100 | μW    |                            |
| SID393   | T <sub>START1</sub> | Startup time (Fast Charge on)  | -   | -    | 850 | μs    |                            |
| SID394   | T <sub>START2</sub> | Startup time (Fast Charge off) | -   | _    | 3   | ms    |                            |
| SID395   | CL                  | Load capacitance               | -   | 8    | -   | pF    |                            |
| SID396   | C0                  | Shunt capacitance              | -   | 1.1  | -   | pF    |                            |
| SID397   | I <sub>ECO</sub>    | Operating current              | -   | 1400 | Ι   | μA    | Includes LDO+BG<br>current |

## Table 54. WCO Specifications

| Spec ID# | Parameter          | Description                         | Min | Тур    | Max  | Units | Details/<br>Conditions |
|----------|--------------------|-------------------------------------|-----|--------|------|-------|------------------------|
| SID398   | F <sub>WCO</sub>   | Crystal frequency                   | -   | 32.768 | _    | kHz   |                        |
| SID399   | FTOL               | Frequency tolerance                 | -   | 50     | -    | ppm   |                        |
| SID400   | ESR                | Equivalent series resistance        | -   | 50     | _    | kΩ    |                        |
| SID401   | PD                 | Drive level                         | -   | _      | 1    | μW    |                        |
| SID402   | T <sub>START</sub> | Startup time                        | -   | -      | 500  | ms    |                        |
| SID403   | CL                 | Crystal load capacitance            | 6   | _      | 12.5 | pF    |                        |
| SID404   | C0                 | Crystal shunt capacitance           | -   | 1.35   | -    | pF    |                        |
| SID405   | I <sub>WCO1</sub>  | Operating current (High-Power mode) | _   | -      | 8    | μA    |                        |
| SID406   | I <sub>WCO2</sub>  | Operating current (low-power        | -   | _      | 1    | μA    | 85 °C                  |
| SID406A  |                    | mode)                               |     | _      | 2.6  | μA    | 105 °C                 |



# Packaging

## Table 55. Package Characteristics

| Parameter       | Description                                       | Conditions | Min | Тур   | Max | Units   |
|-----------------|---------------------------------------------------|------------|-----|-------|-----|---------|
| T <sub>A</sub>  | Operating ambient temperature                     | _          | -40 | 25.00 | 105 | °C      |
| TJ              | Operating junction temperature                    | -          | -40 | -     | 125 | °C      |
| T <sub>JA</sub> | Package $\theta_{JA}$ (56-pin QFN)                | _          | -   | 16.9  | -   | °C/watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (56-pin QFN)                | _          | -   | 9.7   | -   | °C/watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (76-ball WLCSP)             | _          | -   | 20.1  | -   | °C/watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (76-ball WLCSP)             | _          | -   | 0.19  | -   | °C/watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (76-ball Thin WLCSP)        | _          | -   | 20.9  | -   | °C/watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (76-ball Thin WLCSP)        | _          | -   | 0.17  | -   | °C/watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (68-ball WLCSP)             |            | -   | 16.6  | -   | °C/watt |
| T <sub>JC</sub> | Package $\theta_{JC}$ (68-ball WLCSP)             |            | -   | 0.19  | -   | °C/watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (68-ball Thin WLCSP)        |            | -   | 16.6  | -   | °C/watt |
| T <sub>JC</sub> | Package $\theta_{\text{JC}}$ (68-ball Thin WLCSP) |            | _   | 0.19  | -   | °C/watt |

## Table 56. Solder Reflow Peak Temperature

| Package      | Maximum Peak<br>Temperature | Maximum Time at Peak Temperature |
|--------------|-----------------------------|----------------------------------|
| All packages | 260 °C                      | 30 seconds                       |

## Table 57. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

| Package            | MSL   |
|--------------------|-------|
| 56-pin QFN         | MSL 3 |
| All WLCSP packages | MSL 1 |

## Table 58. Package Details

| Spec ID            | Package            | Description                 |
|--------------------|--------------------|-----------------------------|
| 001-58740 Rev. *C  | 56-pin QFN         | 7.0 mm × 7.0 mm × 0.6 mm    |
| 001-96603 Rev. *A  | 76-ball WLCSP      | 4.04 mm × 3.87 mm × 0.55 mm |
| 002-10658, Rev. ** | 76-ball thin WLCSP | 4.04 mm × 3.87 mm × 0.4 mm  |
| 001-92343 Rev. *A  | 68-ball WLCSP      | 3.52 mm × 3.91 mm × 0.55 mm |
| 001-99408 Rev **   | 68-ball Thin WLCSP | 52 mm × 3.91 mm × 0.4 mm    |



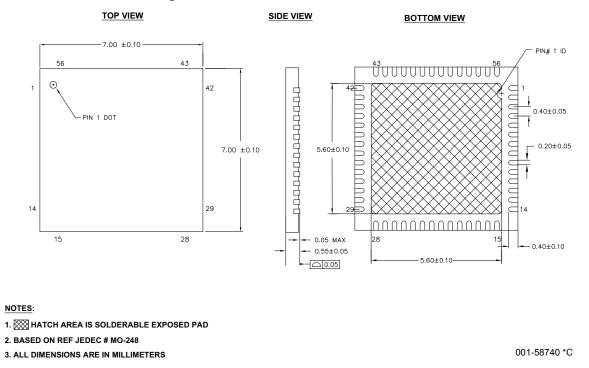
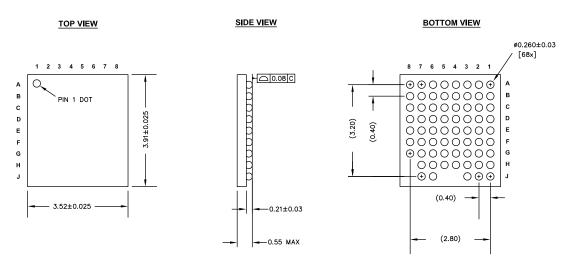
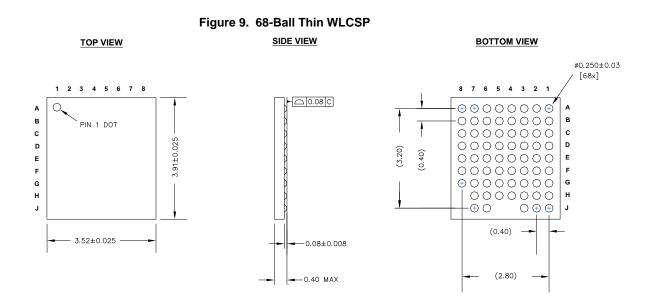




Figure 6. 56-Pin QFN 7 mm × 7 mm × 0.6 mm

The center pad on the QFN package must be connected to ground (V<sub>SS</sub>) for the proper operation of the device.



## Figure 8. 68-Ball WLCSP Package Outline




#### NOTES:

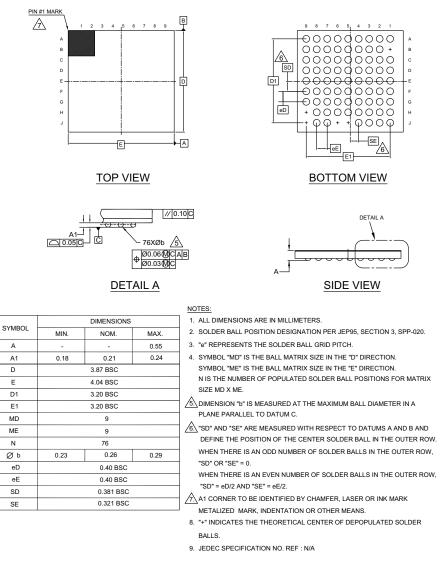
1. REFERENCE JEDEC PUBLICATION 95, DESIGN GUIDE 4.18

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-92343 \*A



#### NOTES:


1. REFERENCE JEDEC PUBLICATION 95, DESIGN GUIDE 4.18

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-99408 \*\*



## Figure 10. 76-Ball WLCSP Package Outline



001-96603 \*B

A

A1

D

Е

D1

E1

MD

ME

Ν

Øb

еD

еE

SD

SE



# Acronyms

## Table 59. Acronyms Used in this Document

| Acronym          | Description                                                                                             |
|------------------|---------------------------------------------------------------------------------------------------------|
| ABUS             | analog local bus                                                                                        |
| ADC              | analog-to-digital converter                                                                             |
| AG               | analog global                                                                                           |
| АНВ              | AMBA (advanced microcontroller bus archi-<br>tecture) high-performance bus, an Arm data<br>transfer bus |
| ALU              | arithmetic logic unit                                                                                   |
| AMUXBUS          | analog multiplexer bus                                                                                  |
| API              | application programming interface                                                                       |
| APSR             | application program status register                                                                     |
| Arm <sup>®</sup> | advanced RISC machine, a CPU architecture                                                               |
| ATM              | automatic thump mode                                                                                    |
| BW               | bandwidth                                                                                               |
| CAN              | Controller Area Network, a communications protocol                                                      |
| CMRR             | common-mode rejection ratio                                                                             |
| CPU              | central processing unit                                                                                 |
| CRC              | cyclic redundancy check, an error-checking protocol                                                     |
| DAC              | digital-to-analog converter, see also IDAC, VDAC                                                        |
| DFB              | digital filter block                                                                                    |
| DIO              | digital input/output, GPIO with only digital capabilities, no analog. See GPIO.                         |
| DMIPS            | Dhrystone million instructions per second                                                               |
| DMA              | direct memory access, see also TD                                                                       |
| DNL              | differential nonlinearity, see also INL                                                                 |
| DNU              | do not use                                                                                              |
| DR               | port write data registers                                                                               |
| DSI              | digital system interconnect                                                                             |
| DWT              | data watchpoint and trace                                                                               |
| ECC              | error correcting code                                                                                   |
| ECO              | external crystal oscillator                                                                             |
| EEPROM           | electrically erasable programmable read-only memory                                                     |
| EMI              | electromagnetic interference                                                                            |
| EMIF             | external memory interface                                                                               |
| EOC              | end of conversion                                                                                       |
| EOF              | end of frame                                                                                            |
| EPSR             | execution program status register                                                                       |
| ESD              | electrostatic discharge                                                                                 |

## Table 59. Acronyms Used in this Document (continued)

| Acronym                  | Description                                            |
|--------------------------|--------------------------------------------------------|
| ETM                      | embedded trace macrocell                               |
| FET                      | field-effect transistor                                |
| FIR                      | finite impulse response, see also IIR                  |
| FPB                      | flash patch and breakpoint                             |
| FS                       | full-speed                                             |
| GPIO                     | general-purpose input/output, applies to a PSoC pin    |
| HCI                      | host controller interface                              |
| HVI                      | high-voltage interrupt, see also LVI, LVD              |
| IC                       | integrated circuit                                     |
| IDAC                     | current DAC, see also DAC, VDAC                        |
| IDE                      | integrated development environment                     |
| I <sup>2</sup> C, or IIC | Inter-Integrated Circuit, a communications protocol    |
| IIR                      | infinite impulse response, see also FIR                |
| ILO                      | internal low-speed oscillator, see also IMO            |
| IMO                      | internal main oscillator, see also ILO                 |
| INL                      | integral nonlinearity, see also DNL                    |
| I/O                      | input/output, see also GPIO, DIO, SIO, USBIO           |
| IPOR                     | initial power-on reset                                 |
| IPSR                     | interrupt program status register                      |
| IRQ                      | interrupt request                                      |
| ITM                      | instrumentation trace macrocell                        |
| LCD                      | liquid crystal display                                 |
| LIN                      | Local Interconnect Network, a communications protocol. |
| LR                       | link register                                          |
| LUT                      | lookup table                                           |
| LVD                      | low-voltage detect, see also LVI                       |
| LVI                      | low-voltage interrupt, see also HVI                    |
| LVTTL                    | low-voltage transistor-transistor logic                |
| MAC                      | multiply-accumulate                                    |
| MCU                      | microcontroller unit                                   |
| MISO                     | master-in slave-out                                    |
| NC                       | no connect                                             |
| NMI                      | nonmaskable interrupt                                  |
| NRZ                      | non-return-to-zero                                     |
| NVIC                     | nested vectored interrupt controller                   |
| NVL                      | nonvolatile latch, see also WOL                        |



| Acronym           | Description                                                  |
|-------------------|--------------------------------------------------------------|
| Opamp             | operational amplifier                                        |
| PAL               | programmable array logic, see also PLD                       |
| PC                | program counter                                              |
| РСВ               | printed circuit board                                        |
| PGA               | programmable gain amplifier                                  |
| PHUB              | peripheral hub                                               |
| PHY               | physical layer                                               |
| PICU              | port interrupt control unit                                  |
| PLA               | programmable logic array                                     |
| PLD               | programmable logic device, see also PAL                      |
| PLL               | phase-locked loop                                            |
| PMDD              | package material declaration data sheet                      |
| POR               | power-on reset                                               |
| PRES              | precise power-on reset                                       |
| PRS               | pseudo random sequence                                       |
| PS                | port read data register                                      |
| PSoC <sup>®</sup> | Programmable System-on-Chip™                                 |
| PSRR              | power supply rejection ratio                                 |
| PWM               | pulse-width modulator                                        |
| RAM               | random-access memory                                         |
| RISC              | reduced-instruction-set computing                            |
| RMS               | root-mean-square                                             |
| RTC               | real-time clock                                              |
| RTL               | register transfer language                                   |
| RTR               | remote transmission request                                  |
| RX                | receive                                                      |
| SAR               | successive approximation register                            |
| SC/CT             | switched capacitor/continuous time                           |
| SCL               | I <sup>2</sup> C serial clock                                |
| SDA               | I <sup>2</sup> C serial data                                 |
| S/H               | sample and hold                                              |
| SINAD             | signal to noise and distortion ratio                         |
| SIO               | special input/output, GPIO with advanced features. See GPIO. |
| SOC               | start of conversion                                          |
| SOF               | start of frame                                               |
| SPI               | Serial Peripheral Interface, a communications protocol       |
| SR                | slew rate                                                    |
| SRAM              | static random access memory                                  |

## Table 59. Acronyms Used in this Document (continued)

## Table 59. Acronyms Used in this Document (continued)

| Acronym | Description                                                               |  |  |  |
|---------|---------------------------------------------------------------------------|--|--|--|
| SRES    | software reset                                                            |  |  |  |
| STN     | super twisted nematic                                                     |  |  |  |
| SWD     | serial wire debug, a test protocol                                        |  |  |  |
| SWV     | single-wire viewer                                                        |  |  |  |
| TD      | transaction descriptor, see also DMA                                      |  |  |  |
| THD     | total harmonic distortion                                                 |  |  |  |
| TIA     | transimpedance amplifier                                                  |  |  |  |
| TN      | twisted nematic                                                           |  |  |  |
| TRM     | technical reference manual                                                |  |  |  |
| TTL     | transistor-transistor logic                                               |  |  |  |
| ТΧ      | transmit                                                                  |  |  |  |
| UART    | Universal Asynchronous Transmitter Receiver, a<br>communications protocol |  |  |  |
| UDB     | universal digital block                                                   |  |  |  |
| USB     | Universal Serial Bus                                                      |  |  |  |
| USBIO   | USB input/output, PSoC pins used to connect to a USB port                 |  |  |  |
| VDAC    | voltage DAC, see also DAC, IDAC                                           |  |  |  |
| WDT     | watchdog timer                                                            |  |  |  |
| WOL     | write once latch, see also NVL                                            |  |  |  |
| WRES    | watchdog timer reset                                                      |  |  |  |
| XRES    | external reset I/O pin                                                    |  |  |  |
| XTAL    | crystal                                                                   |  |  |  |



# **Revision History**

|          | Description Title: PSoC <sup>®</sup> 4: PSoC 4100_BLE Family Datasheet Programmable System-on-Chip (PSoC <sup>®</sup> )<br>Document Number: 002-23052 |                    |                    |                       |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------------|--|--|--|
| Revision | ECN                                                                                                                                                   | Orig. of<br>Change | Submission<br>Date | Description of Change |  |  |  |
| **       | 6078076                                                                                                                                               | PMAD/<br>WKA       | 02/22/2018         | New datasheet         |  |  |  |