

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Bluetooth, Brown-out Detect/Reset, Cap Sense, DMA LCD, LVD, POR, PWM, SmartCard, SmartSense, WDT
Number of I/O	36
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	56-UFQFN Exposed Pad
Supplier Device Package	56-QFN (7×7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4248lqq-bl583t

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timer/Counter/PWM Block

The timer/counter/PWM block consists of four 16-bit counters with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow the use as deadband programmable complementary PWM outputs. It also has a kill input to force outputs to a predetermined state; for example, this is used in motor-drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

Serial Communication Blocks (SCB)

PSoC 4100_BLE has two SCBs, each of which can implement an I 2 C, UART, or SPI interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast-Mode Plus) and has flexible buffering options to reduce the interrupt overhead and latency for the CPU. It also supports EzI²C that creates a mailbox address range in the memory of PSoC 4100_BLE and effectively reduces the I²C communication to reading from and writing to an array in the memory. In addition, the block supports an 8-deep FIFO for receive and transmit, which, by increasing the time given for the CPU to read the data, greatly reduces the need for clock stretching caused by the CPU not having read the data on time. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with I²C Standard-mode, Fast-mode, and Fast-Mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIOs in open-drain modes.

SCB1 is fully compliant with Standard-mode (100 kHz), Fast-mode (400 kHz), and Fast-Mode Plus (1 MHz) I²C signaling specifications when routed to GPIO pins P5.0 and P5.1, except for hot swap capability during I2C active communication. The remaining GPIOs do not meet the hot-swap specification (V_{DD} off; draw < 10- μ A current) for Fast mode and Fast-Mode Plus, I_{OL} spec (20 mA) for Fast-Mode Plus, hysteresis spec (0.05 × V_{DD}) for Fast mode and Fast-Mode Plus, and minimum fall-time spec for Fast mode and Fast-Mode Plus.

- GPIO cells, including P5.0 and P5.1, cannot be hot-swapped or powered up independent of the rest of the I²C system.
- The GPIO pins P5.0 and P5.1 are overvoltage-tolerant but cannot be hot-swapped or powered up independent of the rest of the I²C system.
- Fast-Mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8 mA I_{OL} with a V_{OL} maximum of 0.6 V.

Fast mode and Fast-Mode Plus specify minimum Fall times, which are not met with the GPIO cell; the Slow-Strong mode can help meet this spec depending on the bus load.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows the addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI Secure Simple Pairing (SSP) (essentially adds a start pulse that is used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO for transmit and receive.

GPIO

PSoC 4100_BLE has 36 GPIOs. The GPIO block implements the following:

- Eight drive-strength modes:
 - □ Analog input mode (input and output buffers disabled) □ Input only
 - Weak pull-up with strong pull-down
 - Strong pull-up with weak pull-down
 - Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Pins 0 and 1 of Port 5 are overvoltage-tolerant Pins
- Individual control of input and output buffer enabling/disabling in addition to drive-strength modes
- Hold mode for latching the previous state (used for retaining the I/O state in Deep-Sleep and Hibernate modes)
- Selectable slew rates for dV/dt-related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix (HSIOM) is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin may be routed to any UDB through the DSI network.

Data output and pin-state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4100_BLE since it has 4.5 ports).

Table 2.	PSoC 4100	BLE Pin Lis	t (WLCSP	Package)	(continued)
----------	-----------	-------------	----------	----------	-------------

Pin	Name	Туре	Pin Description
J2	P0.0	GPIO	Port 0 Pin 0, lcd, csd
J3	VDDR	POWER	1.9-V to 5.5-V radio supply
J6	VDDR	POWER	1.9-V to 5.5-V radio supply
J7	No Connect	-	-

High-speed I/O matrix (HSIOM) is a group of high-speed switches that routes GPIOs to the resources inside the device. These resources include CapSense, TCPWMs, I²C, SPI, UART, and LCD. HSIOM_PORT_SELx are 32-bit-wide registers that control the routing of GPIOs. Each register controls one port; four dedicated bits are assigned to each GPIO in the port. This provides up to 16 different options for GPIO routing as shown in Table 3.

Table 3. HSIOM Port Settings

Value	Description
0	Firmware-controlled GPIO
1	Output is firmware-controlled, but Output Enable (OE) is controlled from DSI.
2	Both output and OE are controlled from DSI.
3	Output is controlled from DSI, but OE is firmware-controlled.
4	Pin is a CSD sense pin
5	Pin is a CSD shield pin
6	Pin is connected to AMUXA
7	Pin is connected to AMUXB
8	Pin-specific Active function #0
9	Pin-specific Active function #1
10	Pin-specific Active function #2
11	Reserved
12	Pin is an LCD common pin
13	Pin is an LCD segment pin
14	Pin-specific Deep-Sleep function #0
15	Pin-specific Deep-Sleep function #1

The selection of peripheral function for different GPIO pins is given in Table 4.

Table 4. Port Pin Connections

		Digital (HSIOM_PORT_SELx.SELy) ('x' denotes port number and 'y' denotes pin numb							
Name	Analog	0	8	9	10	14	15		
		GPIO	Active #0	Active #1	Active #2	Deep-Sleep #0	Deep-Sleep #1		
P0.0	COMP0_INP	GPIO	TCPWM0_P[3]	SCB1_UART_RX[1]		SCB1_I2C_SDA[1]	SCB1_SPI_MOSI[1]		
P0.1	COMP0_INN	GPIO	TCPWM0_N[3]	SCB1_UART_TX[1]		SCB1_I2C_SCL[1]	SCB1_SPI_MISO[1]		
P0.2		GPIO	TCPWM1_P[3]	SCB1_UART_RTS[1]		COMP0_OUT[0]	SCB1_SPI_SS0[1]		
P0.3		GPIO	TCPWM1_N[3]	SCB1_UART_CTS[1]		COMP1_OUT[0]	SCB1_SPI_SCLK[1]		
P0.4	COMP1_INP	GPIO	TCPWM1_P[0]	SCB0_UART_RX[1]	EXT_CLK[0]/ ECO_OUT[0]	SCB0_I2C_SDA[1]	SCB0_SPI_MOSI[1]		
P0.5	COMP1_INN	GPIO	TCPWM1_N[0]	SCB0_UART_TX[1]		SCB0_I2C_SCL[1]	SCB0_SPI_MISO[1]		
P0.6		GPIO	TCPWM2_P[0]	SCB0_UART_RTS[1]		SWDIO[0]	SCB0_SPI_SS0[1]		
P0.7		GPIO	TCPWM2_N[0]	SCB0_UART_CTS[1]		SWDCLK[0]	SCB0_SPI_SCLK[1]		
P1.0	CTBm1_OA0_INP	GPIO	TCPWM0_P[1]			COMP0_OUT[1]	WCO_OUT[2]		
P1.1	CTBm1_OA0_INN	GPIO	TCPWM0_N[1]			COMP1_OUT[1]	SCB1_SPI_SS1		
P1.2	CTBm1_OA0_OUT	GPIO	TCPWM1_P[1]				SCB1_SPI_SS2		
P1.3	CTBm1_OA1_OUT	GPIO	TCPWM1_N[1]				SCB1_SPI_SS3		

Table 4. Port Pin Connections (continued)

		Digital (HSIOM_PORT_SELx.SELy) ('x' denotes port number and 'y' denotes pin num						
Name	Analog	0	8	9	10	14	15	
		GPIO	Active #0	Active #1	Active #2	Deep-Sleep #0	Deep-Sleep #1	
P1.4	CTBm1_OA1_INN	GPIO	TCPWM2_P[1]	SCB0_UART_RX[0]		SCB0_I2C_SDA[0]	SCB0_SPI_MOSI[1]	
P1.5	CTBm1_OA1_INP	GPIO	TCPWM2_N[1]	SCB0_UART_TX[0]		SCB0_I2C_SCL[0]	SCB0_SPI_MISO[1]	
P1.6	CTBm1_OA0_INP	GPIO	TCPWM3_P[1]	SCB0_UART_RTS[0]			SCB0_SPI_SS0[1]	
P1.7	CTBm1_OA1_INP	GPIO	TCPWM3_N[1]	SCB0_UART_CTS[0]			SCB0_SPI_SCLK[1]	
P2.0	CTBm0_OA0_INP	GPIO					SCB0_SPI_SS1	
P2.1	CTBm0_OA0_INN	GPIO					SCB0_SPI_SS2	
P2.2	CTBm0_OA0_OUT	GPIO				WAKEUP	SCB0_SPI_SS3	
P2.3	CTBm0_OA1_OUT	GPIO					WCO_OUT[1]	
P2.4	CTBm0_OA1_INN	GPIO						
P2.5	CTBm0_OA1_INP	GPIO						
P2.6	CTBm0_OA0_INP	GPIO						
P2.7	CTBm0_OA1_INP	GPIO			EXT_CLK[1]/ECO_OUT[1]			
P3.0	SARMUX_0	GPIO	TCPWM0_P[2]	SCB0_UART_RX[2]		SCB0_I2C_SDA[2]		
P3.1	SARMUX_1	GPIO	TCPWM0_N[2]	SCB0_UART_TX[2]		SCB0_I2C_SCL[2]		
P3.2	SARMUX_2	GPIO	TCPWM1_P[2]	SCB0_UART_RTS[2]				
P3.3	SARMUX_3	GPIO	TCPWM1_N[2]	SCB0_UART_CTS[2]				
P3.4	SARMUX_4	GPIO	TCPWM2_P[2]	SCB1_UART_RX[2]		SCB1_I2C_SDA[2]		
P3.5	SARMUX_5	GPIO	TCPWM2_N[2]	SCB1_UART_TX[2]		SCB1_I2C_SCL[2]		
P3.6	SARMUX_6	GPIO	TCPWM3_P[2]	SCB1_UART_RTS[2]				
P3.7	SARMUX_7	GPIO	TCPWM3_N[2]	SCB1_UART_CTS[2]			WCO_OUT[0]	
P4.0	CMOD	GPIO	TCPWM0_P[0]	SCB1_UART_RTS[0]			SCB1_SPI_MOSI[0]	
P4.1	CTANK	GPIO	TCPWM0_N[0]	SCB1_UART_CTS[0]			SCB1_SPI_MISO[0]	
P5.0		GPIO	TCPWM3_P[0]	SCB1_UART_RX[0]	EXTPA_EN	SCB1_I2C_SDA[0]	SCB1_SPI_SS0[0]	
P5.1		GPIO	TCPWM3_N[0]	SCB1_UART_TX[0]	EXT_CLK[2]/ECO_OUT[2]	SCB1_I2C_SCL[0]	SCB1_SPI_SCLK[0]	
P6.0_XTAL32O		GPIO						
P6.1_XTAL32I		GPIO						

The possible pin connections are shown for all analog and digital peripherals (except the radio, LCD, and CSD blocks, which were shown in Table 1). A typical system application connection diagram is shown in Figure 5.

Figure 5. System Application Connection Diagram

Power

The PSoC 4100_BLE device can be supplied from batteries with a voltage range of 1.9 V to 5.5 V by directly connecting to the digital supply (VDDD), analog supply (VDDA), and radio supply (VDDR) pins. Internal LDOs in the device regulate the supply voltage to the required levels for different blocks. The device has one regulator for the digital circuitry and separate regulators for radio circuitry for noise isolation. Analog circuits run directly from the analog supply (VDDA) input. The device uses separate regulators for Deep-Sleep and Hibernate (lowered power supply and retention) modes to minimize the power consumption. The radio stops working below 1.9 V, but the device continues to function down to 1.71 V without RF. Note that VDDR must be supplied whenever VDDD is supplied.

Bypass capacitors must be used from VDDx (x = A, D, or R) to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1-µF range in parallel with a smaller capacitor (for example, 0.1 µF). Note that these are simply rules

of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Power Supply	Bypass Capacitors
VDDD	0.1- μ F ceramic at each pin plus bulk capacitor 1 μ F to 10 μ F.
VDDA	0.1- μ F ceramic at each pin plus bulk capacitor 1 μ F to 10 μ F.
VDDR	0.1- μ F ceramic at each pin plus bulk capacitor 1 μ F to 10 μ F.
VCCD	1-µF ceramic capacitor at the VCCD pin.
VREF (optional)	The internal bandgap may be bypassed with a 1-μF to 10-μF capacitor.

Development Support

The PSoC 4100_BLE family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4100_BLE family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (Components) long after the device has gone into production. Component datasheets provide all of the information needed to select and use a particular Component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include creating

standard and custom BLE profiles. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4100_BLE family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Table 6. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID19	I _{DD9}	Execute from flash; CPU at 24 MHz	-	7.1	-	mA	T = 25 °C, V _{DD} = 3.3 V
SID20	I _{DD10}	Execute from flash; CPU at 24 MHz	-	-	-	mA	T = -40 °C to 105 °C
SID21	I _{DD11}	Execute from flash; CPU at 48 MHz	-	13.4	_	mA	T = 25 °C, V _{DD} = 3.3 V
SID22	I _{DD12}	Execute from flash; CPU at 48 MHz	-	-	-	mA	T = -40 °C to 105 °C
Sleep Mode,	V _{DD} = 1.8 V to	5.5 V				1	
SID23	I _{DD13}	IMO on	_	-	_	mA	T = 25 °C, VDD = 3.3 V, SYSCLK = 3 MHz
Sleep Mode,	V_{DD} and V_{DD}	_R = 1.9 V to 5.5 V					
SID24	I _{DD14}	ECO on	-	-	-	mA	T = 25 °C, VDD = 3.3 V, SYSCLK = 3 MHz
Deep-Sleep	Mode, V _{DD} = 1	.8 V to 3.6 V					
SID25	I _{DD15}	WDT with WCO on	-	1.3	-	μA	T = 25 °C, V _{DD} = 3.3 V
SID26	I _{DD16}	WDT with WCO on	-	-	-	μA	T = -40 °C to 105 °C
Deep-Sleep	Mode, V _{DD} = 3	3.6 V to 5.5 V		•			
SID27	I _{DD17}	WDT with WCO on	_	_	_	μA	T = 25 °C, V _{DD} = 5 V
SID28	I _{DD18}	WDT with WCO on	-	-	-	μA	T = -40 °C to 105 °C
Deep-Sleep	Mode, V _{DD} = 1	.71 V to 1.89 V (Regulator Bypassed)					
SID29	I _{DD19}	WDT with WCO on	-	-	_	μA	T = 25 °C
SID30	I _{DD20}	WDT with WCO on	_	_	_	μA	T = -40 °C to 105 °C
Deep-Sleep	Mode, V _{DD} = 2	2.5 V to 3.6 V					
SID31	I _{DD21}	Opamp on	-	-	-	μA	T = 25 °C, V _{DD} = 3.3 V
SID32	I _{DD22}	Opamp on	-	-	-	μA	T = -40 °C to 105 °C
Deep-Sleep	Mode, V _{DD} = 3	8.6 V to 5.5 V					
SID33	I _{DD23}	Opamp on	-	_	_	μA	T = 25 °C, V _{DD} = 5 V
SID34	I _{DD24}	Opamp on	-	-	-	μA	T = -40 °C to 105 °C
Hibernate M	ode, V _{DD} = 1.8	3 V to 3.6 V					
SID37	I _{DD27}	GPIO and reset active	-	150	-	nA	T = 25 °C, V _{DD} = 3.3 V
SID38	I _{DD28}	GPIO and reset active	-	-	-	nA	T = -40 °C to 105 °C
Hibernate M	ode, V _{DD} = 3.6	6 V to 5.5 V					
SID39	I _{DD29}	GPIO and reset active	-	-	-	nA	T = 25 °C, V _{DD} = 5 V
SID40	I _{DD30}	GPIO and reset active	-	-	_	nA	T = -40 °C to 105 °C
Hibernate M	ode, V _{DD} = 1.7	1 V to 1.89 V (Regulator Bypassed)					
SID41	I _{DD31}	GPIO and reset active	_	-	_	nA	T = 25 °C
SID42	I _{DD32}	GPIO and reset active	_	-	_	nA	T = -40 °C to 105 °C

Table 6. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions			
Stop Mode,	Stop Mode, V _{DD} = 1.8 V to 3.6 V									
SID43	I _{DD33}	Stop mode current (V _{DD})	-	20	-	nA	T = 25 °C, V _{DD} = 3.3 V			
SID44	I _{DD34}	Stop mode current (V _{DDR})	-	40		nA	T = 25 °C, V _{DDR} = 3.3 V			
SID45	I _{DD35}	Stop mode current (V _{DD})	-	-	-	nA	T = -40 °C to 105 °C			
SID46	I _{DD36}	Stop mode current (V _{DDR})	-	-	-	nA	T = -40 °C to 105 °C, V _{DDR} = 1.9 V to 3.6 V			
Stop Mode,	V _{DD} = 3.6 V to	5.5 V								
SID47	I _{DD37}	Stop mode current (V _{DD})	-	-	-	nA	T = 25 °C, V _{DD} = 5 V			
SID48	I _{DD38}	Stop mode current (V _{DDR})	-	-	-	nA	T = 25 °C, V _{DDR} = 5 V			
SID49	I _{DD39}	Stop mode current (V _{DD})	-	-	-	nA	T = -40 °C to 105 °C			
SID50	I _{DD40}	Stop mode current (V _{DDR})	-	-	_	nA	T = -40 °C to 105 °C			
Stop Mode,	V _{DD} = 1.71 V t	o 1.89 V (Regulator Bypassed)								
SID51	I _{DD41}	Stop mode current (V _{DD})	-	-	_	nA	T = 25 °C			
SID52	I _{DD42}	Stop mode current (V _{DD})	-	-	_	nA	T = -40 °C to 105 °C			

Table 7. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID53	F _{CPU}	CPU frequency	DC	-	24	MHz	$1.71~V \leq V_{DD} \leq 5.5~V$
SID54	T _{SLEEP}	Wakeup from Sleep mode	-	0	_	μs	Guaranteed by characterization
SID55	T _{DEEPSLEEP}	Wakeup from Deep-Sleep mode	-	-	25	μs	24-MHz IMO. Guaranteed by characterization
SID56	T _{HIBERNATE}	Wakeup from Hibernate mode	_	-	2	ms	Guaranteed by characterization
SID57	T _{STOP}	Wakeup from Stop mode	_	-	2	ms	Guaranteed by characterization

XRES

Table 12. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID87	V _{IH}	Input voltage HIGH threshold	$0.7 \times V_{DDD}$	-	-	V	CMOS input
SID88	V _{IL}	Input voltage LOW threshold	-	-	$0.3 \times V_{DDD}$	V	CMOS input
SID89	Rpullup	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID90	C _{IN}	Input capacitance	-	3	-	pF	
SID91	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	
SID92	IDIODE	Current through protection diode to V_{DDD}/V_{SS}	-	-	100	μA	

Table 13. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID93	T _{RESETWIDTH}	Reset pulse width	1	-	-	μs	

Analog Peripherals

Opamp

Table 14. Opamp Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
I _{DD} (Opam	Block Current.	V _{DD} = 1.8 V. No Load)					
SID94	I _{DD_HI}	Power = high	_	1000	1300	μA	
SID95	I _{DD_MED}	Power = medium	_	500	-	μA	
SID96	I _{DD_LOW}	Power = low	-	250	350	μA	
GBW (Loa							
SID97	GBW_HI	Power = high	6	-	-	MHz	
SID98	GBW_MED	Power = medium	4	I	-	MHz	
SID99	GBW_LO	Power = low	-	1	-	MHz	
IOUT_MAX (/ _{DDA} ≥ 2.7 V, 500	mV from Rail)					
SID100	I _{OUT_MAX_HI}	Power = high	10	-	-	mA	
SID101	IOUT_MAX_MID	Power = medium	10	-	_	mA	
SID102	IOUT_MAX_LO	Power = low	-	5	-	mA	
I _{OUT} (V _{DDA}	= 1.71 V, 500 mV	from Rail)					
SID103	I _{OUT_MAX_HI}	Power = high	4	-	-	mA	
SID104	IOUT_MAX_MID	Power = medium	4	Ι	-	mA	
SID105	IOUT_MAX_LO	Power = low	-	2	-	mA	
SID106	V _{IN}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	Ι	$V_{DDA} - 0.2$	V	
SID107	V _{CM}	Charge pump on, $V_{DDA} \ge 2.7 V$	-0.05	-	$V_{DDA} - 0.2$	V	
V _{OUT} (V _{DD}	≥ 2.7 V)						
SID108	V _{OUT_1}	Power = high, I _{LOAD} =10 mA	0.5	-	$V_{DDA} - 0.5$	V	
SID109	V _{OUT_2}	Power = high, I _{LOAD} =1 mA	0.2	-	$V_{DDA} - 0.2$	V	
SID110	V _{OUT_3}	Power = medium, I _{LOAD} =1 mA	0.2	Ι	$V_{DDA} - 0.2$	V	
SID111	V _{OUT_4}	Power = low, I _{LOAD} =0.1 mA	0.2	-	$V_{DDA} - 0.2$	V	
SID112	V _{OS_TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID113	V _{OS_TR}	Offset voltage, trimmed	-	±1	-	mV	Medium mode
SID114	V _{OS_TR}	Offset voltage, trimmed	-	±2	-	mV	Low mode
SID115	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	µV/°C	High mode
SID116	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	-	µV/°C	Medium mode
SID117	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	-	µV/°C	Low mode
SID118	CMRR	DC	65	70	-	dB	V _{DDD} = 3.6 V, High-power mode
SID119	PSRR	At 1 kHz, 100-mV ripple	70	85	-	dB	V _{DDD} = 3.6 V
Noise	1			1			
SID120	V _{N1}	Input referred, 1 Hz–1 GHz, power = high	-	94	_	μVrms	
SID121	V _{N2}	Input referred, 1 kHz, power = high	-	72	-	nV/rtHz	
SID122	V _{N3}	Input referred, 10 kHz, power = high	-	28	-	nV/rtHz	
SID123	V _{N4}	Input referred, 100 kHz, power = high	-	15	-	nV/rtHz	
SID124	C _{LOAD}	Stable up to maximum load. Perfor- mance specs at 50 pF	-	-	125	pF	
SID125	Slew_rate	Cload = 50 pF, Power = High, $V_{DDA} \ge 2.7 V$	6	-	-	V/µs	
SID126	T_op_wake	From disable to enable, no external RC dominating	-	300	-	μs	
Comp_mo	de (Comparator	Mode; 50-mV Drive, T _{RISE} = T _{FALL} (App	orox.)			•	
SID127	T _{PD1}	Response time; power = high	-	150	-	ns	
SID128	T _{PD2}	Response time; power = medium	_	400	-	ns	
SID129	T _{PD3}	Response time; power = low	_	2000	-	ns	
SID130	Vhyst_op	Hysteresis	_	10	-	mV	
Deep-Slee	p Mode (Deep-S	eep mode operation is only guarantee	d for V _{DD/}	م > 2.5 \	/)		
SID131	GBW_DS	Gain bandwidth product	-	50	I	kHz	
SID132	IDD_DS	Current	-	15	I	μA	
SID133	Vos_DS	Offset voltage	_	5	_	mV	
SID134	Vos_dr_DS	Offset voltage drift	_	20	_	µV/°C	
SID135	Vout_DS	Output voltage	0.2	-	V _{DD} -0.2	V	
SID136	Vcm DS	Common mode voltage	0.2	_	Vnn-1.8	V	

Table 14. Opamp Specifications (continued)

Table 15. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID140	V _{OFFSET1}	Input offset voltage, Factory trim	-	-	±10	mV	
SID141	V _{OFFSET2}	Input offset voltage, Custom trim	-	-	±6	mV	
SID141A	V _{OFFSET3}	Input offset voltage, ultra-low-power mode	-	±12	_	mV	$V_{DDD} ≥ 2.6 V forTemp < 0 °CV_{DDD} ≥ 1.8 V forTemp ≥ 0 °C$
SID142	V _{HYST}	Hysteresis when enabled	-	10	35	mV	

Counter

Table 23. Counter DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID200		Block current consumption at 3 MHz	-	-	42	μA	16-bit timer, 85 °C
SID200A	'CTR1		-	-	46	μA	16-bit timer, 105 °C
SID201	l	Block current consumption at 12 MHz	-	-	130	μA	16-bit timer, 85 °C
SID201A	'CTR2		-	-	137	μA	16-bit timer, 105 °C
SID202	l	Block current consumption at 48 MHz	-	-	535	μA	16-bit timer, 85 °C
SID202A	'CTR3		-	-	560	μA	16-bit timer, 105 °C

Table 24. Counter AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID203	T _{CTRFREQ}	Operating frequency	F _{CLK}	-	48	MHz	
SID204	T _{CTRPWINT}	Capture pulse width (internal)	$2 \times T_{CLK}$	-	-	ns	
SID205	T _{CTRPWEXT}	Capture pulse width (external)	2 × T _{CLK}	_	-	ns	
SID206	T _{CTRES}	Counter Resolution	T _{CLK}	_	-	ns	
SID207	T _{CENWIDINT}	Enable pulse width (internal)	$2 \times T_{CLK}$	-	-	ns	
SID208	T _{CENWIDEXT}	Enable pulse width (external)	$2 \times T_{CLK}$	-	-	ns	
SID209	T _{CTRRESWINT}	Reset pulse width (internal)	$2 \times T_{CLK}$	-	-	ns	
SID210	T _{CTRRESWEXT}	Reset pulse width (external)	2 × T _{CLK}	_	-	ns	

Pulse Width Modulation (PWM)

Table 25. PWM DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID211		Block current consumption at 3 MHz	_	-	42	μA	16-bit timer, 85 °C
SID211A	IPWM1	block current consumption at 5 Minz	-	-	46	μA	16-bit timer, 105 °C
SID212	1	Block current consumption at 12 MHz	_	-	130	μA	16-bit timer, 85 °C
SID212A	'PWM2		_	-	137	μA	16-bit timer, 105 °C
SID213	1	Block current consumption at 48 MHz	_	-	535	μA	16-bit timer, 85 °C
SID213A	'PWM3		_	-	560	μA	16-bit timer, 105 °C

Table 26. PWM AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID214	T _{PWMFREQ}	Operating frequency	F _{CLK}	-	48	MHz	
SID215	T _{PWMPWINT}	Pulse width (internal)	$2 \times T_{CLK}$	-	-	ns	
SID216	T _{PWMEXT}	Pulse width (external)	$2 \times T_{CLK}$	-	-	ns	
SID217	T _{PWMKILLINT}	Kill pulse width (internal)	$2 \times T_{CLK}$	-	-	ns	
SID218	T _{PWMKILLEXT}	Kill pulse width (external)	2 × T _{CLK}	-	-	ns	
SID219	T _{PWMEINT}	Enable pulse width (internal)	$2 \times T_{CLK}$	-	-	ns	
SID220	T _{PWMENEXT}	Enable pulse width (external)	$2 \times T_{CLK}$	-	-	ns	
SID221	T _{PWMRESWINT}	Reset pulse width (internal)	$2 \times T_{CLK}$	-	-	ns	
SID222	T _{PWMRESWEXT}	Reset pulse width (external)	$2 \times T_{CLK}$	-	-	ns	

SPI Specifications

Table 33. Fixed SPI DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID237	I _{SPI1}	Block current consumption at 1 Mbps	-	-	360	μA	
SID238	I _{SPI2}	Block current consumption at 4 Mbps	-	-	560	μA	
SID239	I _{SPI3}	Block current consumption at 8 Mbps	_	-	600	μA	

Table 34. Fixed SPI AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID240	F _{SPI}	SPI operating frequency (master; 6x oversampling)	-	-	8	MHz	

Table 35. Fixed SPI Master Mode AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID241	Т _{DMO}	MOSI valid after Sclock driving edge	-	-	18	ns	
SID242	T _{DSI}	MISO valid before Sclock capturing edge. Full clock, late MISO sampling used	20	-	-	ns	Full clock, late MISO sampling
SID243	Т _{НМО}	Previous MOSI data hold time	0	-	-	ns	Referred to Slave capturing edge

Table 36. Fixed SPI Slave Mode AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID244	T _{DMI}	MOSI valid before Sclock capturing edge	40	-	-	ns	
SID245	T _{DSO}	MISO valid after Sclock driving edge	-	-	42 + 3 × T _{SCB}	ns	
SID246	T _{DSO_ext}	MISO valid after Sclock driving edge in external clock mode	-	-	50	ns	V _{DD} < 3.0 V
SID247	T _{HSO}	Previous MISO data hold time	0	-	-	ns	
SID248	T _{SSELSCK}	SSEL valid to first SCK valid edge	100	_	_	ns	

Memory

Table 37. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID249	V _{PE}	Erase and program voltage	1.71	-	5.5	V	
SID310	T _{WS32}	Number of Wait states at 16–24 MHz	1	-	-		CPU execution from flash
SID311	T _{WS16}	Number of Wait states for 0–16 MHz	0	-	-		CPU execution from flash

Table 38. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID250	T _{ROWWRITE} ^[4]	Row (block) write time (erase and program)	-	_	20	ms	Row (block) = 128 bytes
SID251	T _{ROWERASE} ^[4]	Row erase time	-	-	13	ms	Row (block) = 128 bytes for 128-KB flash devices Row (block) = 256 bytes for 256-KB flash devices
SID252	T _{ROWPROGRAM} ^[4]	Row program time after erase	-	_	7	ms	
SID253	T _{BULKERASE} ^[4]	Bulk erase time (128 KB)	-	-	35	ms	
SID254	T _{DEVPROG} ^[4]	Total device program time	-	-	25	seconds	
SID255	F _{END}	Flash endurance	100 K	-	-	cycles	
SID256	F _{RET}	Flash retention. $T_A \le 55 \degree$ C, 100 K P/E cycles	20	_	_	years	
SID257	F _{RET2}	Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	-	-	years	
SID257A	F _{RET3}	Flash retention. $T_A \le 105 \text{ °C}$, 10 K P/E cycles	3	_	_	years	For T _A ≥ 85 °C

System Resources

Power-on-Reset (POR)

Table 39. POR DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID258	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45	V	
SID259	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.40	V	
SID260	VIPORHYST	Hysteresis	15	_	200	mV	

Table 40. POR AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID264	T _{PPOR_TR}	PPOR response time in Active and Sleep modes	-	-	1	μs	

Note

^{4.} It can take as much as 20 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

SWD Interface

Table 45. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID283	F_SWDCLK1	$3.3~V \leq V_{DD} \leq 5.5~V$	-	-	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID284	F_SWDCLK2	$1.71~V \le V_{DD} \le 3.3~V$	-	-	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID285	T_SWDI_SETUP	T = 1/f SWDCLK	0.25 × T	-	-	ns	
SID286	T_SWDI_HOLD	T = 1/f SWDCLK	0.25 × T	-	-	ns	
SID287	T_SWDO_VALID	T = 1/f SWDCLK	-	-	0.5 × T	ns	
SID288	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	_	ns	

Internal Main Oscillator

Table 46. IMO DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID289	I _{IMO1}	IMO operating current at 48 MHz	-	-	1000	μA	
SID290	I _{IMO2}	IMO operating current at 24 MHz	-	-	325	μA	
SID291	I _{IMO3}	IMO operating current at 12 MHz	-	-	225	μA	
SID292	I _{IMO4}	IMO operating current at 6 MHz	-	-	180	μA	
SID293	I _{IMO5}	IMO operating current at 3 MHz	-	-	150	μA	

Table 47. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID296	F _{IMOTOL3}	Frequency variation from 3 to 48 MHz	1	_	±2	%	With API-called calibration
SID297	F _{IMOTOL3}	IMO startup time	-	-	12	μs	

Internal Low-Speed Oscillator

Table 48. ILO DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID298	I _{ILO2}	ILO operating current at 32 kHz	-	0.3	1.05	μA	Guaranteed by design

Table 49. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID299	T _{STARTILO1}	ILO startup time	-	-	2	ms	
SID300	F _{ILOTRIM1}	32-kHz trimmed frequency	15	32	50	kHz	

Table 52. BLE Subsystem (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID365	FTX, ACC	Frequency accuracy	-150	-	150	kHz	RF-PHY Specification (TRM-LE/CA/06/C)
SID366	FTX, MAXDR	Maximum frequency drift	-50	-	50	kHz	RF-PHY Specification (TRM-LE/CA/06/C)
SID367	FTX, INITDR	Initial frequency drift	-20	-	20	kHz	RF-PHY Specification (TRM-LE/CA/06/C)
SID368	FTX, DR	Maximum drift rate	-20	_	20	kHz/ 50 μs	RF-PHY Specification (TRM-LE/CA/06/C)
SID369	IBSE1	In-band spurious emission at 2-MHz offset	-	_	-20	dBm	RF-PHY Specification (TRM-LE/CA/03/C)
SID370	IBSE2	In-band spurious emission at ≥3-MHz offset	-	_	-30	dBm	RF-PHY Specification (TRM-LE/CA/03/C)
SID371	TXSE1	Transmitter spurious emissions (average), <1.0 GHz	-	_	-55.5	dBm	FCC-15.247
SID372	TXSE2	Transmitter spurious emissions (average), >1.0 GHz	-	_	-41.5	dBm	FCC-15.247
RF Curren	t Specifications						
SID373	IRX	Receive current in normal mode	-	18.7	-	mA	
SID373A	IRX_RF	Radio receive current in normal mode	_	16.4	_	mA	Measured at V _{DDR}
SID374	IRX, HIGHGAIN	Receive current in high-gain mode	-	21.5	_	mA	
SID375	ITX, 3dBm	TX current at 3-dBm setting (PA10)	-	20	_	mA	
SID376	ITX, 0dBm	TX current at 0-dBm setting (PA7)	-	16.5	_	mA	
SID376A	ITX_RF, 0dBm	Radio TX current at 0 dBm setting (PA7)	_	15.6	_	mA	Measured at V_{DDR}
SID376B	ITX_RF, 0dBm	Radio TX current at 0 dBm excluding Balun loss	-	14.2	-	mA	Guaranteed by design simulation
SID377	ITX,-3dBm	TX current at –3-dBm setting (PA4)	-	15.5	_	mA	
SID378	ITX,-6dBm	TX current at –6-dBm setting (PA3)	-	14.5	-	mA	
SID379	ITX,-12dBm	TX current at –12-dBm setting (PA2)	-	13.2	-	mA	
SID380	ITX,-18dBm	TX current at –18-dBm setting (PA1)	-	12.5	-	mA	
SID380A	lavg_1sec, 0dBm	Average current at 1-second BLE connection interval	_	17.1	_	μA	TXP: 0 dBm; ±20-ppm master and slave clock accuracy.
SID380B	lavg_4sec, 0dBm	Average current at 4-second BLE connection interval	-	6.1	_	μA	TXP: 0 dBm; ±20-ppm master and slave clock accuracy.
General R	F Specifications	·					-
SID381	FREQ	RF operating frequency	2400	-	2482	MHz	
SID382	CHBW	Channel spacing	-	2	-	MHz	
SID383	DR	On-air data rate	_	1000	_	kbps	1
SID384	IDLE2TX	BLE.IDLE to BLE. TX transition time	-	120	140	μs	
SID385	IDLE2RX	BLE.IDLE to BLE. RX transition time	_	75	120	μs	

Table 52. BLE Subsystem (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions		
RSSI Spec	RSSI Specifications								
SID386	RSSI, ACC	RSSI accuracy	-	±5	-	dB			
SID387	RSSI, RES	RSSI resolution	-	1	-	dB			
SID388	RSSI, PER	RSSI sample period	-	6	-	μs			

Table 53. ECO Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID389	F _{ECO}	Crystal frequency	-	24	-	MHz	
SID390	F _{TOL}	Frequency tolerance	-50	_	50	ppm	
SID391	ESR	Equivalent series resistance	_	_	60	Ω	
SID392	PD	Drive level	_	_	100	μW	
SID393	T _{START1}	Startup time (Fast Charge on)	-	-	850	μs	
SID394	T _{START2}	Startup time (Fast Charge off)	_	_	3	ms	
SID395	CL	Load capacitance	_	8	-	pF	
SID396	C0	Shunt capacitance	-	1.1	-	pF	
SID397	I _{ECO}	Operating current	-	1400	-	μA	Includes LDO+BG current

Table 54. WCO Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID398	F _{WCO}	Crystal frequency	-	32.768	_	kHz	
SID399	FTOL	Frequency tolerance	-	50	_	ppm	
SID400	ESR	Equivalent series resistance	-	50	_	kΩ	
SID401	PD	Drive level	-	_	1	μW	
SID402	T _{START}	Startup time	_	_	500	ms	
SID403	CL	Crystal load capacitance	6	_	12.5	pF	
SID404	C0	Crystal shunt capacitance	-	1.35	-	pF	
SID405	Iwco1	Operating current (High-Power mode)	-	-	8	μA	
SID406	I _{WCO2}	Operating current (low-power	-	_	1	μA	85 °C
SID406A	1	(mode)	-	_	2.6	μA	105 °C

Packaging

Table 55. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	_	-40	25.00	105	С°
TJ	Operating junction temperature	-	-40	-	125	°C
T _{JA}	Package θ_{JA} (56-pin QFN)	_	-	16.9	-	°C/watt
T _{JC}	Package θ_{JC} (56-pin QFN)	_	-	9.7	-	°C/watt
T _{JA}	Package θ_{JA} (76-ball WLCSP)	_	-	20.1	-	°C/watt
T _{JC}	Package θ_{JC} (76-ball WLCSP)	_	-	0.19	-	°C/watt
T _{JA}	Package θ_{JA} (76-ball Thin WLCSP)	_	-	20.9	-	°C/watt
T _{JC}	Package θ_{JC} (76-ball Thin WLCSP)	_	-	0.17	-	°C/watt
T _{JA}	Package θ_{JA} (68-ball WLCSP)		-	16.6	-	°C/watt
T _{JC}	Package θ_{JC} (68-ball WLCSP)		-	0.19	-	°C/watt
T _{JA}	Package θ_{JA} (68-ball Thin WLCSP)		-	16.6	_	°C/watt
T _{JC}	Package θ_{JC} (68-ball Thin WLCSP)		_	0.19	_	°C/watt

Table 56. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All packages	260 °C	30 seconds

Table 57. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
56-pin QFN	MSL 3
All WLCSP packages	MSL 1

Table 58. Package Details

Spec ID	Package	Description
001-58740 Rev. *C	56-pin QFN	7.0 mm × 7.0 mm × 0.6 mm
001-96603 Rev. *A	76-ball WLCSP	4.04 mm × 3.87 mm × 0.55 mm
002-10658, Rev. **	76-ball thin WLCSP	4.04 mm × 3.87 mm × 0.4 mm
001-92343 Rev. *A	68-ball WLCSP	3.52 mm × 3.91 mm × 0.55 mm
001-99408 Rev **	68-ball Thin WLCSP	52 mm × 3.91 mm × 0.4 mm

Figure 6. 56-Pin QFN 7 mm × 7 mm × 0.6 mm

The center pad on the QFN package must be connected to ground (V_{SS}) for the proper operation of the device.

Figure 8. 68-Ball WLCSP Package Outline

NOTES:

1. REFERENCE JEDEC PUBLICATION 95, DESIGN GUIDE 4.18

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-92343 *A

NOTES:

1. REFERENCE JEDEC PUBLICATION 95, DESIGN GUIDE 4.18

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-99408 **

Figure 10. 76-Ball WLCSP Package Outline

001-96603 *B

A

A1

D

Е

D1

E1

MD

ME

Ν

Øb

eD

еE

SD

SE

Document Conventions

Units of Measure

Table 60. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
dBm	decibel-milliwatts
fF	femtofarads
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
s	second
sps	samples per second
sqrtHz	square root of hertz
V	volt