

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, SIO, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21162sp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

R8C/16 Group, R8C/17 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ03B0101-0200 Rev.2.00 Jan 30, 2006

1. Overview

This MCU is built using the high-performance silicon gate CMOS process using the R8C/Tiny Series CPU core and is packaged in a 20-pin plastic molded LSSOP. This MCU operates using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, it is capable of executing instructions at high speed.

Furthermore, the data flash ROM (1KB × 2blocks) is embedded in the R8C/17 group.

The difference between the R8C/16 and R8C/17 groups is only the existence of the data flash ROM. Their peripheral functions are the same.

1.1 Applications

Electric household appliance, office equipment, housing equipment (sensor, security), general industrial equipment, audio, etc.

1.2 Performance Overview

Table 1.1 lists the Performance Outline of the R8C/16 Group and Table 1.2 lists the Performance Outline of the R8C/17 Group.

	Item	Performance
CPU	Number of Basic Instructions	
	Minimum Instruction	50ns(f(XIN)=20MHz, VCC=3.0 to 5.5V)
	Execution Time	100ns(f(XIN)=10MHz, VCC=2.7 to 5.5V)
	Operating Mode	Single-chip
	Address Space	1 Mbyte
	Memory Capacity	See Table 1.3 R8C/16 Group Product Information
Peripheral	Port	I/O port : 13 pins (including LED drive port),
Function		Input : 2 pins
T directori	LED Drive Port	I/O port: 4 pins
	Timer	Timer X: 8 bits × 1 channel, Timer Z: 8 bits × 1 channel
	TIME	
		(Each timer equipped with 8-bit prescaler)
		Timer C: 16 bits × 1 channel
		(Circuits of input capture and output compare)
	Serial Interface	1 channel
		Clock synchronous serial I/O, UART
	I ² C bus Interface (IIC) ⁽¹⁾	1 channel
	A/D Converter	10-bit A/D converter: 1 circuit, 4 channels
	Watchdog Timer	15 bits x 1 channel (with prescaler)
		Reset start selectable, Count source protection mode
	Interrupt	Internal: 9 factors, External: 4 factors, Software: 4
		factors
		Priority level: 7 levels
	Clock Generation Circuit	2 circuits
		Main clock oscillation circuit (Equipped with a built-in
		feedback resistor)
		On-chip oscillator (high speed, low speed)
		Equipped with frequency adjustment function on high-
		speed on-chip oscillator
	Oppillation Stop Detection	Main clock oscillation stop detection function
	Oscillation Stop Detection	
	Function	
	Voltage Detection Circuit	Included
F ILL (1)	Power-on Reset Circuit	
Electric	Supply Voltage	VCC=3.0 to 5.5V (f(XIN)=20MHz)
Characteristics		VCC=2.7 to 5.5V (f(XIN)=10MHz)
	Power Consumption	Typ. 9mA (VCC=5.0V, f(XIN)=20MHz)
		Typ. 5mA (VCC=3.0V, f(XIN)=10MHz)
		Typ. 35µA (VCC=3.0V, wait mode, peripheral clock off)
		Typ. 0.7μA (VCC=3.0V, stop mode)
Flash Memory	Program/Erase Supply	VCC=2.7 to 5.5V
	Voltage	
	Program/Erase Endurance	100 times
Operating Amb	ient Temperature	-20 to 85°C
	·	-40 to 85°C (D Version)
Package		20-pin plastic mold LSSOP

 Table 1.1
 Performance Outline of the R8C/16 Group

NOTES:

1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

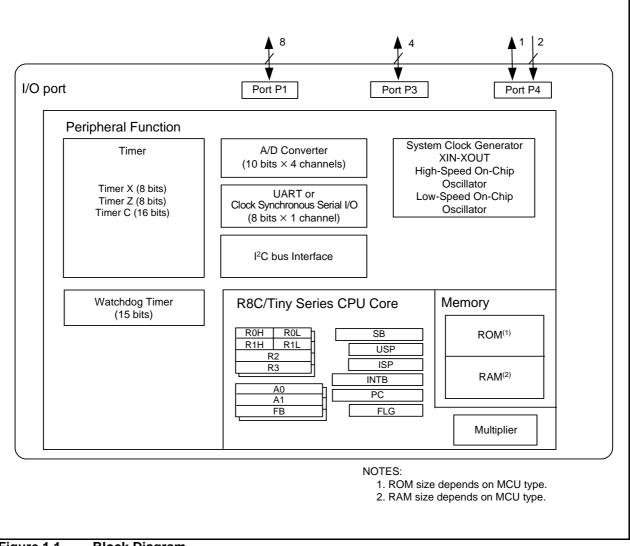
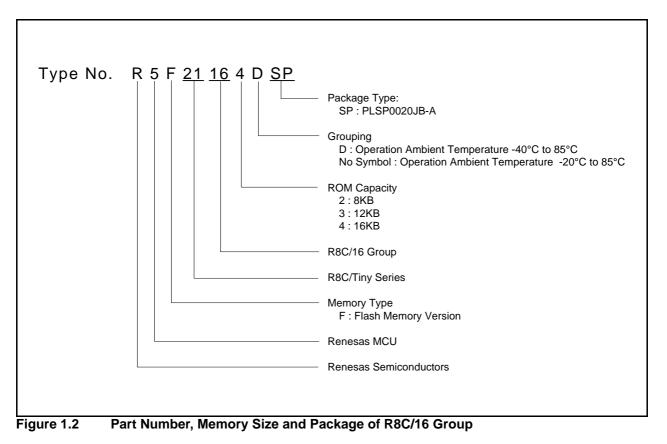


Figure 1.1 Block Diagram

Table 1.3


As of Jan 2006

1.4 Product Information

Table 1.3 lists the Product Information of R8C/16 Group and Table 1.4 lists the Product Information of R8C/17 Group.

Product Information of R8C/16 Group

Type No.	ROM Capacity	RAM Capacity	Package Type	Remarks
R5F21162SP	8 Kbytes	512 bytes	PLSP0020JB-A	Flash Memory Version
R5F21163SP	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F21164SP	16 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F21162DSP	8 Kbytes	512 bytes	PLSP0020JB-A	D Version
R5F21163DSP	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F21164DSP	16 Kbytes	1 Kbyte	PLSP0020JB-A	

1.5 Pin Assignments

Figure 1.4 shows the PLSP0020JB-A Package Pin Assignment (top view).

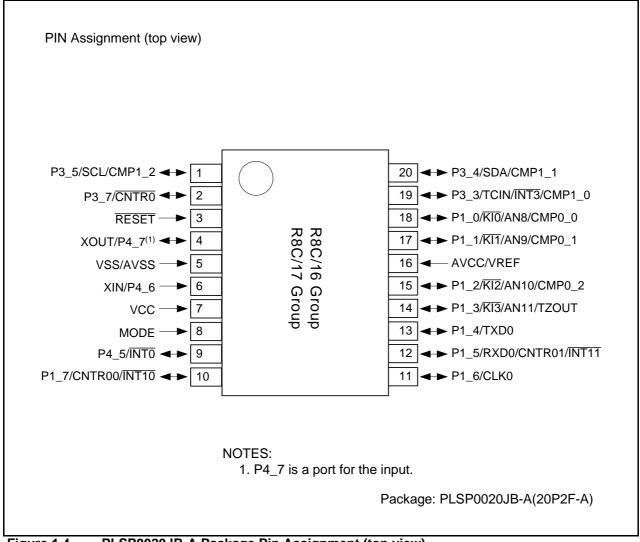


Figure 1.4 PLSP0020JB-A Package Pin Assignment (top view)

Pin	Control			I/O Pin o	of Peripheral	Functions	
Number	Pin	Port	Interrupt	Timer	Serial Interface	I ² C bus Interface	A/D Converter
1		P3_5		CMP1_2		SCL	
2		P3_7		CNTR0			
3	RESET						
4	XOUT	P4_7					
5	VSS/AVSS						
6	XIN	P4_6					
7	VCC						
8	MODE						
9		P4_5	INT0				
10		P1_7	INT10	CNTR00			
11		P1_6			CLK0		
12		P1_5	INT11	CNTR01	RXD0		
13		P1_4			TXD0		
14		P1_3	KI3	TZOUT			AN11
15		P1_2	KI2	CMP0_2			AN10
16	AVCC/VREF						
17		P1_1	KI1	CMP0_1			AN9
18		P1_0	KI0	CMP0_0			AN8
19		P3_3	INT3	TCIN/CMP1_0			
20		P3_4		CMP1_1		SDA	

 Table 1.6
 Pin Name Information by Pin Number

2.1 Data Registers (R0, R1, R2 and R3)

R0 is a 16-bit register for transfer, arithmetic and logic operations. The same applies to R1 to R3. The R0 can be split into high-order bit (R0H) and low-order bit (R0L) to be used separately as 8-bit data registers. The same applies to R1H and R1L as R0H and R0L. R2 can be combined with R0 to be used as a 32-bit data register (R2R0). The same applies to R3R1 as R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. They also are used for transfer, arithmetic and logic operations. The same applies to A1 as A0. A0 can be combined with A0 to be used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC, 20 bits wide, indicates the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP and ISP, are 16 bits wide each. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is a 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic logic unit.

2.8.2 Debug Flag (D)

The D flag is for debug only. Set to "0".

2.8.3 Zero Flag (Z)

The Z flag is set to "1" when an arithmetic operation resulted in 0; otherwise, "0".

2.8.4 Sign Flag (S)

The S flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, "0".

2.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is "0". The register bank 1 is selected when this flag is set to "1".

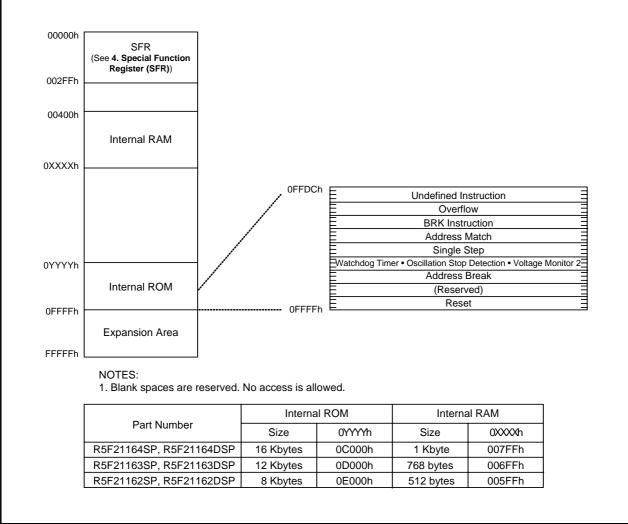
2.8.6 Overflow Flag (O)

The O flag is set to "1" when the operation resulted in an overflow; otherwise, "0".

3. Memory

3. Memory

3.1 R8C/16 Group


Figure 3.1 is a Memory Map of the R8C/16 group. The R8C/16 group provides 1-Mbyte address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but for calling subroutines and stacks when interrupt request is acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated them. All addresses, which have nothing allocated within the SFR, are reserved area and cannot be accessed by users.

Memory Map of R8C/16 Group

3.2 R8C/17 Group

Figure 3.2 is a memory map of the R8C/17 group. The R8C/17 group provides 1-Mbyte address space from addresses 00000h to FFFFh.

The internal ROM (program ROM) is allocated lower addresses beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but for calling subroutines and stacks when interrupt request is acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated them. All addresses, which have nothing allocated within the SFR, are reserved area and cannot be accessed by users.

Memory Map of R8C/17 Group

4. Special Function Register (SFR)

SFR (Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.4 list the SFR information.

Table 4.1 SFR Information(1)⁽¹⁾

Address	Register	Symbol	After Reset
0000h	register	Cymbol	71101110301
00001h			
0001h			
0002h			
0003h	Processor Mode Pagister 0	PM0	00h
	Processor Mode Register 0		
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h			
0009h	Address Match Interrupt Enable Register	AIER	00h
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00011111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h	-		X0h
0012h			
0013h	Address Match Interrupt Register 1	RMAD1	00h
001411 0015h			00h
0015h	-		X0h
0016h			XUII
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
001Dh			
001Eh	INT0 Input Filter Select Register	INTOF	00h
001Fh			
0020h	High-Speed On-Chip Oscillator Control Register 0	HRA0	00h
0020h	High-Speed On-Chip Oscillator Control Register 1	HRA1	When shipping
002111 0022h	High-Speed On-Chip Oscillator Control Register 2	HRA2	00h
0022h		TIRAZ	0011
002311			
00045			
002Ah			
002Bh			
002Ch			
002Dh			
002Eh			
002Fh			
0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h(3)
		-	0100000b ⁽⁴⁾
0033h			0100000000
0033h 0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register ⁽²⁾	VW1C	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h			
0039h			
003Ah			
003Bh			
003Bh			
003Dh			
003Eh			
003Fh		1	

X: Undefined

NOTES:

- 1. Blank spaces are reserved. No access is allowed.
- 2. Software reset, the watchdog timer reset or the voltage monitor 2 reset does not affect this register.

3. Owing to Hardware reset.

- 4. Owing to Power-on reset or the voltage monitor 1 reset.
- 5. Software reset, the watchdog timer reset or the voltage monitor 2 reset does not affect the b2 and b3.

Electrical Characteristics 5.

Table 5.1	Absolute	Maximum	Ratings
-----------	----------	---------	---------

Symbol	Parameter	Condition	Rated value	Unit
Vcc	Supply Voltage	Vcc = AVcc	-0.3 to 6.5	V
AVcc	Analog Supply Voltage	Vcc = AVcc	-0.3 to 6.5	V
VI	Input Voltage		-0.3 to Vcc+0.3	V
Vo	Output Voltage		-0.3 to Vcc+0.3	V
Pd	Power Dissipation	Topr = 25°C	300	mW
Topr	Operating Ambient Temperature		-20 to 85 / -40 to 85 (D version)	°C
Tstg	Storage Temperature		-65 to 150	°C

Table 5.2 **Recommended Operating Conditions**

Currente e l	Da		Conditions		Standard		1.1.4.14
Symbol	Pa	Parameter		Min.	Тур.	Max.	Unit
Vcc	Supply Voltage			2.7	-	5.5	V
AVcc	Analog Supply Vo	Analog Supply Voltage		-	Vcc ⁽³⁾	-	V
Vss	Supply Voltage			-	0	-	V
AVss	Analog Supply Vo	Itage		-	0	-	V
Viн	Input "H" Voltage			0.8Vcc	-	Vcc	V
VIL	Input "L" Voltage			0	-	0.2Vcc	V
IOH(sum)	Peak Sum Output "H" Current	Sum of All Pins IOH (peak)		-	-	-60	mA
OH(peak)	Peak Output "H" Current			-	-	-10	mA
IOH(avg)	Average Output "I	H" Current		-	-	-5	mA
IOL(sum)	Peak Sum Output "L" Currents	Sum of All Pins IOL (peak)		-	-	60	mA
OL(peak)	Peak Output "L"	Except P1_0 to P1_3		-	-	10	mA
	Currents	P1_0 to P1_3	Drive Capacity HIGH	-	-	30	mA
			Drive Capacity LOW	-	-	10	mA
IOL(avg)	Average Output	Except P1_0 to P1_3		-	-	5	mA
	"L" Current	P1_0 to P1_3	Drive Capacity HIGH	-	-	15	V V mA mA mA mA mA mA mA mA MHz
			Drive Capacity LOW	-	-	5	
f(XIN)	Main Clock Input	Oscillation Frequency	$3.0V \leq Vcc \leq 5.5V$	0	-	20	MHz
			$2.7V \leq Vcc < 3.0V$	0	-	10	MHz

NOTES:

Vcc = AVcc = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
 The typical values when average output current is 100ms.
 Hold Vcc = AVcc.

Symbol	Parameter	Conditions	:	Standard	Max. - 400 9 8 - 5.5 5.5	Unit
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/Erase Endurance ⁽²⁾	R8C/16 Group	100(3)	-	-	times
		R8C/17 Group	1,000 ⁽³⁾	-	-	times
—	Byte Program Time	Vcc = 5.0 V at Topr = 25 °C	-	50	400	μS
-	Block Erase Time	Vcc = 5.0 V at Topr = 25 °C	-	0.4	9	S
td(SR-ES)	Time Delay from Suspend Request until Erase Suspend		-	-	8	ms
_	Erase Suspend Request Interval		10	-	-	ms
_	Program, Erase Voltage		2.7	-	5.5	V
-	Read Voltage		2.7	-	5.5	V
-	Program, Erase Temperature		0	-	60	°C
-	Data Hold Time ⁽⁷⁾	Ambient temperature = 55 °C	20	-	-	year

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = AVcc = 2.7 to 5.5V at Topr = 0 to 60 $^{\circ}$ C, unless otherwise specified.

2. Definition of program and erase

The program and erase endurance shows an erase endurance for every block.

If the program and erase endurance is "n" times (n = 100, 10000), "n" times erase can be performed for every block.

For example, if performing 1-byte write to the distinct addresses on Block A of 1Kbyte block 1,024 times and then erasing that block, program and erase endurance is counted as one time.

However, do not perform multiple programs to the same address for one time ease.(disable overwriting).

Endurance to guarantee all electrical characteristics after program and erase.(1 to "Min." value can be guaranateed).
 In the case of a system to execute multiple programs, perform one erase after programming as reducing effective reprogram

endurance not to leave blank area as possible such as programming write addresses in turn. If programming a set of 16 bytes, programming up to 128 sets and then erasing them one time can reduce effective reprogram endurance. Additionally, averaging erase endurance for Block A and B can reduce effective reprogram endurance more. To leave erase endurance for every block as information and determine the restricted endurance are recommended.

5. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.

6. Customers desiring Program/Erase failure rate information should contact their Renesas technical support representative.

7. The data hold time incudes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
-	High-Speed On-Chip Oscillator Frequency When the Reset is Deasserted	Vcc = 5.0V, Topr = 25 °C	-	8	-	MHz
-	High-Speed On-Chip Oscillator Frequency	0 to +60 °C / 5 V ± 5 % ⁽²⁾	7.44	-	8.56	MHz
	Temperature • Supplay Voltage Dependence	–20 to +85 °C / 2.7 to 5.5 $V^{(2)}$	7.04	-	8.96	MHz
		-40 to +85 °C / 2.7 to 5.5 V ⁽²⁾	6.80	-	9.20	MHz

NOTES:

1. The measurement condition is Vcc = AVcc = 5.0V and $T_{opr} = 25$ °C.

2. The standard value shows when the HRA1 register is assumed as the value in shipping and the HRA2 register value is set to 00h.

Table 5.11 Power Supply Circuit Timing Characteristics

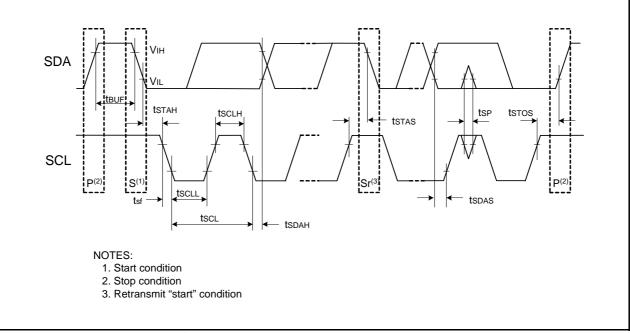
Symbol	Parameter	Condition	0,	Standard	ł	Unit
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for Internal Power Supply Stabilization during Power-On ⁽²⁾		1	I	2000	μS
td(R-S)	STOP Exit Time ⁽³⁾		-	-	150	μs

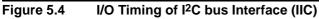
NOTES:

1. The measurement condition is Vcc = AVcc = 2.7 to 5.5V and Topr = 25 °C.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until CPU clock supply starts since the interrupt is acknowledged to exit stop mode.


Symbol	Parameter	Condition	S	Unit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
tSCL	SCL Input Cycle Time		12tcyc+ 600 ⁽²⁾	_	_	ns
tSCLH	SCL Input "H" Width		3tcyc+ 300 ⁽²⁾	_	-	ns
tSCLL	SCL Input "L" Width		5tcyc+ 300 ⁽²⁾	_	-	ns
tsf	SCL, SDA Input Fall Time		-	-	300	ns
tSP	SCL, SDA Input Spike Pulse Rejection Time		-	-	1tcyc ⁽²⁾	ns
t BUF	SDA Input Bus-Free Time		5tcyc ⁽²⁾	_	-	ns
t STAH	Start Condition Input Hold Time		3tcyc ⁽²⁾	-	-	ns
t STAS	Retransmit Start Condition Input SetUp Time		3tcyc ⁽²⁾	-	-	ns
tstos	Stop Condition Input SetUp Time		3tcyc ⁽²⁾	-	-	ns
tSDAS	Data Input SetUp Time		1tcyc+20 ⁽²⁾	-	-	ns
t SDAH	Data Input Hold Time		0	1	_	ns


Table 5.12Timing Requirements of I²C bus Interface (IIC) (1)

NOTES:

1. Vcc = AVcc = 2.7 to 5.5V, Vss = 0V and Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.

2. 1tcyc=1/f1(s)

Symbol	Dor	ameter	Cond	lition	SI	andard		Unit
Symbol	Fai	ameter	Condition		Min.	Тур.	Max.	Unit
Vон	Output "H" Voltage	utput "H" Voltage Except Xou⊤ Ioн =	Iон = -5mA		Vcc - 2.0	I	Vcc	V
			Іон = -200μА		Vcc - 0.3	I	Vcc	V
		Xout	Drive capacity HIGH	Іон = -1mA	Vcc - 2.0	_	Vcc	V
			Drive capacity LOW	Іон = -500μА	Vcc - 2.0	-	Vcc	V
Vol	Output "L" Voltage	Except P1_0 to P1_3,	Io∟ = 5mA		-	-	2.0	V
		Xout	IoL = 200μA		-	-	0.45	V
		P1_0 to P1_3	Drive capacity HIGH	lo∟ = 15mA	-	-	2.0	V
			Drive capacity LOW	IOL = 5mA	-	ļ	2.0	V
			Drive capacity LOW	IoL = 200μA	-	-	0.45	V
		Xout	Drive capacity HIGH	IOL = 1mA	-	-	2.0	V
			Drive capacity LOW	IoL = 500μA	-	-	2.0	V
VT+-VT-	Hysteresis	ÎNTO, ÎNT1, ÎNT3, KIO, KI1, KI2, KI3, CNTRO, CNTR1, TCIN, RXD0			0.2	_	1.0	V
		RESET			0.2	-	2.2	V
Ін	Input "H" current		VI = 5V		-	-	5.0	μΑ
lı∟	Input "L" current		VI = 0V		-	-	-5.0	μΑ
Rpullup	Pull-Up Resistance		VI = 0V		30	50	167	kΩ
Rfxin	Feedback Resistance	XIN			-	1.0	-	MΩ
fring-s	Low-Speed On-Chip	Oscillator Frequency			40	125	250	kHz
Vram	RAM Hold Voltage		During stop mode		2.0	I	-	V

Table 5.13 Electrical Characteristics (1) [Vcc = 5V]

NOTES:

1. Vcc = AVcc = 4.2 to 5.5V at Topr = -20 to 85 $^{\circ}$ C / -40 to 85 $^{\circ}$ C, f(XIN)=20MHz, unless otherwise specified.

Symbol	Parameter Condition			Standard			
Symbol	Farameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power Supply Current (Vcc=3.3 to 5.5V) In single-chip mode,	High-Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	9	15	mA
	the output pins are open and other pins are Vss		XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	8	14	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	-	5	_	mA
		Medium- Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	4	_	mA
			XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	3	_	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	2	_	mA
		High-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz No division	_	4	8	mA
			Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz Divide-by-8	_	1.5	_	mA
		Low-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	470	900	μΑ
		Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock operation VCA26 = VCA27 = 0	-	40	80	μΑ
		Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock off VCA26 = VCA27 = 0	_	38	76	μΑ
		Stop Mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	0.8	3.0	μΑ

Table 5.14 Electrical Characteristics (2) [Vcc = 5V] (Topr = -40 to 85 °C, unless otherwise specified.)

Timing Requirements (Unless otherwise specified: Vcc = 5V, Vss = 0V at Topr = 25 °C) [Vcc = 5V]

Table 5.15 XIN Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(XIN)	XIN Input Cycle Time	50	-	ns
twh(xin)	XIN Input "H" Width	25	-	ns
twl(XIN)	XIN Input "L" Width	25	Ì	ns

Table 5.16 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(CNTR0)	CNTR0 Input Cycle Time	100	=	ns
tWH(CNTR0)	CNTR0 Input "H" Width	40	=	ns
twl(CNTR0)	CNTR0 input "L" Width	40	-	ns

Table 5.17TCIN Input, INT3 Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(TCIN)	TCIN Input Cycle Time	400(1)	-	ns
twh(tcin)	TCIN Input "H" Width	200 ⁽²⁾	-	ns
twl(tcin)	TCIN input "L" Width	200(2)	_	ns

NOTES:

1. When using Timer C input capture mode, adjust the cycle time (1/Timer C count source frequency x 3) or above.

2. When using Timer C input capture mode, adjust the width (1/Timer C count source frequency x 1.5) or above.

Table 5.18 Serial Interface

Symbol	Derometer	Stan	Linit	
	Parameter		Max.	Unit
tc(CK)	CLKi Input Cycle Time	200	-	ns
tW(CKH)	CLKi Input "H" Width	100	-	ns
tW(CKL)	CLKi Input "L" Width	100	-	ns
td(C-Q)	TXDi Output Delay Time	-	50	ns
th(C-Q)	TXDi Hold Time	0	-	ns
tsu(D-C)	RXDi Input Setup Time	50	-	ns
th(C-D)	RCDi Input Hold Time	90	-	ns

Table 5.19 External Interrupt INT0 Input

Symbol	Parameter		Standard		
		Min.	Max.	Unit	
tw(INH)	INTO Input "H" Width	250 ⁽¹⁾	-	ns	
tw(INL)	INTO Input "L" Width	250(2)	-	ns	

NOTES:

1. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input HIGH width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input LOW width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

RENESAS

Timing requirements (Unless otherwise specified: Vcc = 3V, Vss = 0V at Topr = 25 °C) [Vcc = 3V]

Table 5.22 XIN Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(XIN)	XIN Input Cycle Time	100	-	ns
twh(xin)	XIN Input "H" Width	40	-	ns
twl(XIN)	XIN Input "L" Width	40	Ì	ns

Table 5.23 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(CNTR0)	CNTR0 Input Cycle Time	300	=	ns
tWH(CNTR0)	CNTR0 Input "H" Width	120	=	ns
twl(CNTR0)	CNTR0 Input "L" Width	120	-	ns

Table 5.24TCIN Input, INT3 Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Unit
tc(TCIN)	TCIN Input Cycle Time	1,200 ⁽¹⁾	-	ns
twh(tcin)	TCIN Input "H" Width	600 ⁽²⁾	-	ns
twl(tcin)	TCIN Input "L" Width	600 ⁽²⁾	_	ns

NOTES:

1. When using the Timer C input capture mode, adjust the cycle time (1/Timer C count source frequency x 3) or above.

2. When using the Timer C input capture mode, adjust the width (1/ Timer C count source frequency x 1.5) or above.

Table 5.25 Serial Interface

Symbol	Parameter	Stan	Unit	
	Parameter		Max.	Unit
tc(CK)	CLKi Input Cycle Time	300	-	ns
tW(CKH)	CLKi Input "H" Width	150	-	ns
tW(CKL)	CLKi Input "L" Width	150	-	ns
td(C-Q)	TXDi Output Delay Time	-	80	ns
th(C-Q)	TXDi Hold Time	0	-	ns
tsu(D-C)	RXDi Input Setup Time	70	-	ns
th(C-D)	RCDi Input Hold Time	90	-	ns

Table 5.26 External Interrupt INT0 Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tw(INH)	INTO Input "H" Width	380 ⁽¹⁾	-	ns
tw(INL)	INTO Input "L" Width	380(2)	-	ns

NOTES:

1. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input HIGH width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input LOW width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

RENESAS

REVISION HISTORY

R8C/16 Group, R8C/17 Group Datasheet

Davi	Dete	Description			
Rev.	Date	Page	Summary		
0.10	Sep 06, 2004	-	First Edition issued		
1.00	Feb 25, 2005	2-3	Tables 1.1 and 1.2 revised		
		5	Table 1.3 and figure 1.2 revised		
		6	Table 1.4 and figure 1.3 revised		
		7-8	Figures 1.4 and 1.5 revised		
		16	Table 4.1 revised:		
			- 000Fh: 000XXXXXb \rightarrow 00011111b		
			- 0036h: 00001000b \rightarrow 0000X000b and 01001001b \rightarrow 0100X001b		
		18	Tabel 4.3 revised:		
			- 009Ch: FFh \rightarrow 00h; NOTES2 added		
		04	- 009Dh: FFh \rightarrow 00h		
		21	Table 5.3 revised		
		22	Tables 5.4 and 5.5 revised		
		24 25	Tables 5.8 and 5.9 revised Table 5.11 revised		
		25 26	Table 5.12 and figure 5.4 added		
		20	Table 5.12 and light 5.4 added		
		28	Table 5.14 revised		
		29, 33			
		31	Table 5.20 revised; NOTE revised		
		32	Table 5.21 revised		
		35	Package Dimensions revised		
1.10	May 26, 2005	5, 6	Tables 1.3 and 1.4 revised		
	,,	16	Table 4.1 revised:		
			- 0009h: XXXXX00b \rightarrow 00h		
			- 000Ah: 00XXX000b \rightarrow 00h		
			- 001Eh: XXXXX000b \rightarrow 00h		
		22	Table 5.5 revised; NOTE revised		
		26	Fig 5.4 revised		
		27	Table 5.13 revised		
		31	Table 5.20 revised		
2.00	Jan 30, 2006	1	1. Overview; "20-pin plastic molded LSSOP or SDIP" \rightarrow "20-pin plastic		
			molded LSSOP" revised		
		2	Table 1.1 Performance Outline of the R8C/16 Group;		
			Package: "20-pin plastic molded SDIP" deleted		
		3	Table 1.2 Performance Outline of the R8C/17 Group;		
			Package: "20-pin plastic molded SDIP" deleted,		
			Flash Memory: (Data area) \rightarrow (Data flash)		
			(Program area) \rightarrow (Program ROM) revised		
		4	Figure 1.1 Block Diagram;		
			"Peripheral Function" added,		
			"System Clock Generation" \rightarrow "System Clock Generator" revised		
		5, 6	Table 1.3 Product Information of R8C/16 Group,		
			Table 1.4 Product Information of R8C/17 Group; revised.		
			Figure 1.2 Part Number, Memory Size and Package of R8C/16 Group,		
			Figure 1.3 Part Number, Memory Size and Package of R8C/17 Group;		
			Package type: "DD : PRDP0020BA-A" deleted		

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- Nonine page (intp://www.renessas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or ther loss resulting from the information contained herein.
 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 205, AZIA Center, No.133 Yincheng Rd (n), Pudong District, Shanghai 200120, China Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com