

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, SIO, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21164dsp-u0

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1.2 Performance Overview

Table 1.1 lists the Performance Outline of the R8C/16 Group and Table 1.2 lists the Performance Outline of the R8C/17 Group.

	Item	Performance
CPU	Number of Basic Instructions	
	Minimum Instruction	50ns(f(XIN)=20MHz, VCC=3.0 to 5.5V)
	Execution Time	100ns(f(XIN)=10MHz, VCC=2.7 to 5.5V)
	Operating Mode	Single-chip
	Address Space	1 Mbyte
	Memory Capacity	See Table 1.3 R8C/16 Group Product Information
Peripheral	Port	I/O port : 13 pins (including LED drive port),
Function		Input : 2 pins
T directori	LED Drive Port	I/O port: 4 pins
	Timer	Timer X: 8 bits × 1 channel, Timer Z: 8 bits × 1 channel
	TIME	
		(Each timer equipped with 8-bit prescaler)
		Timer C: 16 bits × 1 channel
		(Circuits of input capture and output compare)
	Serial Interface	1 channel
		Clock synchronous serial I/O, UART
	I ² C bus Interface (IIC) ⁽¹⁾	1 channel
	A/D Converter	10-bit A/D converter: 1 circuit, 4 channels
	Watchdog Timer	15 bits x 1 channel (with prescaler)
		Reset start selectable, Count source protection mode
	Interrupt	Internal: 9 factors, External: 4 factors, Software: 4
		factors
		Priority level: 7 levels
	Clock Generation Circuit	2 circuits
		Main clock oscillation circuit (Equipped with a built-in
		feedback resistor)
		On-chip oscillator (high speed, low speed)
		Equipped with frequency adjustment function on high-
		speed on-chip oscillator
	Oppillation Stop Detection	Main clock oscillation stop detection function
	Oscillation Stop Detection	
	Function	
	Voltage Detection Circuit	Included
F ILL (1)	Power-on Reset Circuit	
Electric	Supply Voltage	VCC=3.0 to 5.5V (f(XIN)=20MHz)
Characteristics		VCC=2.7 to 5.5V (f(XIN)=10MHz)
	Power Consumption	Typ. 9mA (VCC=5.0V, f(XIN)=20MHz)
		Typ. 5mA (VCC=3.0V, f(XIN)=10MHz)
		Typ. 35µA (VCC=3.0V, wait mode, peripheral clock off)
		Typ. 0.7μA (VCC=3.0V, stop mode)
Flash Memory	Program/Erase Supply	VCC=2.7 to 5.5V
	Voltage	
	Program/Erase Endurance	100 times
Operating Amb	ient Temperature	-20 to 85°C
	·	-40 to 85°C (D Version)
Package		20-pin plastic mold LSSOP

 Table 1.1
 Performance Outline of the R8C/16 Group

NOTES:

1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

	Item	Performance
CPU	Number of Basic Instructions	89 instructions
	Minimum Instruction Execution	50ns(f(XIN)=20MHz, VCC=3.0 to 5.5V)
	Time	100ns(f(XIN)=10MHz, VCC=2.7 to 5.5V)
	Operating Mode	Single-chip
	Address Space	1 Mbyte
	Memory Capacity	See Table 1.4 R8C/17 Group Product Information
Peripheral	Port	I/O : 13 pins (including LED drive port),
Function		Input : 2 pin
	LED drive port	I/O port: 4 pins
	Timer	Timer X: 8 bits × 1 channel, Timer Z: 8 bits × 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer C: 16 bits × 1 channel
		(Circuits of input capture and output compare)
	Serial Interface	1 channel
	Senai Interiace	
		Clock synchronous serial I/O, UART
	I ² C bus Interface (IIC) ⁽¹⁾	1 channel
	A/D Converter	10-bit A/D converter: 1 circuit, 4 channels
	Watchdog Timer	15 bits × 1 channel (with prescaler)
		Reset start selectable, Count source protection mode
	Interrupt	Internal: 9 factors, External: 4 factors, Software: 4
		factors
		Priority level: 7 levels
	Clock Generation Circuit	2 circuits
		Main clock generation circuit (Equipped with a built-in
		feedback resistor)
		On-chip oscillator (high speed, low speed)
		Equipped with frequency adjustment function on high-
		speed on-chip oscillator
	Oscillation Stop Detection	Main clock oscillation stop detection function
	·	
	Function	
	Voltage Detection Circuit	
Flootrio	Power-on Reset Circuit	
Electric	Supply Voltage	VCC=3.0 to 5.5V (f(XIN)=20MHz)
Characteristics		VCC=2.7 to 5.5V (f(XIN)=10MHz)
	Power Consumption	Typ. 9mA (VCC = $5.0V$, f(XIN) = $20MHz$)
		Typ. 5mA (VCC = 3.0V, f(XIN) = 10MHz)
		Typ.35 μ A (VCC = 3.0V, wait mode, peripheral clock off)
		Typ. 0.7 μ A (VCC = 3.0V, stop mode)
Flash Memory	Program/Erase Supply Voltage	VCC=2.7 to 5.5V
	Program and Erase	10,000 times (Data flash)
	Endurance	1,000 times (Program ROM)
Operating Ambi	ent Temperature	-20 to 85°C
	-	-40 to 85°C (D Version)
Package		20-pin plastic mold LSSOP
NOTES		

Table 1.2 Performance Outline of the R8C/17 Group

NOTES:

1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

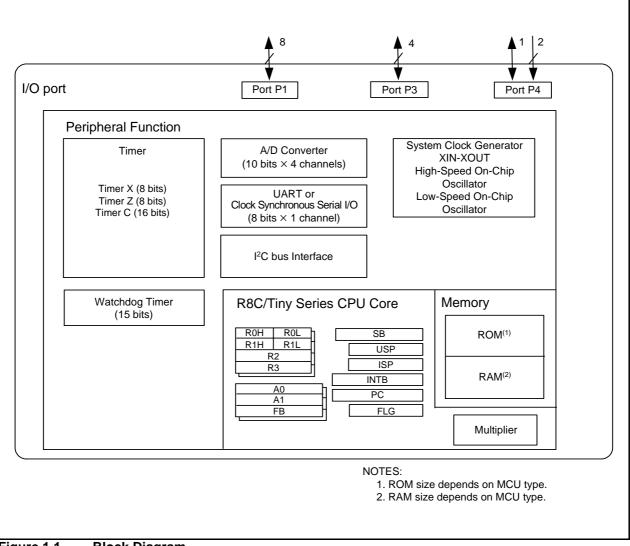
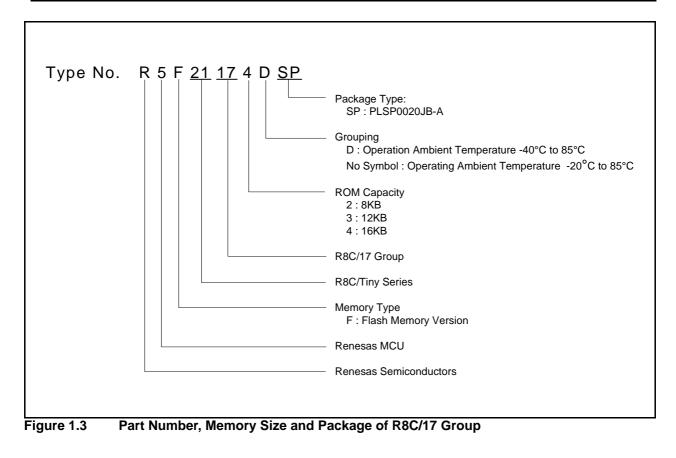



Figure 1.1 Block Diagram

Type No.	ROM Capacity		RAM	Package Type	Remarks
Type No.	Program ROM	Data flash	Capacity	Fackage Type	Remains
R5F21172SP	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A	Flash Memory Version
R5F21173SP	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A	
R5F21174SP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A	
R5F21172DSP	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A	D Version
R5F21173DSP	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A	
R5F21174DSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A	

Table 1.4 Product Information of R8C/17 Group

As of Jan 2006

1.5 Pin Assignments

Figure 1.4 shows the PLSP0020JB-A Package Pin Assignment (top view).

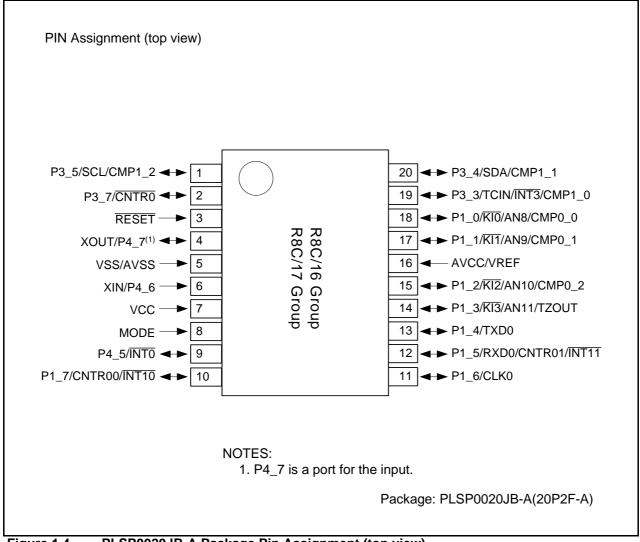
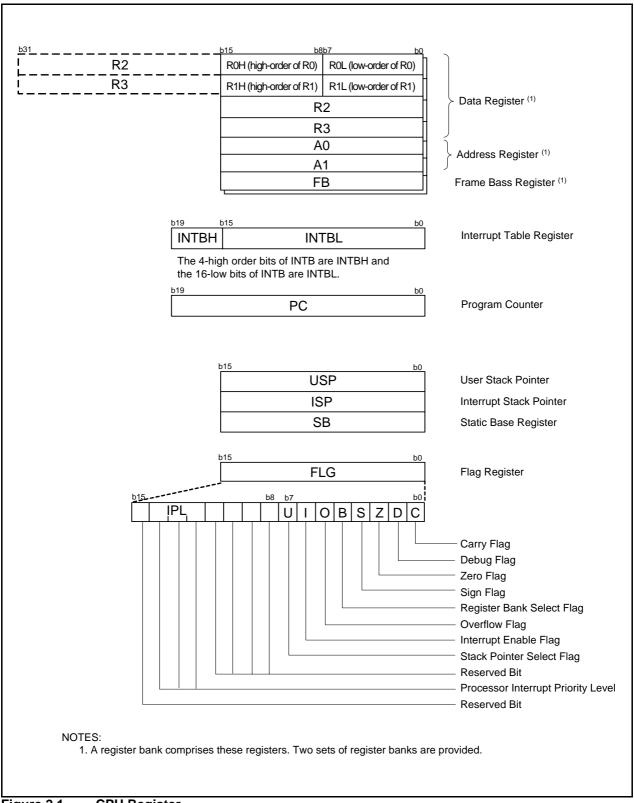


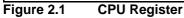
Figure 1.4 PLSP0020JB-A Package Pin Assignment (top view)

1.6 Pin Description

Table 1.5 lists the Pin Description and Table 1.6 lists the Pin Name Information by Pin Number.

Function	Pin Name	I/O Type	Description
Power Supply Input	VCC VSS	I	Apply 2.7V to 5.5V to the VCC pin. Apply 0V to the VSS pin
Analog Power Supply Input	AVCC AVSS	Ι	Power supply input pins to A/D converter. Connect AVCC to VCC. Apply 0V to AVSS. Connect a capacitor between AVCC and AVSS.
Reset Input	RESET	I	Input "L" on this pin resets the MCU
MODE	MODE	I	Connect this pin to VCC via a resistor
Main Clock Input	XIN	I	These pins are provided for the main clock
Main Clock Output	XOUT	0	generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between the XIN and XOUT pins. To use an externally derived clock, input it to the XIN pin and leave the XOUT pin open.
INT Interrupt	INTO, INT1, INT3	I	INT interrupt input pins
Key Input Interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer X	CNTR0	I/O	Timer X I/O pin
	CNTR0	0	Timer X output pin
Timer Z	TZOUT	0	Timer Z output pin
Timer C	TCIN	I	Timer C input pin
	CMP0_0 to CMP0_2, CMP1_0 to CMP1_2	0	Timer C output pins
Serial Interface	CLK0	I/O	Transfer clock I/O pin
	RXD0	I	Serial data input pin
	TXD0	0	Serial data output pin
I ² C bus Interface	SCL	I/O	Clock I/O pin
(IIC)	SDA	I/O	Data I/O pin
Reference Voltage Input	VREF	I	Reference voltage input pin to A/D converter Connect VREF to VCC
A/D Converter	AN8 to AN11	I	Analog input pins to A/D converter
I/O Port	P1_0 to P1_7, P3_3 to P3_5, P3_7, P4_5	I/O	These are CMOS I/O ports. Each port contains an I/O select direction register, allowing each pin in that port to be directed for input or output individually. Any port set to input can select whether to use a pull-up resistor or not by program. P1_0 to P1_3 also function as LED drive ports.
Input Port	P4_6, P4_7	I	Port for input-only


Table 1.5Pin Description


I: Input O: Output

I/O: Input and output

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Register. The CPU contains 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. Two sets of register banks are provided.

2.1 Data Registers (R0, R1, R2 and R3)

R0 is a 16-bit register for transfer, arithmetic and logic operations. The same applies to R1 to R3. The R0 can be split into high-order bit (R0H) and low-order bit (R0L) to be used separately as 8-bit data registers. The same applies to R1H and R1L as R0H and R0L. R2 can be combined with R0 to be used as a 32-bit data register (R2R0). The same applies to R3R1 as R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. They also are used for transfer, arithmetic and logic operations. The same applies to A1 as A0. A0 can be combined with A0 to be used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC, 20 bits wide, indicates the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP and ISP, are 16 bits wide each. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is a 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic logic unit.

2.8.2 Debug Flag (D)

The D flag is for debug only. Set to "0".

2.8.3 Zero Flag (Z)

The Z flag is set to "1" when an arithmetic operation resulted in 0; otherwise, "0".

2.8.4 Sign Flag (S)

The S flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, "0".

2.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is "0". The register bank 1 is selected when this flag is set to "1".

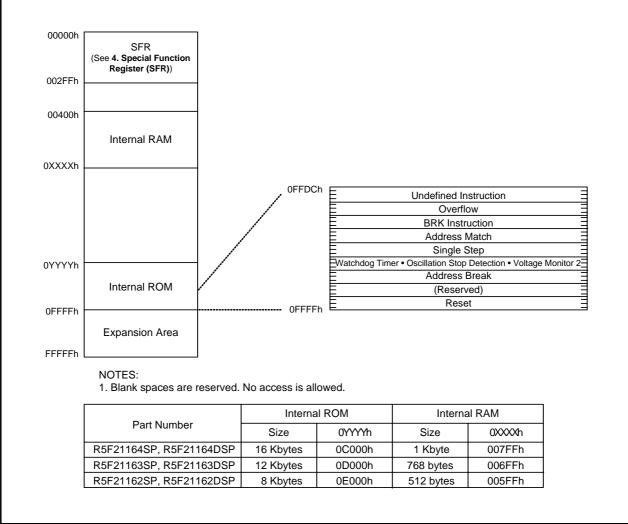
2.8.6 Overflow Flag (O)

The O flag is set to "1" when the operation resulted in an overflow; otherwise, "0".

3. Memory

3. Memory

3.1 R8C/16 Group


Figure 3.1 is a Memory Map of the R8C/16 group. The R8C/16 group provides 1-Mbyte address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but for calling subroutines and stacks when interrupt request is acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated them. All addresses, which have nothing allocated within the SFR, are reserved area and cannot be accessed by users.

Memory Map of R8C/16 Group

4. Special Function Register (SFR)

SFR (Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.4 list the SFR information.

Table 4.1 SFR Information(1)⁽¹⁾

Address	Register	Symbol	After Reset
0000h	register	Cymbol	71101110301
00001h			
0001h			
0002h			
0003h	Processor Mode Register 0	PM0	00h
	Processor Mode Register 0		
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h			
0009h	Address Match Interrupt Enable Register	AIER	00h
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00011111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h	-		X0h
0012h			
0013h	Address Match Interrupt Register 1	RMAD1	00h
001411 0015h			00h
0015h	-		X0h
0016h			XUII
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
001Dh			
001Eh	INT0 Input Filter Select Register	INTOF	00h
001Fh			
0020h	High-Speed On-Chip Oscillator Control Register 0	HRA0	00h
0020h	High-Speed On-Chip Oscillator Control Register 1	HRA1	When shipping
002111 0022h	High-Speed On-Chip Oscillator Control Register 2	HRA2	00h
0022h		TIRAZ	0011
002311			
00045			
002Ah			
002Bh			
002Ch			
002Dh			
002Eh			
002Fh			
0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h(3)
		-	0100000b ⁽⁴⁾
0033h			0100000000
0033h 0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register ⁽²⁾	VW1C	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h			
0039h			
003Ah			
003Bh			
003Bh			
003Dh			
003Eh			
003Fh		1	

X: Undefined

NOTES:

- 1. Blank spaces are reserved. No access is allowed.
- 2. Software reset, the watchdog timer reset or the voltage monitor 2 reset does not affect this register.

3. Owing to Hardware reset.

- 4. Owing to Power-on reset or the voltage monitor 1 reset.
- 5. Software reset, the watchdog timer reset or the voltage monitor 2 reset does not affect the b2 and b3.

Address	Register	Symbol	After reset
0040h			
0041h			
0042h			
0043h			
0044h			
0044h			
0046h			
0047h			
0048h			
0049h			
004Ah			
004Bh			
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	IIC Interrupt Control Register	liczaic	XXXXX000b
0050h	Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0051h	UARTO Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h			
0054h			
0055h			
0056h	Timer X Interrupt Control Register	TXIC	XXXXX000b
0057h			- 1
0058h	Timer Z Interrupt Control Register	TZIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INTIIC	XXXXX000b
005Ah	INT3 Interrupt Control Register	INT3IC	XXXXX000b
005Bh	Timer C Interrupt Control Register	TCIC	XXXXX000b
005Ch	Compare 0 Interrupt Control Register	CMP0IC	XXXXX000b
005Dh	INT0 Interrupt Control Register	INTOIC	XX00X000b
005Eh			
005Eh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			1
0070h			
0071h			
0072h			
0072h			
0073h			
0075h			
0076h			
0077h			
0078h			
0079h			1
007Ah			
007Bh			
007Ch			
707DF			
007Dh 007Eh			

Table 4.2 SFR Information(2)⁽¹⁾

X: Undefined

NOTES:

1. Blank spaces are reserved. No access is allowed.

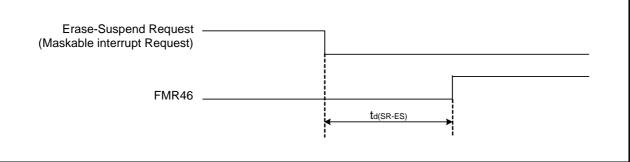


Figure 5.2Time delay from Suspend Request until Erase Suspend

Table 5.6 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage Detection Level ⁽³⁾		2.70	2.85	3.00	V
_	Voltage Detection Circuit Self Power Consumption	VCA26 = 1, Vcc = 5.0V	_	600	-	nA
td(E-A)	Waiting Time until Voltage Detection Circuit Operation Starts ⁽²⁾		-	-	100	μS
Vccmin	Microcomputer Operating Voltage Minimum Value		2.7	-	-	V

NOTES:

1. The measurement condition is Vcc = AVcc = 2.7V to 5.5V and T_{opr} = -40°C to 85 °C.

2. Necessary time until the voltage detection circuit operates when setting to "1" again after setting the VCA26 bit in the VCA2 register to "0".

3. Hold Vdet2 > Vdet1.

Table 5.7 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		71	Unit	
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage Detection Level ⁽⁴⁾		3.00	3.30	3.60	V
-	Voltage Monitor 2 Interrupt Request Generation Time ⁽²⁾		-	40	-	μS
-	Voltage Detection Circuit Self Power Consumption	VCA27 = 1, Vcc = 5.0V	-	600	-	nA
td(E-A)	Waiting Time until Voltage Detection Circuit Operation Starts ⁽³⁾		I	I	100	μS

NOTES:

2. Time until the voltage monitor 2 interrupt request is generated since the voltage passes Vdet1.

3. Necessary time until the voltage detection circuit operates when setting to "1" again after setting the VCA27 bit in the VCA2 register to "0".

4. Hold Vdet2 > Vdet1.

^{1.} The measurement condition is VCC = AVCC = 2.7V to 5.5V and Topr = -40°C to 85 °C.

Symbol	Parameter	Condition	ę	Standard		Unit
			Min.	Тур.	Max.	
Vpor2	Power-On Reset Valid Voltage	$\text{-}20^\circ C \leq \text{Topr} < 85^\circ C$	=	-	Vdet1	V
tw(Vpor2-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted ⁽¹⁾	$\label{eq:constraint} \begin{array}{l} -20^{\circ}C \leq Topr < 85^{\circ}C, \\ t_{w(por2)} \geq 0s^{(3)} \end{array}$	-	-	100	ms

Table 5.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset)

NOTES:

1. This condition is not applicable when using with Vcc \ge 1.0V.

2. When turning power on after the time to hold the external power below effective voltage (Vpor1) exceeds10s, refer to Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).

3. tw(por2) is time to hold the external power below effective voltage (Vpor2).

Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition		Standar	Standard	
			Min.	Тур.	Max.	
Vpor1	Power-On Reset Valid Voltage	$\text{-20}^\circ C \leq \text{Topr} < 85^\circ C$	-	-	0.1	V
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$\label{eq:constraint} \begin{split} 0^\circ C &\leq Topr \leq 85^\circ C, \\ tw(\text{por1}) &\geq 10s^{(2)} \end{split}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$\label{eq:constraint} \begin{array}{l} -20^\circ C \leq Topr < 0^\circ C, \\ t_{w(por1)} \geq 30s^{(2)} \end{array}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$\label{eq:constraint} \begin{array}{l} -20^\circ C \leq Topr < 0^\circ C, \\ tw(por1) \geq 10s^{(2)} \end{array}$	-	-	1	ms
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$\label{eq:constraint} \begin{split} 0^\circ C &\leq Topr \leq 85^\circ C, \\ t_{w(por1)} &\geq 1s^{(2)} \end{split}$	-	-	0.5	ms

NOTES:

1. When not using the voltage monitor 1 reset, use with Vcc \ge 2.7V.

2. tw(por1) is time to hold the external power below effective voltage (Vpor1).

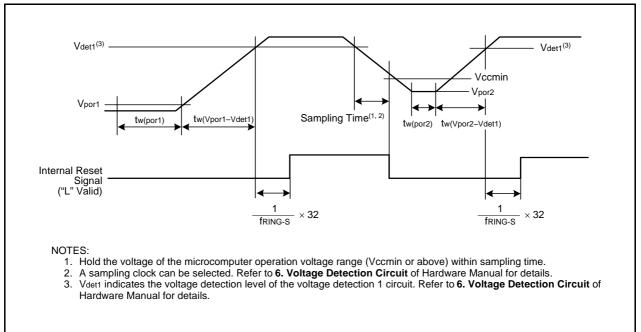


Figure 5.3

Reset Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
-	High-Speed On-Chip Oscillator Frequency When the Reset is Deasserted	Vcc = 5.0V, Topr = 25 °C	-	8	-	MHz
-	High-Speed On-Chip Oscillator Frequency	0 to +60 °C / 5 V ± 5 % ⁽²⁾	7.44	-	8.56	MHz
	Temperature • Supplay Voltage Dependence	–20 to +85 °C / 2.7 to 5.5 $V^{(2)}$	7.04	-	8.96	MHz
		-40 to +85 °C / 2.7 to 5.5 V ⁽²⁾	6.80	-	9.20	MHz

NOTES:

1. The measurement condition is Vcc = AVcc = 5.0V and $T_{opr} = 25$ °C.

2. The standard value shows when the HRA1 register is assumed as the value in shipping and the HRA2 register value is set to 00h.

Table 5.11 Power Supply Circuit Timing Characteristics

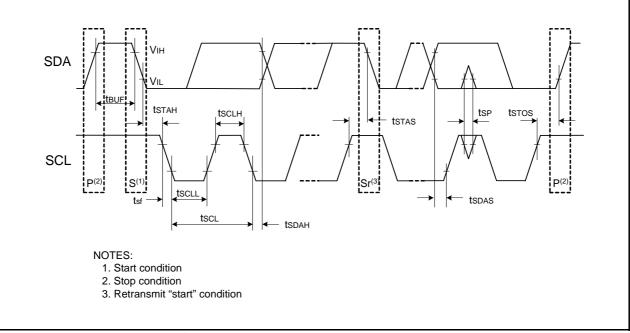
Symbol	Parameter	Condition	Standard			Unit
			Min.	Тур.	Max.	Unit
td(P-R)	Time for Internal Power Supply Stabilization during Power-On ⁽²⁾		1	I	2000	μS
td(R-S)	STOP Exit Time ⁽³⁾		-	-	150	μs

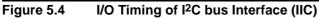
NOTES:

1. The measurement condition is Vcc = AVcc = 2.7 to 5.5V and Topr = 25 °C.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until CPU clock supply starts since the interrupt is acknowledged to exit stop mode.


Symbol	Parameter	Condition	S	Standard		Unit
Cymbol	Falanetei	Condition	Min.	Тур.	Max.	Unit
tSCL	SCL Input Cycle Time		12tcyc+ 600 ⁽²⁾	_	_	ns
tSCLH	SCL Input "H" Width		3tcyc+ 300 ⁽²⁾	_	-	ns
tSCLL	SCL Input "L" Width		5tcyc+ 300 ⁽²⁾	_	-	ns
tsf	SCL, SDA Input Fall Time		-	-	300	ns
tSP	SCL, SDA Input Spike Pulse Rejection Time		-	-	1tcyc ⁽²⁾	ns
t BUF	SDA Input Bus-Free Time		5tcyc ⁽²⁾	-	-	ns
t STAH	Start Condition Input Hold Time		3tcyc ⁽²⁾	-	-	ns
t STAS	Retransmit Start Condition Input SetUp Time		3tcyc ⁽²⁾	-	-	ns
tstos	Stop Condition Input SetUp Time		3tcyc ⁽²⁾	-	-	ns
tSDAS	Data Input SetUp Time		1tcyc+20 ⁽²⁾	-	-	ns
t SDAH	Data Input Hold Time		0	1	_	ns


Table 5.12Timing Requirements of I²C bus Interface (IIC) (1)

NOTES:

1. Vcc = AVcc = 2.7 to 5.5V, Vss = 0V and Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.

2. 1tcyc=1/f1(s)

Symbol	Dor	ameter	Cond	lition	SI	andard		Unit
Symbol			Condition		Min.	Тур.	Max.	Unit
Vон	Output "H" Voltage	tput "H" Voltage Except Xo∪⊤	Iон = -5mA		Vcc - 2.0	I	Vcc	V
			Іон = -200μА		Vcc - 0.3	I	Vcc	V
		Xout	Drive capacity HIGH	Іон = -1mA	Vcc - 2.0	_	Vcc	V
			Drive capacity LOW	Іон = -500μА	Vcc - 2.0	-	Vcc	V
VoL Output "L" Voltage	Output "L" Voltage	Except P1_0 to P1_3,	Io∟ = 5mA		-	-	2.0	V
		Xout	IoL = 200μA		-	-	0.45	V
		P1_0 to P1_3	Drive capacity HIGH	lo∟ = 15mA	-	-	2.0	V
			Drive capacity LOW	IOL = 5mA	-	ļ	2.0	V
			Drive capacity LOW	IoL = 200μA	-	-	0.45	V
		Xout	Drive capacity HIGH	IOL = 1mA	-	-	2.0	V
			Drive capacity LOW	IoL = 500μA	-	-	2.0	V
VT+-VT-	Hysteresis	ÎNTO, ÎNT1, ÎNT3, KIO, KI1, KI2, KI3, CNTRO, CNTR1, TCIN, RXD0			0.2	_	1.0	V
		RESET			0.2	-	2.2	V
Ін	Input "H" current		VI = 5V		-	-	5.0	μΑ
lı∟	Input "L" current		VI = 0V		-	-	-5.0	μΑ
Rpullup	Pull-Up Resistance		VI = 0V		30	50	167	kΩ
Rfxin	Feedback Resistance	XIN			-	1.0	-	MΩ
fring-s	Low-Speed On-Chip	Oscillator Frequency			40	125	250	kHz
Vram	RAM Hold Voltage		During stop mode		2.0	I	-	V

Table 5.13 Electrical Characteristics (1) [Vcc = 5V]

NOTES:

1. Vcc = AVcc = 4.2 to 5.5V at Topr = -20 to 85 $^{\circ}$ C / -40 to 85 $^{\circ}$ C, f(XIN)=20MHz, unless otherwise specified.

Timing Requirements (Unless otherwise specified: Vcc = 5V, Vss = 0V at Topr = 25 °C) [Vcc = 5V]

Table 5.15 XIN Input

Symbol	Parameter	Stan	Standard	
	Falanielei	Min.	Max.	Unit
tc(XIN)	XIN Input Cycle Time	50	-	ns
twh(xin)	XIN Input "H" Width	25	-	ns
twl(XIN)	XIN Input "L" Width	25	Ì	ns

Table 5.16 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter	Standard		Unit
	Falallet	Min.	Max.	Unit
tc(CNTR0)	CNTR0 Input Cycle Time	100	=	ns
tWH(CNTR0)	CNTR0 Input "H" Width	40	=	ns
twl(CNTR0)	CNTR0 input "L" Width	40	-	ns

Table 5.17TCIN Input, INT3 Input

Symbol	Parameter	Standard		Unit	
	Falameter	Min.	Max.	Unit	
tc(TCIN)	TCIN Input Cycle Time	400(1)	-	ns	
twh(tcin)	TCIN Input "H" Width	200 ⁽²⁾	-	ns	
twl(tcin)	TCIN input "L" Width	200(2)	_	ns	

NOTES:

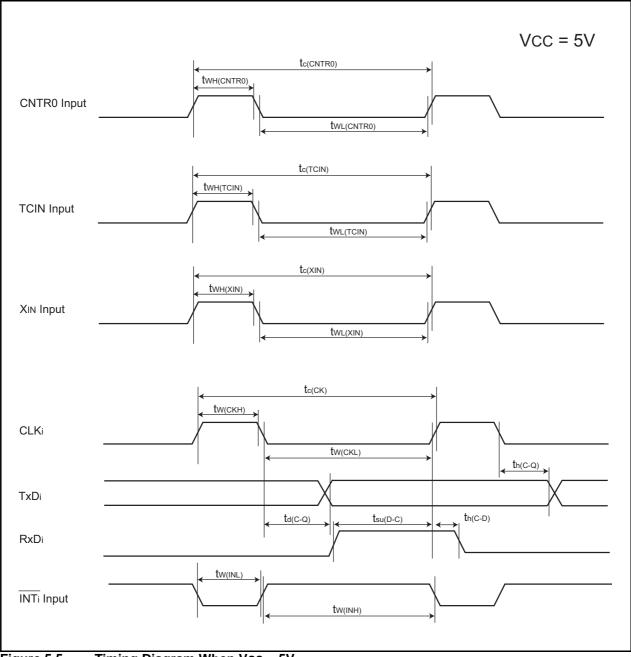
1. When using Timer C input capture mode, adjust the cycle time (1/Timer C count source frequency x 3) or above.

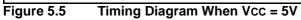
2. When using Timer C input capture mode, adjust the width (1/Timer C count source frequency x 1.5) or above.

Table 5.18 Serial Interface

Symbol	Parameter	Stan	Linit	
		Min.	Max.	Unit
tc(CK)	CLKi Input Cycle Time	200	-	ns
tW(CKH)	CLKi Input "H" Width	100	-	ns
tW(CKL)	CLKi Input "L" Width	100	-	ns
td(C-Q)	TXDi Output Delay Time	-	50	ns
th(C-Q)	TXDi Hold Time	0	-	ns
tsu(D-C)	RXDi Input Setup Time	50	-	ns
th(C-D)	RCDi Input Hold Time	90	-	ns

Table 5.19 External Interrupt INT0 Input


Symbol	Parameter	Standard		Unit
	Falanielei	Min.	Max.	Unit
tw(INH)	INTO Input "H" Width	250 ⁽¹⁾	-	ns
tw(INL)	INTO Input "L" Width	250(2)	-	ns


NOTES:

1. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input HIGH width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input LOW width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

RENESAS

Timing requirements (Unless otherwise specified: Vcc = 3V, Vss = 0V at Topr = 25 °C) [Vcc = 3V]

Table 5.22 XIN Input

Symbol	Parameter	Standard		Unit	
	Falanielei	Min.	Max.	Unit	
tc(XIN)	XIN Input Cycle Time	100	-	ns	
twh(xin)	XIN Input "H" Width	40	-	ns	
twl(XIN)	XIN Input "L" Width	40	Ì	ns	

Table 5.23 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter	Standard		Unit
	Falanetei	Min.	Max.	Unit
tc(CNTR0)	CNTR0 Input Cycle Time	300	=	ns
tWH(CNTR0)	CNTR0 Input "H" Width	120	=	ns
twl(CNTR0)	CNTR0 Input "L" Width	120	-	ns

Table 5.24TCIN Input, INT3 Input

Symbol	Parameter	Standard		Unit
	Falanielei	Min.	Max.	Unit
tc(TCIN)	TCIN Input Cycle Time	1,200 ⁽¹⁾	-	ns
twh(tcin)	TCIN Input "H" Width	600 ⁽²⁾	-	ns
twl(tcin)	TCIN Input "L" Width	600 ⁽²⁾	_	ns

NOTES:

1. When using the Timer C input capture mode, adjust the cycle time (1/Timer C count source frequency x 3) or above.

2. When using the Timer C input capture mode, adjust the width (1/ Timer C count source frequency x 1.5) or above.

Table 5.25 Serial Interface

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(CK)	CLKi Input Cycle Time	300	-	ns
tW(CKH)	CLKi Input "H" Width	150	-	ns
tW(CKL)	CLKi Input "L" Width	150	-	ns
td(C-Q)	TXDi Output Delay Time	-	80	ns
th(C-Q)	TXDi Hold Time	0	-	ns
tsu(D-C)	RXDi Input Setup Time	70	-	ns
th(C-D)	RCDi Input Hold Time	90	-	ns

Table 5.26 External Interrupt INT0 Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tw(INH)	INTO Input "H" Width	380 ⁽¹⁾	-	ns
tw(INL)	INTO Input "L" Width	380(2)	-	ns

NOTES:

1. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input HIGH width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input LOW width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard.

RENESAS