

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, SIO, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21164sp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1.2 Performance Overview

Table 1.1 lists the Performance Outline of the R8C/16 Group and Table 1.2 lists the Performance Outline of the R8C/17 Group.

Table 1.1 Performance Outline of the R8C/16 Group

	Item	Performance
CPU	Number of Basic Instructions	
	Minimum Instruction	50ns(f(XIN)=20MHz, VCC=3.0 to 5.5V)
	Execution Time	100ns(f(XIN)=10MHz, VCC=2.7 to 5.5V)
	Operating Mode	Single-chip
	Address Space	1 Mbyte
	Memory Capacity	See Table 1.3 R8C/16 Group Product Information
Peripheral	Port	I/O port : 13 pins (including LED drive port),
Function		Input: 2 pins
i unction	LED Drive Port	I/O port: 4 pins
	Timer	Timer X: 8 bits × 1 channel, Timer Z: 8 bits × 1 channel
	Timer	
		(Each timer equipped with 8-bit prescaler)
		Timer C: 16 bits x 1 channel
		(Circuits of input capture and output compare)
	Serial Interface	1 channel
		Clock synchronous serial I/O, UART
	I ² C bus Interface (IIC) ⁽¹⁾	1 channel
	A/D Converter	10-bit A/D converter: 1 circuit, 4 channels
	Watchdog Timer	15 bits x 1 channel (with prescaler)
	_	Reset start selectable, Count source protection mode
	Interrupt	Internal: 9 factors, External: 4 factors, Software: 4
	'	factors
		Priority level: 7 levels
	Clock Generation Circuit	2 circuits
	Clock Conclation Chock	Main clock oscillation circuit (Equipped with a built-in
		feedback resistor)
		On-chip oscillator (high speed, low speed)
		Equipped with frequency adjustment function on high-
		speed on-chip oscillator
	Oscillation Stop Detection	Main clock oscillation stop detection function
	Function	
	Voltage Detection Circuit	Included
	Power-on Reset Circuit	Included
Electric	Supply Voltage	VCC=3.0 to 5.5V (f(XIN)=20MHz)
Characteristics		VCC=2.7 to 5.5V (f(XIN)=10MHz)
	Power Consumption	Typ. 9mA (VCC=5.0V, f(XIN)=20MHz)
		Typ. 5mA (VCC=3.0V, f(XIN)=10MHz)
		Typ. 35μA (VCC=3.0V, wait mode, peripheral clock off)
		Typ. 0.7μA (VCC=3.0V, stop mode)
Flash Memory	Program/Erase Supply	VCC=2.7 to 5.5V
,	Voltage	
	Program/Erase Endurance	100 times
Operating Ambi	ent Temperature	-20 to 85°C
	iomporatoro	-40 to 85°C (D Version)
Package		20-pin plastic mold LSSOP
Package		Zu-pin piasilu mulu Loouf

NOTES:

1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

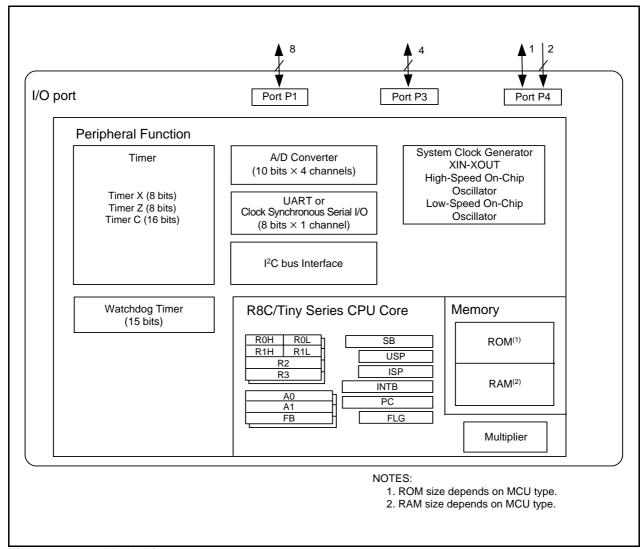


Figure 1.1 Block Diagram

1.5 Pin Assignments

Figure 1.4 shows the PLSP0020JB-A Package Pin Assignment (top view).

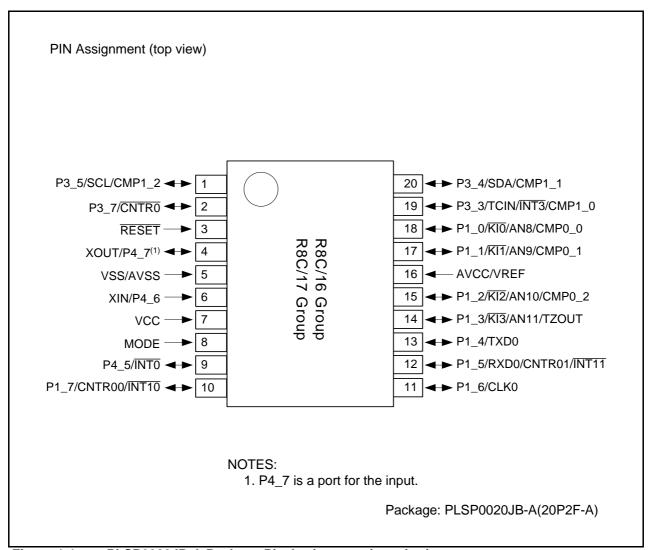


Figure 1.4 PLSP0020JB-A Package Pin Assignment (top view)

Pin Name Information by Pin Number Table 1.6

Pin	Control			I/O Pin of Peripheral Functions			
Number	Pin	Port	Interrupt	Timer	Serial	I ² C bus	A/D Converter
			ппопарт		Interface	Interface	742 Conventor
1		P3_5		CMP1_2		SCL	
2		P3_7		CNTR0			
3	RESET						
4	XOUT	P4_7					
5	VSS/AVSS						
6	XIN	P4_6					
7	VCC						
8	MODE						
9		P4_5	ĪNT0				
10		P1_7	ĪNT10	CNTR00			
11		P1_6			CLK0		
12		P1_5	INT11	CNTR01	RXD0		
13		P1_4			TXD0		
14		P1_3	KI3	TZOUT			AN11
15		P1_2	KI2	CMP0_2			AN10
16	AVCC/VREF						
17		P1_1	KI1	CMP0_1			AN9
18		P1_0	KI0	CMP0_0			AN8
19		P3_3	ĪNT3	TCIN/CMP1_0			
20		P3_4		CMP1_1		SDA	

2.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

An interrupt is disabled when the I flag is set to "0", and are enabled when the I flag is set to "1". The I flag is set to "0" when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to "0", USP is selected when the U flag is set to "1". The U flag is set to "0" when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

When write to this bit, set to "0". When read, its content is indeterminate.

3.2 R8C/17 Group

Figure 3.2 is a memory map of the R8C/17 group. The R8C/17 group provides 1-Mbyte address space from addresses 00000h to FFFFh.

The internal ROM (program ROM) is allocated lower addresses beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but for calling subroutines and stacks when interrupt request is acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated them. All addresses, which have nothing allocated within the SFR, are reserved area and cannot be accessed by users.

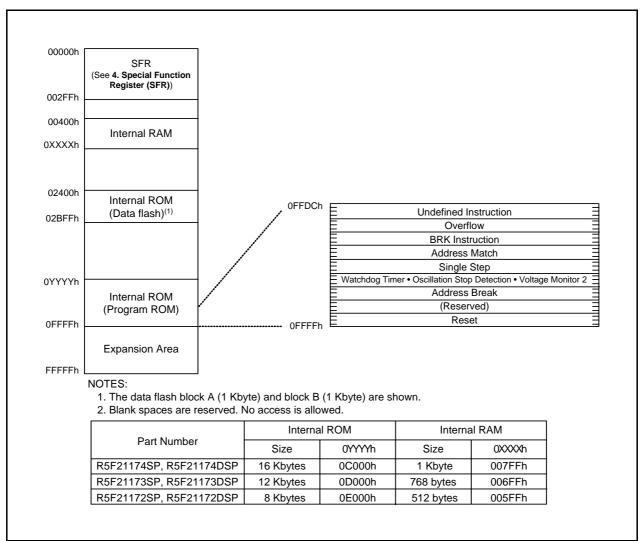


Figure 3.2 Memory Map of R8C/17 Group

4. Special Function Register (SFR)

SFR (Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.4 list the SFR information.

Table 4.1 SFR Information(1)⁽¹⁾

Address	Pogistor	Cymbal	After Reset
	Register	Symbol	Alter Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h			
0009h	Address Match Interrupt Enable Register	AIER	00h
000Ah	Protect Register	PRCR	00h
000Bh	· · · · · · · · · · · · · · · · · · ·		
000Ch	Oscillation Stop Detection register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
		WDC	00011111b
000Fh	Watchdog Timer Control Register		
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			X0h
0013h			
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h			00h
0016h			X0h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
	Count Source Protection wode Register	COFK	OON
001Dh		INITOE	001-
001Eh	INT0 Input Filter Select Register	INT0F	00h
001Fh			
0020h	High-Speed On-Chip Oscillator Control Register 0	HRA0	00h
0021h	High-Speed On-Chip Oscillator Control Register 1	HRA1	When shipping
0022h	High-Speed On-Chip Oscillator Control Register 2	HRA2	00h
0023h			
002Ah			
002Bh			
002Bh			
002Dh			
002Eh			
002Fh			
0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h ⁽³⁾
	-		01000000b ⁽⁴⁾
0033h			
0034h			
0034H			
0035h	Voltage Manites 4 Circuit Control Degister (2)	VW1C	000000006(3)
003011	Voltage Monitor 1 Circuit Control Register (2)	V VV 10	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register (5)	VW2C	00h
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Ch			
003Dh			
003Fh			

X: Undefined

- 1. Blank spaces are reserved. No access is allowed.
- 2. Software reset, the watchdog timer reset or the voltage monitor 2 reset does not affect this register.
- 3. Owing to Hardware reset.
- 4. Owing to Power-on reset or the voltage monitor 1 reset.
- 5. Software reset, the watchdog timer reset or the voltage monitor 2 reset does not affect the b2 and b3.

SFR Information(2)⁽¹⁾ Table 4.2

Address	Register	Symbol	After reset
0040h	i toglotoi	Symbol	711101 10001
0041h			
0042h			
0043h			
0044h			
0045h			
0046h			
0047h			
0048h			
0049h			
004Ah			
004Bh			
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	IIC Interrupt Control Register	IIC2AIC	XXXXX000b
0050h	Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0051h	UARTO Transmit Interrupt Control Register	SOTIC	XXXXX000b
0051h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0052H	STATE RECEIVE INTERPREDENTION REGISTER	JOINIO	7777770000
0053h			
0054H			
0056h	Timer X Interrupt Control Register	TXIC	XXXXX000b
0056h	Timer A interrupt Control Neglatel	TAIC	^^^^
0057h 0058h	Timer Z Interrupt Control Register	TZIC	XXXXX000b
		INT1IC	XXXXX000b
0059h	INT1 Interrupt Control Register		
005Ah	INT3 Interrupt Control Register	INT3IC	XXXXX000b
005Bh	Timer C Interrupt Control Register	TCIC	XXXXX000b
005Ch	Compare 0 Interrupt Control Register	CMP0IC	XXXXX000b
005Dh	INTO Interrupt Control Register	INT0IC	XX00X000b
005Eh			
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
0069h			
006An			
006Ch			
006Ch			
006Eh			
006En			
006Fn 0070h			
0071h			
0072h			
0073h			
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Ch			
007Dh			
007Eh			
007Fh			

X: Undefined

NOTES:

1. Blank spaces are reserved. No access is allowed.

SFR Information(4)⁽¹⁾ Table 4.4

Address	Register	Symbol	After reset
00C0h	A/D Register	AD	XXh
00C1h	-		XXh
00C2h			
00C3h			
00C4h			
00C5h 00C6h			
00C6H			
00C8h			_
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CFh			
00D0h			
00D1h			
00D2h 00D3h			
00D3H 00D4h	A/D Control Register 2	ADCON2	00h
00D5h	77D Control Negloter 2	/ LDOOINZ	5511
00D6h	A/D Control Register 0	ADCON0	00000XXXb
00D7h	A/D Control Register 1	ADCON1	00h
00D8h	•		1
00D9h			
00DAh			
00DBh			
00DCh			
00DDh			
00DEh 00DFh			
00E0h			
00E1h	Port P1 Register	P1	XXh
00E2h	3		75
00E3h	Port P1 Direction Register	PD1	00h
00E4h			
00E5h	Port P3 Register	P3	XXh
00E6h			
00E7h	Port P3 Direction Register	PD3	00h
00E8h 00E9h	Port P4 Register	P4	XXh
00EAh	Port P4 Direction Register	PD4	00h
00EBh			
00ECh			
00EDh			
00EEh			
00EFh			
00F0h			
00F1h			<u> </u>
00F2h 00F3h		1	+
00F4h		1	
00F5h		1	+
00F6h		1	+
00F7h		†	
00F8h			
00F9h			
00FAh			
00FBh		Buba	
00FCh	Pull-Up Control Register 0	PUR0	00XX0000b
00FDh 00FEh	Pull-Up Control Register 1 Port P1 Drive Capacity Control Register	PUR1 DRR	XXXXXX0Xb 00h
00FEn	Timer C Output Control Register	TCOUT	00h
001111	Times o output control register	1.0001	10011
01B3h	Flash Memory Control Register 4	FMR4	01000000b
01B4h	, ,	1	
01B5h	Flash Memory Control Register 1	FMR1	1000000Xb
01B6h			
01B7h	Flash Memory Control Register 0	FMR0	00000001b
0FFFFh	Optional Function Select Register	OFS	T(2)
VIIFFII	Optional i unotion delect register	0.3	(2)

X: Undefined NOTES:

- Blank columns, 0100h to 01B2h and 01B8h to 02FFh are all reserved. No access is allowed.
 The OFS register cannot be changed by program. Use a flash programmer to write to it.

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

Symbol	Parameter	Conditions	;	Unit		
	Parameter	Conditions	Min.	Тур.	Max.	Unit
_	Program/Erase Endurance ⁽²⁾	R8C/16 Group	100(3)	-	-	times
		R8C/17 Group	1,000(3)	=	_	times
=	Byte Program Time	Vcc = 5.0 V at Topr = 25 °C	=	50	400	μS
=	Block Erase Time	Vcc = 5.0 V at Topr = 25 °C	-	0.4	9	S
td(SR-ES)	Time Delay from Suspend Request until Erase Suspend		=	=	8	ms
_	Erase Suspend Request Interval		10	_	_	ms
_	Program, Erase Voltage		2.7	-	5.5	V
_	Read Voltage		2.7	_	5.5	V
=	Program, Erase Temperature		0	-	60	°C
=	Data Hold Time ⁽⁷⁾	Ambient temperature = 55 °C	20	-	=	year

- 1. Vcc = AVcc = 2.7 to 5.5V at $T_{opr} = 0$ to 60 °C, unless otherwise specified.
- 2. Definition of program and erase
 - The program and erase endurance shows an erase endurance for every block.
 - If the program and erase endurance is "n" times (n = 100, 10000), "n" times erase can be performed for every block.
 - For example, if performing 1-byte write to the distinct addresses on Block A of 1Kbyte block 1,024 times and then erasing that block, program and erase endurance is counted as one time.
 - However, do not perform multiple programs to the same address for one time ease.(disable overwriting).
- 3. Endurance to guarantee all electrical characteristics after program and erase.(1 to "Min." value can be guaranateed).
- 4. In the case of a system to execute multiple programs, perform one erase after programming as reducing effective reprogram endurance not to leave blank area as possible such as programming write addresses in turn. If programming a set of 16 bytes, programming up to 128 sets and then erasing them one time can reduce effective reprogram endurance. Additionally, averaging erase endurance for Block A and B can reduce effective reprogram endurance more. To leave erase endurance for every block as information and determine the restricted endurance are recommended.
- 5. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring Program/Erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time incudes time that the power supply is off or the clock is not supplied.

Table 5.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor2	Power-On Reset Valid Voltage	$-20^{\circ}C \leq Topr < 85^{\circ}C$	=	=	Vdet1	V
tw(Vpor2-Vdet1)	Supply Voltage Rising Time When Power-On Reset is	-20 °C \leq Topr < 85 °C,	-	-	100	ms
	Deasserted ⁽¹⁾	$t_{\text{w(por2)}} \ge 0s^{(3)}$				

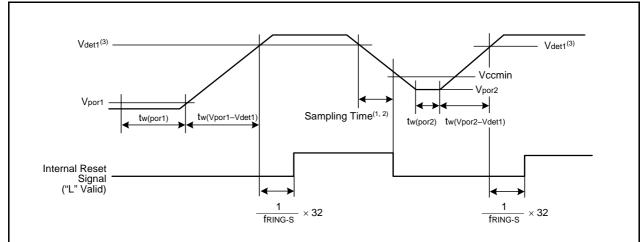

- 1. This condition is not applicable when using with $Vcc \ge 1.0V$.
- When turning power on after the time to hold the external power below effective voltage (Vport) exceeds10s, refer to Table
 S.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).
- 3. tw(por2) is time to hold the external power below effective voltage (Vpor2).

Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)

Symbol	Parameter	Parameter Condition		Standard			
			Min.	Тур.	Max.		
Vpor1	Power-On Reset Valid Voltage	$-20^{\circ}C \leq Topr < 85^{\circ}C$	=	=	0.1	V	
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 10s^{(2)}$	-	=	100	ms	
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$\label{eq:continuous} \begin{split} -20^{\circ}C &\leq Topr < 0^{\circ}C, \\ tw(por1) &\geq 30s^{(2)} \end{split}$	-	=	100	ms	
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$\begin{aligned} -20^{\circ}C &\leq Topr < 0^{\circ}C, \\ tw(por1) &\geq 10s^{(2)} \end{aligned}$	_	_	1	ms	
tw(Vpor1-Vdet1)	Supply Voltage Rising Time When Power-On Reset is Deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 1s^{(2)}$	_	_	0.5	ms	

NOTES:

- 1. When not using the voltage monitor 1 reset, use with Vcc≥ 2.7V.
- 2. tw(por1) is time to hold the external power below effective voltage (Vpor1).

- Hold the voltage of the microcomputer operation voltage range (Vccmin or above) within sampling time.
- 2. A sampling clock can be selected. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.
- Vdet1 indicates the voltage detection level of the voltage detection 1 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.

Figure 5.3 Reset Circuit Electrical Characteristics

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Llait		
		Condition	Min.	Тур.	Max.	Unit
_	High-Speed On-Chip Oscillator Frequency When the Reset is Deasserted	VCC = 5.0V, Topr = 25 °C	ı	8	I	MHz
_	High-Speed On-Chip Oscillator Frequency	0 to +60 °C / 5 V ± 5 % ⁽²⁾	7.44	-	8.56	MHz
	Temperature • Supplay Voltage Dependence	-20 to +85 °C / 2.7 to 5.5 V ⁽²⁾	7.04	-	8.96	MHz
		-40 to +85 °C / 2.7 to 5.5 V ⁽²⁾	6.80	-	9.20	MHz

- 1. The measurement condition is Vcc = AVcc = 5.0V and Topr = 25 °C.
- 2. The standard value shows when the HRA1 register is assumed as the value in shipping and the HRA2 register value is set to 00h

Table 5.11 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	Standard			Unit
	Falametei	Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for Internal Power Supply Stabilization during Power-On ⁽²⁾		1	-	2000	μS
td(R-S)	STOP Exit Time ⁽³⁾		-	-	150	μS

- 1. The measurement condition is Vcc = AVcc = 2.7 to 5.5V and $T_{opr} = 25$ °C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until CPU clock supply starts since the interrupt is acknowledged to exit stop mode.

Table 5.12 Timing Requirements of I²C bus Interface (IIC) (1)

Symbol	Parameter	Condition	S	Unit		
Symbol		Condition	Min.	Тур.	Max.	Onit
tscl	SCL Input Cycle Time		12tcyc+ 600 ⁽²⁾	_	_	ns
tsclh	SCL Input "H" Width		3tcyc+ 300 ⁽²⁾	_	_	ns
tscll	SCL Input "L" Width		5tcyc+ 300 ⁽²⁾	-	-	ns
t sf	SCL, SDA Input Fall Time		-	=	300	ns
tsp	SCL, SDA Input Spike Pulse Rejection Time		-	-	1tcyc ⁽²⁾	ns
tBUF	SDA Input Bus-Free Time		5tcyc(2)	-	-	ns
tstah	Start Condition Input Hold Time		3tcyc ⁽²⁾	-	-	ns
tstas	Retransmit Start Condition Input SetUp Time		3tcyc(2)	=	-	ns
tstos	Stop Condition Input SetUp Time		3tcyc(2)	=	-	ns
tsdas	Data Input SetUp Time		1tcyc+20 ⁽²⁾	=	=	ns
tsdah	Data Input Hold Time		0	Ī	_	ns

- 1. Vcc = AVcc = 2.7 to 5.5V, Vss = 0V and Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. 1tcyc=1/f1(s)

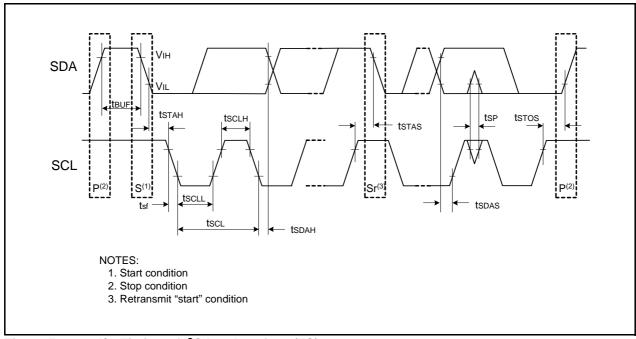


Figure 5.4 I/O Timing of I²C bus Interface (IIC)

Electrical Characteristics (2) [Vcc = 5V] (Topr = -40 to 85 $^{\circ}$ C, unless otherwise specified.) **Table 5.14**

Symbol	Parameter	Condition	Standard			Unit	
Symbol	Faiailielei		Condition	Min.	Тур.	Max.	Offic
Icc	Power Supply Current (Vcc=3.3 to 5.5V) In single-chip mode,	High-Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	9	15	mA
	the output pins are open and other pins are Vss		XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	-	8	14	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	-	5	-	mA
		Medium- Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	-	4	-	mA
			XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	-	3	_	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	-	2	_	mA
		High-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz No division	_	4	8	mA
			Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz Divide-by-8	-	1.5	_	mA
		Low-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	-	470	900	μА
		Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock operation VCA26 = VCA27 = 0	_	40	80	μА
		Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock off VCA26 = VCA27 = 0	_	38	76	μА
		Stop Mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	-	0.8	3.0	μА

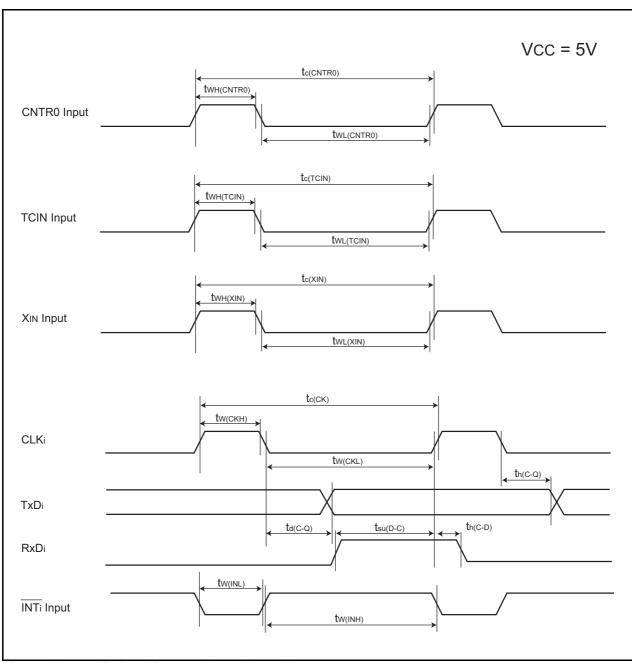


Figure 5.5 Timing Diagram When Vcc = 5V

Electrical Characteristics (4) [Vcc = 3V] (Topr = -40 to 85 °C, unless otherwise specified.) **Table 5.21**

Symbol	Parameter	Condition	Standard			Unit	
Symbol	i arameter		Condition	Min.	Тур.	Max.	Offic
CC	Power Supply Current (Vcc=2.7 to 3.3V) In single-chip mode,	High-Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	-	8	13	mA
	the output pins are open and other pins are Vss		XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	-	7	12	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	5	-	mA
		Medium- Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	-	3	-	mA
			XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	-	2.5	-	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	-	1.6	_	mA
		High-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz No division	-	3.5	7.5	mA
			Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz Divide-by-8	-	1.5	-	mA
		Low-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	-	420	800	μА
		Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock operation VCA26 = VCA27 = 0	_	37	74	μА
		Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock off VCA26 = VCA27 = 0	_	35	70	μΑ
		Stop Mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	0.7	3.0	μА

Timing requirements (Unless otherwise specified: Vcc = 3V, Vss = 0V at Topr = 25 °C) [Vcc = 3V]

Table 5.22 XIN Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc(XIN)	XIN Input Cycle Time	100	=	ns
twh(xin)	XIN Input "H" Width 40 –			
twl(xin)	XIN Input "L" Width	40	-	ns

Table 5.23 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(CNTR0)	CNTR0 Input Cycle Time	300	=	ns	
tWH(CNTR0)	CNTR0 Input "H" Width	120	=	ns	
tWL(CNTR0)	CNTR0 Input "L" Width	120	-	ns	

Table 5.24 TCIN Input, INT3 Input

Symbol	Parameter	Stan	Unit	
Symbol	Falametei			Max.
tc(TCIN)	TCIN Input Cycle Time	1,200(1)	-	ns
twh(TCIN)	TCIN Input "H" Width 600 ⁽²⁾ –			ns
tWL(TCIN)	TCIN Input "L" Width 600(2) –			ns

NOTES:

- 1. When using the Timer C input capture mode, adjust the cycle time (1/ Timer C count source frequency x 3) or above.
- 2. When using the Timer C input capture mode, adjust the width (1/ Timer C count source frequency x 1.5) or above.

Table 5.25 Serial Interface

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc(CK)	CLKi Input Cycle Time 300 -			
tW(CKH)	CLKi Input "H" Width 150 -			
tW(CKL)	CLKi Input "L" Width 150 –			
td(C-Q)	TXDi Output Delay Time – 80			
th(C-Q)	TXDi Hold Time 0 -			ns
tsu(D-C)	RXDi Input Setup Time 70 -			ns
th(C-D)	RCDi Input Hold Time 90 -			ns

Table 5.26 External Interrupt INTO Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tw(INH)	INTO Input "H" Width	380 ⁽¹⁾	-	ns
tw(INL)	INTO Input "L" Width 380 ⁽²⁾ -		ns	

- 1. When selecting the digital filter by the $\overline{\text{INT0}}$ input filter select bit, use the $\overline{\text{INT0}}$ input HIGH width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.
- 2. When selecting the digital filter by the $\overline{\text{INT0}}$ input filter select bit, use the $\overline{\text{INT0}}$ input LOW width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

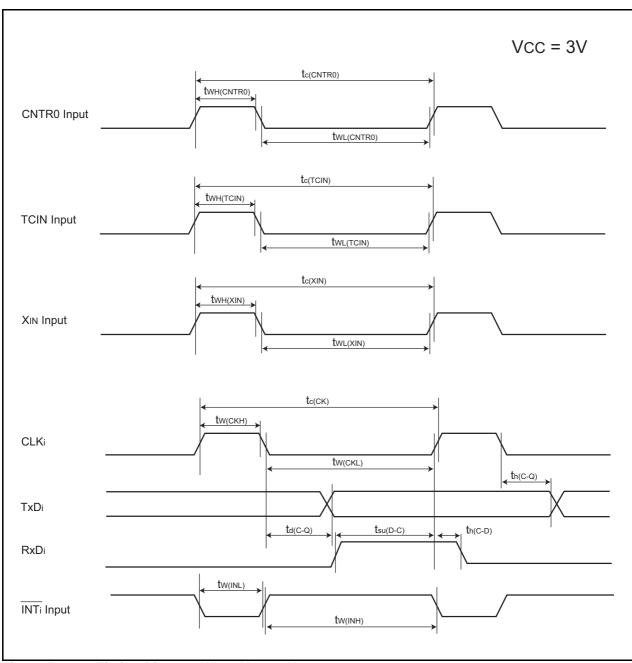


Figure 5.6 Timing Diagram When Vcc = 3V

Page 34 of 35

D.	Dete		Description
Rev.	Date	Page	Summary
0.10	Sep 06, 2004	_	First Edition issued
1.00	Feb 25, 2005	2-3	Tables 1.1 and 1.2 revised
		5	Table 1.3 and figure 1.2 revised
		6	Table 1.4 and figure 1.3 revised
		7-8	Figures 1.4 and 1.5 revised
		16	Table 4.1 revised:
			- 000Fh: 000XXXXXb → 00011111b
		4.0	-0036h: 00001000b → 0000X000b and $01001001b → 0100X001b$
		18	Tabel 4.3 revised:
			- 009Ch: FFh → 00h; NOTES2 added
		0.4	- 009Dh: FFh → 00h
		21	Table 5.3 revised
		22	Tables 5.4 and 5.5 revised
		24	Table 5.8 and 5.9 revised
		25 26	Table 5.11 revised Table 5.12 and figure 5.4 added
		27	Table 5.12 and righte 5.4 added
		28	Table 5.13 revised
		29, 33	
		31	Table 5.20 revised; NOTE revised
		32	Table 5.21 revised
		35	Package Dimensions revised
1.10	May 26, 2005	5, 6	Tables 1.3 and 1.4 revised
	- , -,	16	Table 4.1 revised:
			- 0009h: XXXXXX00b → 00h
			- 000Ah: 00XXX000b → 00h
			- 001Eh: XXXXX000b → 00h
		22	Table 5.5 revised; NOTE revised
		26	Fig 5.4 revised
		27	Table 5.13 revised
		31	Table 5.20 revised
2.00	Jan 30, 2006	1	1. Overview; "20-pin plastic molded LSSOP or SDIP" → "20-pin plastic
			molded LSSOP" revised
		2	Table 1.1 Performance Outline of the R8C/16 Group;
			Package: "20-pin plastic molded SDIP" deleted
		3	Table 1.2 Performance Outline of the R8C/17 Group;
			Package: "20-pin plastic molded SDIP" deleted,
			Flash Memory: (Data area) → (Data flash)
			(Program area) \rightarrow (Program ROM) revised
		4	Figure 1.1 Block Diagram;
			"Peripheral Function" added,
			"System Clock Generation" → "System Clock Generator" revised
		5, 6	Table 1.3 Product Information of R8C/16 Group,
			Table 1.4 Product Information of R8C/17 Group; revised.
			Figure 1.2 Part Number, Memory Size and Package of R8C/16 Group,
			Figure 1.3 Part Number, Memory Size and Package of R8C/17 Group;
			Package type: "DD : PRDP0020BA-A" deleted