

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f344k4t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 100.	Typical V_{OL} at V_{DD} = 3 V (std I/Os)	7
Figure 101.	Typical V_{OL} at V_{DD} = 5 V (std I/Os)	7
Figure 102.	Typical V_{OL} at V_{DD} = 2.4 V (high-sink I/Os)	8
Figure 103.	Typical V_{OL} at V_{DD} = 3 V (high-sink I/Os)	8
Figure 104.	Typical V _{OL} at V _{DD} = 5 V (high-sink I/Os)	8
Figure 105.	Typical V _{OL} vs. V _{DD} (std I/Os, 2 mA)	9
Figure 106.	Typical V _{OI} vs. V _{DD} (std I/Os, 6 mA)	9
Figure 107.	Typical V_{OI} vs. V_{DD} (HS I/Os, I_{IO} = 8 mA)	9
Figure 108.	Typical V_{OI} vs. V_{DD} (HS I/Os, I_{IO} = 2 mA)	0
Figure 109.	Typical V_{OI} vs. V_{DD} (HS I/Os, I_{IO} = 12 mA)	0
Figure 110.	Typical $V_{DD} - v_{OH}$ at $V_{DD} = 2.4$ V (std I/Os)	0
Figure 111.	Typical $V_{DD} - V_{OH}$ at $V_{DD} = 3 V$ (std I/Os)	1
Figure 112.	Typical $V_{DD} - V_{OH}$ at $V_{DD} = 4 V$ (std)	1
Figure 113.	Typical $V_{DD} - V_{OH}$ at $V_{DD} = 5 V$ (std)	1
Figure 114.	Typical $V_{DD} - V_{OH}$ vs. VDD (high sink)	2
Figure 115.	RESET pin protection when LVD is enabled(1)(2)(3)(4)	3
Figure 116.	RESET pin protection when LVD is disabled (1)	3
Figure 117.	ADC accuracy characteristics	5
Figure 118.	Typical A/D converter application	6
Figure 119.	32-pin low profile quad flat package (7 x 7 mm) outline	7
Figure 120.	40-lead very thin fine pitch quad flat no-lead package outline	8
Figure 121.	44-pin low profile quad flat package outline	9
Figure 122.	48-pin low profile quad flat package outline	0
Figure 123.	ST7234x ordering information scheme	6

1 Description

The ST7234x devices are members of the ST7 microcontroller family. *Table 2* gives the available part numbers and details on the devices. All devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set.

They feature single-voltage Flash memory with byte-by-byte in-circuit programming (ICP) and in-application programming (IAP) capabilities.

Under software control, all devices can be placed in Wait, Slow, Auto-wakeup from Halt, Active-halt or Halt mode, reducing the power consumption when the application is in idle or stand-by state.

The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.

The devices feature an on-chip debug module (DM) to support in-circuit debugging (ICD). For a description of the DM registers, refer to the ST7 ICC Protocol Reference Manual.

Figure 1. General block diagram

Doc ID 12321 Rev 6

Figure 4. LQFP48 package pinout

7.3 Multioscillator (MO)

The main clock of the ST7 can be generated by three different source types coming from the multioscillator block:

- an external source
- 4 crystal or ceramic resonator oscillators
- an internal high-accuracy RC oscillator

Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configurations are shown in *Table 8*. Refer to *Section 13: Electrical characteristics* for more details.

Caution: The OSC1 and/or OSC2 pins must not be left unconnected. For the purposes of Failure Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left unconnected, the ST7 main oscillator may start and, in this configuration, could generate an f_{OSC} clock frequency in excess of the allowed maximum (>16 MHz), putting the ST7 in an unsafe/undefined state. The product behavior must therefore be considered undefined when the OSC pins are left unconnected.

7.3.1 External clock source

In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground.

7.3.2 Crystal/ceramic oscillators

This family of oscillators has the advantage of producing a very accurate rate on the main clock of the ST7. The selection within a list of 4 oscillators with different frequency ranges has to be done by option byte in order to reduce consumption (refer to *Section 15.1: Option bytes* for more details on the frequency ranges). In this mode of the multi-oscillator, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. The loading capacitance values must be adjusted according to the selected oscillator.

These oscillators are not stopped during the reset phase to avoid losing time in the oscillator startup phase.

Figure 15. reset sequence phases

	RESET	
Active phase	Internal Reset 256 or 4096 clock cycles	Fetch vector

7.5.2 Asynchronous external RESET pin

The RESET pin is both an input and an open-drain output with integrated R_{ON} weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See *Section 13: Electrical characteristics* for more details.

A reset signal originating from an external source must have a duration of at least $t_{h(RSTL)in}$ in order to be recognized (see *Figure 17*). This detection is asynchronous and therefore the MCU can enter reset state even in Halt mode.

Figure 16. Reset block diagram

1. See Section 12.2.1: Illegal opcode reset for more details on illegal opcode reset conditions.

The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in *Section 13: Electrical characteristics*.

If the external $\overline{\text{RESET}}$ pulse is shorter than $t_{w(RSTL)out}$ (see short ext. Reset in *Figure 17*), the signal on the $\overline{\text{RESET}}$ pin may be stretched. Otherwise the delay will not be applied (see long ext. Reset in *Figure 17*). Starting from the external $\overline{\text{RESET}}$ pulse recognition, the device $\overline{\text{RESET}}$ pin acts as an output that is pulled low during at least $t_{w(RSTL)out}$.

7.5.3 External power-on reset

If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until V_{DD} is over the minimum level specified for the selected f_{OSC} frequency (see *Section 13.3: Operating conditions*).

A proper reset signal for a slow rising V_{DD} supply can generally be provided by an external RC network connected to the RESET pin.

Doc ID 12321 Rev 6

7.6.5 Register description

System integrity (SI) control/status register (SICSR)

Reset value: 000x 000x (xxh)

1							0
0	PDVDIE	AVDF	LVDRF	LOCKED	0	0	WDGRF
Read/Write							

Bit 7 = Reserved, must be kept cleared.

Bit 6 = **AVDIE** Voltage detector interrupt enable

This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag goes from 0 to 1. The pending interrupt information is automatically cleared when software enters the AVD interrupt routine.

- 0: PDVD interrupt disabled
- 1: PDVD interrupt enabled

Bit 5 = **AVDF** Voltage Detector flag

This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit goes from 0 to 1. Refer to *Figure 19* and to *Section 7.6.2* for additional details.

0: V_{DD} over $V_{IT+(AVD)}$ threshold

1: V_{DD} under V_{IT-(AVD)} threshold

Bit 4 = LVDRF LVD reset flag

This bit indicates that the last Reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared by software (writing zero). See WDGRF flag description for more details. When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined.

Bit 3 = LOCKED PLL Locked Flag

This bit is set and cleared by hardware. It is set automatically when the PLL reaches its operating frequency.

- 0: PLL not locked
- 1: PLL locked

Bits 2:1 = Reserved, must be kept cleared.

Bit 0 = WDGRF Watchdog reset flag

This bit indicates that the last Reset was generated by the Watchdog peripheral. It is set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts). Combined with the LVDRF flag information, the flag description is given by the following table.

Table 12. LVDRF and WDGRF description

Reset sources	LVDRF	WDGRF
External RESET pin	0	0
Watchdog	0	1
LVD	1	Х

Application notes

The LVDRF flag is not cleared when another reset type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the original failure.

In this case, a watchdog reset can be detected by software while an external reset can not.

Caution: When the LVD is not activated with the associated option byte, the WDGRF flag can not be used in the application.

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
		ei1		ei1 ei0		MCC + SI		AWU	
0024h	ISPR0 Reset value	l1_3 1	10_3 1	l1_2 1	10_2 1	1_1 1	10_1 1	l1_0 1	10_0 1
		I2C3	SNS	I2C3	SNS	e	3	e	i2
0025h	ISPR1 Reset value	1_7 1	10_7 1	l1_6 1	10_6 1	l1_5 1	10_5 1	1_4 1	10_4 1
		SCI		TIMER B		TIMER A		SPI	
0026h	ISPR2 Reset value	11_11 1	10_11 1	l1_10 1	10_10 1	l1_9 1	10_9 1	l1_8 1	10_8 1
						12	С	A۱	/D
0027h	ISPR3 Reset value	1	1	1	1	l1_13 1	l0_13 1	l1_12 1	10_12 1
0028h	EICR Reset value	IS11 0	IS10 0	IPB 0	IS21 0	IS20 0	IPA 0	0	0

 Table 22.
 Nested interrupts register map and reset values

Figure 27. Wait mode flowchart

Note: Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.

9.4 Halt mode

The Halt mode is the lowest power consumption mode of the MCU. It is entered by executing the 'HALT' instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is cleared (see *Section 11.2: Main clock controller with real-time clock and beeper (MCC/RTC)* for more details on the MCCSR register) and when the AWUEN bit in the AWUCSR register is cleared.

The MCU can exit Halt mode on reception of either a specific interrupt (see *Table 17: Interrupt mapping*) or a reset. When exiting Halt mode by means of a reset or an interrupt, the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is used to stabilize the oscillator. After the start up delay, the CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see *Figure 29*).

When entering Halt mode, the I[1:0] bits in the CC register are forced to '10b'to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.

In Halt mode, the main oscillator is turned off causing all internal processing to be stopped, including the operation of the on-chip peripherals. All peripherals are not clocked except the ones which get their clock supply from another clock generator (such as an external or auxiliary oscillator).

The compatibility of Watchdog operation with Halt mode is configured by the "WDGHALT" option bit of the option byte. The HALT instruction when executed while the Watchdog

11.5 SCI serial communication interface

11.5.1 Introduction

The serial communications interface (SCI) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The SCI offers a very wide range of baud rates using two baud rate generator systems.

11.5.2 Main features

- Full-duplex, asynchronous communications
- NRZ standard format (Mark/Space)
- Dual baud rate generator systems
- Independently programmable transmit and receive baud rates up to 500,000 baud
- Programmable data word length (8 or 9 bits)
- Receive buffer full, Transmit buffer empty and End of Transmission flags
- 2 receiver wake-up modes:
 - Address bit (MSB)
 - Idle line
- Muting function for multiprocessor configurations
- Separate enable bits for Transmitter and Receiver
- 4 error detection flags:
 - Overrun error
 - Noise error
 - Frame error
 - Parity error
- 5 interrupt sources with flags:
 - Transmit data register empty
 - Transmission complete
 - Receive data register full
 - Idle line received
 - Overrun error detected
- Parity control:
 - Transmits parity bit
 - Checks parity of received data byte
- Reduced power consumption mode

11.5.3 General description

The interface is externally connected to another device by three pins (see *Figure 63*). Any SCI bidirectional communication requires a minimum of two pins: Receive Data In (RDI) and Transmit Data Out (TDO):

• SCLK: Transmitter clock output. This pin outputs the transmitter data clock for synchronous transmission (no clock pulses on start bit and stop bit, and a software option to send a clock pulse on the last data bit). This can be used to control

11.5.6 Interrupts

Table 58. Interrupt events

Interrupt event	Event flag	Enable control bit	Exit from Wait	Exit from Halt
Transmit data register empty	TDRE	TIE		
Transmission complete	TC	TCIE		
Received data ready to be read	RDRF	DIE	Voc	No
Overrun error detected	OR		105	NO
Idle line detected	IDLE	ILIE		
Parity error	PE	PIE		

The SCI interrupt events are connected to the same interrupt vector.

These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction).

11.5.7 Register description

Status register (SCISR)

Reset value: 1100 0000 (C0h)

7

•							•
TDRE	TC	RDRF	IDLE	OR	NF	FE	PE
Read-only							

Bit 7 = TDRE Transmit data register empty.

This bit is set by hardware when the content of the TDR register has been transferred into the shift register. An interrupt is generated if the TIE bit = 1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a write to the SCIDR register).

0: Data is not transferred to the shift register

1: Data is transferred to the shift register

Note: Data is not transferred to the shift register until the TDRE bit is cleared.

Bit 6 = **TC** *Transmission complete.*

This bit is set by hardware when transmission of a frame containing Data is complete. An interrupt is generated if TCIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a write to the SCIDR register).

- 0: Transmission is not complete
- 1: Transmission is complete
- Note: TC is not set after the transmission of a Preamble or a Break.

Bit 5 = **RDRF** *Received data ready flag.*

This bit is set by hardware when the content of the RDR register has been transferred to the SCIDR register. An interrupt is generated if RIE = 1 in the SCICR2 register. It is

0

Control register 1 (SCICR1)

Reset value: x000 0000 (x0h)

7							0
R8	Т8	SCID	М	WAKE	PCE	PS	PIE
	Read/Write						

Bit 7 = **R8** Receive data bit 8.

This bit is used to store the 9th bit of the received word when M = 1.

Bit 6 = **T8** Transmit data bit 8.

This bit is used to store the 9th bit of the transmitted word when M = 1.

Bit 5 = **SCID** Disabled for low power consumption

When this bit is set the SCI prescalers and outputs are stopped and the end of the current byte transfer in order to reduce power consumption. This bit is set and cleared by software.

0: SCI enabled

1: SCI prescaler and outputs disabled

Bit 4 = **M** Word length.

This bit determines the word length. It is set or cleared by software.

- 0: 1 Start bit, 8 Data bits, 1 Stop bit
- 1: 1 Start bit, 9 Data bits, 1 Stop bit

Note: The M bit must not be modified during a data transfer (both transmission and reception).

Bit 3 = **WAKE** Wakeup method.

This bit determines the SCI Wake-Up method, it is set or cleared by software.

- 0: Idle Line
- 1: Address Mark

Bit 2 = PCE Parity control enable.

This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M = 1; 8th bit if M = 0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission).

- 0: Parity control disabled
- 1: Parity control enabled
- Bit 1 = **PS** *Parity selection.*

This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte.

- 0: Even parity
- 1: Odd parity

EV6: EVF=1, cleared by reading SR1 register followed by writing CR register (for example PE=1).

EV7: EVF=1, BTF=1, cleared by reading SR1 register followed by reading DR register.

EV8: EVF=1, BTF=1, cleared by reading SR1 register followed by writing DR register.

EV9: EVF=1, ADD10=1, cleared by reading SR1 register followed by writing DR register.

11.6.5 Low-power modes

Table 64.Mode description

Mode	Description
Wait	No effect on I^2C interface. I ² C interrupts cause the device to exit from Wait mode.
Halt	$\rm I^2C$ registers are frozen. In HALT mode, the $\rm I^2C$ interface is inactive and does not acknowledge data on the bus. The $\rm I^2C$ interface resumes operation when the MCU is woken up by an interrupt with "exit from HALT mode" capability.

11.6.6 Interrupts

Figure 70. Event flags and interrupt generation

Table 65. Interrupt events ⁽¹⁾

Interrupt event	Event flag	Enable control bit	Exit from Wait	Exit from Halt
10-bit address sent event (Master mode)	ADD10		Yes	No
End of byte transfer event	BTF		Yes	No
Address matched event (Slave mode)	ADSL		Yes	No
Start bit generation event (Master mode)	SB		Yes	No
Acknowledge failure event	AF		Yes	No
Stop detection event (Slave mode)	STOPF		Yes	No
Arbitration lost event (Multimaster configuration)	ARLO		Yes	No
Bus error event	BERR		Yes	No

Bit 7 = EVF Event flag.

This bit is set by hardware as soon as an event occurs. It is cleared by software reading SR2 register in case of error event or as described in *Figure 69*. It is also cleared by hardware when the interface is disabled (PE=0).

0: No event

- 1: One of the following events has occurred:
- BTF=1 (Byte received or transmitted)
- ADSL=1 (Address matched in Slave mode while ACK=1)
- SB=1 (Start condition generated in Master mode)
- AF=1 (No acknowledge received after byte transmission)
- STOPF=1 (Stop condition detected in Slave mode)
- ARLO=1 (Arbitration lost in Master mode)
- BERR=1 (Bus error, misplaced Start or Stop condition detected)
- ADD10=1 (Master has sent header byte)
- Address byte successfully transmitted in Master mode.

Bit 6 = **ADD10** *10-bit addressing in Master mode.*

This bit is set by hardware when the master has sent the first byte in 10-bit address mode. It is cleared by software reading SR2 register followed by a write in the DR register of the second address byte. It is also cleared by hardware when the peripheral is disabled (PE=0).

0: No ADD10 event occurred.

1: Master has sent first address byte (header)

Bit 5 = **TRA** *Transmitter/Receiver*.

When BTF is set, TRA=1 if a data byte has been transmitted. It is cleared automatically when BTF is cleared. It is also cleared by hardware after detection of Stop condition (STOPF=1), loss of bus arbitration (ARLO=1) or when the interface is disabled (PE=0).

0: Data byte received (if BTF=1)

1: Data byte transmitted

Bit 4 = **BUSY** *Bus busy*.

This bit is set by hardware on detection of a Start condition and cleared by hardware on detection of a Stop condition. It indicates a communication in progress on the bus. The BUSY flag of the I2CSR1 register is cleared if a Bus Error occurs.

- 0: No communication on the bus
- 1: Communication ongoing on the bus

Bit 3 = **BTF** Byte transfer finished.

This bit is set by hardware as soon as a byte is correctly received or transmitted with interrupt generation if ITE=1. It is cleared by software reading SR1 register followed by a read or write of DR register. It is also cleared by hardware when the interface is disabled (PE=0).

• Following a byte transmission, this bit is set after reception of the acknowledge clock pulse. In case an address byte is sent, this bit is set only after the EV6 event (See

I2C slave 1 memory current address register (I2C3SCAR1)

neset value. 0000 0000 (0011)	Reset value:	0000	0000	(00h)
-------------------------------	--------------	------	------	-------

7							0
CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
			Read	l only			

Bit 7:0 = CA[7:0] Current address of Slave 1 buffer

This register contains the 8 bit offset of Slave Address 1 reserved area in RAM. It is also cleared by hardware when the interface is disabled (PE = 0).

I2C slave 2 memory current address register (I2C3SCAR2)

7							0
CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
			Read	lonly			

Bit 7:0 = CA[7:0] Current address of Slave 2 buffer

This register contains the 8-bit offset of Slave Address 2 reserved area in RAM. It is also cleared by hardware when the interface is disabled (PE = 0).

I2C slave 3 memory current address register (I2C3SCAR3)

Reset value: 0000 0000 (00h)

7							0
CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
			Read	d only			

Bit 6:0 = CA[6:0] Current address of Slave 3 buffer

This register contains the 8-bit offset of slave address 3 reserved area in RAM. It is also cleared by hardware when the interface is disabled (PE = 0).

Note: Slave address 3 can store only 128 bytes. For slave address 3, CA7 bit will remain 0. i.e. if the Byte Address sent is 0x80, then the Current Address register will hold the 0x00 value due to an overflow.

 Table 71.
 I²C3S register map

Address (Hex.)	Register name	7	6	5	4	3	2	1	0
0060h	I2C3SCR1	PL1	PL0	0	ITER	ITRE3	ITRE1/2	ITWE3	ITWE1/2
0061h	I2C3SCR2	0	0	0	WP2	WP1	PE	BusyW	B/W
0062h	I2C3SSR	NACK	BERR	WF3	WF2	WF1	RF3	RF2	RF1
0063h	I2C3SBCR	NB7	NB6	NB5	NB4	NB3	NB2	NB1	NB1
0064h	I2C3SSAR1	ADDR7	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	EN1
0065h	I2C3SCAR1	CA 7 CA0							

Bits 3:0 = CH[3:0] Channel Selection

These bits are set and cleared by software. They select the analog input to convert.

Channel pin ⁽¹⁾	СНЗ	CH2	CH1	CH0
AINO	0	0	0	0
AIN1	0	0	0	1
AIN2	0	0	1	0
AIN3	0	0	1	1
AIN4	0	1	0	0
AIN5	0	1	0	1
Reserved	0	1	1	0
Reserved	0	1	1	1
AIN8	1	0	0	0
Reserved	1	0	0	1
AIN10	1	0	1	0
Reserved	1	0	1	1
AIN12	1	1	0	0
AIN13	1	1	0	1
AIN14	1	1	1	0
AIN15	1	1	1	1

Table 73.	Channel selection

1. The number of channels is device dependent. Refer to the device pinout description.

Data register (ADCDRH)

Reset value: 0000 0000 (00h)

/							0
D9	D8	D7	D6	D5	D4	D3	D2
			Read	l Only			

Bits 7:0 = D[9:2] MSB of Converted Analog Value

Data register (ADCDRL)

Reset value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	D1	D0
			Read	l Only			

Bits7:2 = Reserved. Forced by hardware to 0.

Bits 1:0 = **D**[1:0] *LSB of Converted Analog Value*

~

Mnemo	Description	Function/Example	Dst	Src		н	I	Ν	z	С
JRM	Jump if I = 1	I = 1 ?								
JRNM	Jump if I = 0	I = 0 ?			-					
JRMI	Jump if N = 1 (minus)	N = 1 ?			Ī					
JRPL	Jump if N = 0 (plus)	N = 0 ?			Ī					
JREQ	Jump if Z = 1 (equal)	Z = 1 ?								
JRNE	Jump if Z = 0 (not equal)	Z = 0 ?								
JRC	Jump if C = 1	C = 1 ?								
JRNC	Jump if $C = 0$	C = 0 ?								
JRULT	Jump if C = 1	Unsigned <								
JRUGE	Jump if $C = 0$	Jmp if unsigned >=								
JRUGT	Jump if $(C + Z = 0)$	Unsigned >								
JRULE	Jump if $(C + Z = 1)$	Unsigned <=								
LD	Load	dst <= src	reg, M	M, reg				Ν	Z	
MUL	Multiply	X,A = X * A	A, X, Y	X, Y, A		0				0
NEG	Negate (2's compl)	neg \$10	reg, M					Ν	Z	С
NOP	No Operation									
OR	OR operation	A = A + M	А	М				Ν	Z	
POP	Pop from the Stack	pop reg	reg	М						
		pop CC	CC	М		Н	Ι	Ν	Ζ	С
PUSH	Push onto the Stack	push Y	м	reg, CC	Ī					
RCF	Reset carry flag	C = 0								0
RET	Subroutine Return									
RIM	Enable Interrupts	I = 0					0			
RLC	Rotate left true C	C <= Dst <= C	reg, M					Ν	Ζ	С
RRC	Rotate right true C	C => Dst => C	reg, M					Ν	Ζ	С
RSP	Reset Stack Pointer	S = Max allowed								
SBC	Subtract with Carry	A = A - M - C	А	М				Ν	Ζ	С
SCF	Set carry flag	C = 1								1
SIM	Disable Interrupts	l = 1					1			
SLA	Shift left Arithmetic	C <= Dst <= 0	reg, M					Ν	Ζ	С
SLL	Shift left Logic	C <= Dst <= 0	reg, M		Ī			Ν	Ζ	С
SRL	Shift right Logic	0 => Dst => C	reg, M		Ī			0	Ζ	С
SRA	Shift right Arithmetic	Dst7 => Dst => C	reg, M		Ī			Ν	Z	С

 Table 83.
 Illegal opcode detection (continued)

Symbol	Ratings	Maximum value	Unit
I _{VDD}	Total current into V_{DD} power lines (source) ⁽¹⁾	75	
I _{VSS}	Total current out of V_{SS} ground lines (sink) $^{(1)}$	150	
	Output current sunk by any standard I/O and control pin	20	
I _{IO}	Output current sunk by any high sink I/O pin	40	
	Output current source by any I/Os and control pin	- 25	
	Injected current on ISPSEL pin	± 5	mA
	Injected current on RESET pin	± 5	
I _{INJ(PIN)} ⁽²⁾⁽³⁾	Injected current on OSC1 and OSC2 pins	± 5	
	Injected current on PB0 pin ⁽⁴⁾	+5	
	Injected current on any other pin ⁽⁵⁾	± 5	
$\Sigma I_{\rm INJ(PIN)}^{(2)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 20	

Current characteristics Table 85.

1. All power (V_{DD}) and ground (V_{SS}) lines must always be connected to the external supply.

 $I_{INJ(PIN)}$ must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected 2.

З. Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents throughout the device including the analog inputs. To avoid undesirable effects on the analog functions, care must be taken:

- Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the analog voltage is lower than the specified limits)
- Pure digital pins must have a negative injection less than 1.6 mA. In addition, it is recommended to inject the current as far as possible from the analog input pins.

- 4. No negative current injection allowed on PB0 pin.
- When several inputs are submitted to a current injection, the maximum $\Sigma I_{IN,J(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterisation with $\Sigma I_{INJ(PIN)}$ maximum current injection on four I/O port pins of the device. 5.

Table 86.	Thermal	characteristics
-----------	---------	-----------------

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature (see Table 118)	

13.5 Supply current characteristics

The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total device consumption, the two current values must be added (except for Halt mode for which the clock is stopped).

Symbol	Parameter	Conditions ⁽¹⁾		Тур	Max	Unit
I _{DD}	Supply current in Run mode	V _{DD} =5.5V	f _{CPU} = 8 MHz ⁽²⁾	8.5	13	mA
	Supply current in Wait mode		f _{CPU} = 8 MHz ⁽³⁾	3.7	6	
	Supply current in Slow mode		f _{CPU} = 250 kHz ⁽⁴⁾	4.1	7	
	Supply current in Slow-wait mode		$f_{CPU} = 250 \text{ kHz}^{(5)}$	2.2	3.5	
	Supply current in Halt mode ⁽⁶⁾		$-40^{\circ}C \le T_A \le +85 \ ^{\circ}C$	1	10	μΑ
	Supply current in AWUFH mode ⁽⁷⁾⁽⁸⁾		T _A = +25 °C	50	60	
	Supply current in Active-halt mode ⁽⁶⁾⁽⁷⁾		T _A = +25 °C	500	700	

Table 93. Supply current

1. $T_A = -40$ to $+85^{\circ}C$ unless otherwise specified

- 2. CPU running with memory access, all I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (OSC1) driven by external square wave, LVD disabled.
- 3. All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (OSC1) driven by external square wave, LVD disabled.
- Slow mode selected with f_{CPU} based on f_{OSC} divided by 32. All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (OSC1) driven by external square wave, LVD disabled.
- Slow-wait mode selected with f_{CPU} based on f_{OSC} divided by 32. All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (OSC1) driven by external square wave, LVD disabled.
- 6. All I/O pins in output mode with a static value at V_{SS} (no load), LVD disabled. Data based on characterization results, tested in production at V_{DD} max and f_{CPU} max.
- 7. All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load). Data tested in production at V_{DD} max. and f_{CPU} max.
- 8. This consumption refers to the Halt period only and not the associated run period which is software dependent.

13.12 10-bit ADC characteristics

 T_A = -40 °C to 85 °C, unless otherwise specified

Symbol	Parameter	Conditions ⁽¹⁾⁽²⁾	Тур	Max ⁽³⁾	Unit
IE _T I	Total unadjusted error	$f_{CPU} = 8 \text{ MHz},$ $f_{ADC} = 4 \text{ MHz}$ $R_{AIN} < 10\kappa\Omega,$ $V_{DD} = 2.7 \text{ V to 5.5 V}$	4	8	LSB
IE _O I	Offset error		-1	-2	
IE _G I	Gain Error		-2	-4	
IE _D I	Differential linearity error		3	6	

Table 112.ADC accuracy

1. Data based on characterization results over the whole temperature range.

 ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins may reduce the accuracy of the conversion being performed on another analog input. The effect of negative injection current on robust pins is specified in *Section 13.10* Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in *Section 13.9* does not affect the ADC accuracy.

3. Data based on characterization results, monitored in production to guarantee 99.73% within ± max value from -40 °C to +125 °C (± 3σ distribution limits).

Figure 117. ADC accuracy characteristics

