

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	48 MIPS
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.25V
Data Converters	A/D 21x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f383-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 14.9. Multiplexed 8-bit MOVX without Bank Select Timing	. 108
Figure 14.10. Multiplexed 8-bit MOVX with Bank Select Timing	. 109
Figure 17.1. Reset Sources	. 129
Figure 17.2. Power-On and VDD Monitor Reset Timing	. 130
Figure 18.1. Flash Program Memory Map and Security Byte	. 137
Figure 19.1. Oscillator Options	. 142
Figure 19.2. External Crystal Example	. 150
Figure 20.1. Port I/O Functional Block Diagram (Port 0 through Port 3)	. 153
Figure 20.2. Port I/O Cell Block Diagram	. 154
Figure 20.3. Peripheral Availability on Port I/O Pins	. 155
Figure 20.4. Crossbar Priority Decoder in Example Configuration	
(No Pins Skipped)	. 156
Figure 20.5. Crossbar Priority Decoder in Example Configuration (3 Pins Skippe	d)
	. 157
Figure 21.1. USB0 Block Diagram	. 172
Figure 21.2. USB0 Register Access Scheme	. 175
Figure 21.3. USB FIFO Allocation	. 181
Figure 22.1. SMBus Block Diagram	. 205
Figure 22.2. Typical SMBus Configuration	. 206
Figure 22.3. SMBus Transaction	. 207
Figure 22.4. Typical SMBus SCL Generation	. 209
Figure 22.5. Typical Master Write Sequence	. 223
Figure 22.6. Typical Master Read Sequence	. 224
Figure 22.7. Typical Slave Write Sequence	. 225
Figure 22.8. Typical Slave Read Sequence	. 226
Figure 23.1. UART0 Block Diagram	. 232
Figure 23.2. UART0 Baud Rate Logic	. 233
Figure 23.3. UART Interconnect Diagram	. 234
Figure 23.4. 8-Bit UART Timing Diagram	. 234
Figure 23.5. 9-Bit UART Timing Diagram	. 235
Figure 23.6. UART Multi-Processor Mode Interconnect Diagram	. 236
Figure 24.1. UART1 Block Diagram	. 240
Figure 24.2. UART1 Timing Without Parity or Extra Bit	. 242
Figure 24.3. UART1 Timing With Parity	. 242
Figure 24.4. UART1 Timing With Extra Bit	. 242
Figure 24.5. Typical UART Interconnect Diagram	. 243
Figure 24.6. UART Multi-Processor Mode Interconnect Diagram	. 244
Figure 25.1. SPI Block Diagram	. 250
Figure 25.2. Multiple-Master Mode Connection Diagram	. 252
Figure 25.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diag	gram
	. 252
Figure 25.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diag	gram
	. 253
Figure 25.5. Master Mode Data/Clock Timing	. 255
Figure 25.6. Slave Mode Data/Clock Timing (CKPHA = 0)	. 255

USB Register Definition 21.19. EENABLE: USB0 Endpoint Enable 197 USB Register Definition 21.21. EINCSRH: USB0 IN Endpoint Control High 200 USB Register Definition 21.22. EOUTCSRL: USB0 OUT Endpoint Control Low Byte 202 USB Register Definition 21.23. EOUTCSRH: USB0 OUT Endpoint Control High Byte 203 USB Register Definition 21.24. EOUTCNTL: USB0 OUT Endpoint Count Low 203 USB Register Definition 21.25. EOUTCNTH: USB0 OUT Endpoint Count High 204 SFR Definition 22.11. SMB1DAT: SMBus Data 222 SFR Definition 24.4. SBCON1: UART1 Baud Rate Generator Control 248 SFR Definition 24.5. SBRLH1: UART1 Baud Rate Generator High Byte 248 SFR Definition 24.6. SBRLL1: UART1 Baud Rate Generator Low Byte 249 SFR Definition 26.5. TL0: Timer 0 Low Byte 272 SFR Definition 26.7. TH0: Timer 0 High Byte 273 SFR Definition 26.8. TH1: Timer 1 High Byte 273 SFR Definition 26.10. TMR2RLL: Timer 2 Reload Register Low Byte 279 SFR Definition 26.12. TMR2L: Timer 2 Low Byte 279 SFR Definition 26.13. TMR2H Timer 2 High Byte 280

C8051F380/1/2/3/4/5/6/7/C

Figure 3.1. TQFP-48 Pinout Diagram (Top View)

6.3.3. Settling Time Requirements

A minimum tracking time is required before each conversion to ensure that an accurate conversion is performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion. Note that in low-power tracking mode, three SAR clocks are used for tracking at the start of every conversion. For most applications, these three SAR clocks will meet the minimum tracking time requirements.

Figure 6.5 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 6.1. See Table 5.10 for ADC0 minimum settling time requirements as well as the mux impedance and sampling capacitor values.

Equation 6.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance. *n* is the ADC resolution in bits (10).

Differential Mode

Single-Ended Mode

Figure 6.5. ADC0 Equivalent Input Circuits

6.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 6.5. ADC0GTH: ADC0 Greater-Than Data High Byte

Bit	7	6	5	4	3	2	1	0			
Name	ADC0GTH[7:0]										
Туре				R/	W						
Reset											
SFR Ad	SFR Address = 0xC4; SFR Page = All Pages										

Bit	Name	Function
7:0	ADC0GTH[7:0]	ADC0 Greater-Than Data Word High-Order Bits.

SFR Definition 6.6. ADC0GTL: ADC0 Greater-Than Data Low Byte

Bit	7	6	5	4	3	2	1	0
Nam	ADC0GTL[7:0]							
Туре	R/W							
Rese	et 1	1	1	1	1	1	1	1
SFR A	Address = 0xC3	; SFR Page	e = All Pages					
Bit	Name				Function			
7:0	ADC0GTL[7:0	ADC0 Gr	eater-Than	Data Word	Low-Order	Bits.		

C8051F380/1/2/3/4/5/6/7/C

With the CIP-51's maximum system clock at 48 MHz, it has a peak throughput of 48 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	2/4	3	3/5	4	5	4/6	6	8
Number of Instructions	26	50	5	10	6	5	2	2	2	1

Programming and Debugging Support

In-system programming of the Flash program memory and communication with on-chip debug support logic is accomplished via the Silicon Labs 2-Wire Development Interface (C2).

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or other on-chip resources. C2 details can be found in Section "28. C2 Interface" on page 316.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs provides an integrated development environment (IDE) including editor, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via the C2 interface to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

11.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51[™] instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51[™] counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

11.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 11.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

C8051F380/1/2/3/4/5/6/7/C

SFR Definition 14.1. EMI0CN: External Memory Interface Control

Bit	7	6	5	4	3	2	1	0
Name	PGSEL[7:0]							
Туре				R/	W			
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xAA; SFR Page = All Pages

Bit	Name	Function
7:0	PGSEL[7:0]	XRAM Page Select Bits.
		The XRAM Page Select Bits provide the high byte of the 16-bit external data mem- ory address when using an 8-bit MOVX command, effectively selecting a 256-byte page of RAM. 0x00: 0x0000 to 0x00FF 0x01: 0x0100 to 0x01FF 0xFE: 0xFE00 to 0xFEFF 0xFF: 0xFF00 to 0xFFFF

SFR Definition 14.3. EMI0TC: External Memory Timing Control

Bit	7	6	5	4	3	2	1	0		
Name	EAS	5[1:0]	EWR[3:0] EAH[1:0]							
Туре	R	/W		R/\	N		R/	W		
Reset	1	1	1	1	1	1	1 1			

SFR Address = 0x84; SFR Page = All Pages

Bit	Name	Function
7:6	EAS[1:0]	EMIF Address Setup Time Bits.
		00: Address setup time = 0 SYSCLK cycles.
		01: Address setup time = 1 SYSCLK cycle.
		10: Address setup time = 2 SYSCLK cycles.
		11: Address setup time = 3 SYSCLK cycles.
5:2	EWR[3:0]	EMIF WR and RD Pulse-Width Control Bits.
		0000: $\overline{\text{WR}}$ and $\overline{\text{RD}}$ pulse width = 1 SYSCLK cycle.
		0001: $\overline{\text{WR}}$ and $\overline{\text{RD}}$ pulse width = 2 SYSCLK cycles.
		0010: $\overline{\text{WR}}$ and $\overline{\text{RD}}$ pulse width = 3 SYSCLK cycles.
		0011: $\overline{\text{WR}}$ and $\overline{\text{RD}}$ pulse width = 4 SYSCLK cycles.
		0100: $\overline{\text{WR}}$ and $\overline{\text{RD}}$ pulse width = 5 SYSCLK cycles.
		0101: $\overline{\text{WR}}$ and $\overline{\text{RD}}$ pulse width = 6 SYSCLK cycles.
		0110: WR and RD pulse width = 7 SYSCLK cycles.
		0111: WR and RD pulse width = 8 SYSCLK cycles.
		1000: <u>WR</u> and <u>RD</u> pulse width = 9 SYSCLK cycles.
		1001: WR and RD pulse width = 10 SYSCLK cycles.
		1010: WR and RD pulse width = 11 SYSCLK cycles.
		1011: WR and RD pulse width = 12 SYSCLK cycles.
		1100: WR and RD pulse width = 13 SYSCLK cycles.
		1101: WR and RD pulse width = 14 SYSCLK cycles.
		1110: WR and RD pulse width = 15 SYSCLK cycles.
		TITT. WR and RD pulse width = 16 STSCLK cycles.
1:0	EAH[1:0]	EMIF Address Hold Time Bits.
		00: Address hold time = 0 SYSCLK cycles.
		01: Address hold time = 1 SYSCLK cycle.
		10: Address hold time = 2 SYSCLK cycles.
		11: Address hold time = 3 SYSCLK cycles.

SFR Definition 16.7. IT01CF: INT0/INT1 Configuration

Bit	7	6	5	4	3	2	1	0
Nam	e IN1PL		IN1SL[2:0]	I	IN0PL		IN0SL[2:0]	
Туре	R/W		R/W		R/W		R/W	
Rese	et O	0	0	0	0	0	0	1
SFR A	ddress = 0x	E4; SFR Page	e = 0	1			1	1
Bit	Name	Function						
7	IN1PL	INT1 Polarity 0: INT1 input 1: INT1 input	y. is active low is active hig	<i>ı.</i> h.				
6:4	IN1SL[2:0]	INT1 Port Pi These bits se independent ing the peripf will not assig 000: Select F 001: Select F 010: Select F 100: Select F 101: Select F 101: Select F 110: Select F 111: Select F	n Selection elect which P of the Cross neral that has n the Port pi 20.0 20.1 20.2 20.3 20.4 20.5 20.6 20.7	Bits. Port p <u>in is as</u> bar; INT1 w s been assig n to a periph	signed to IN ill monitor the gned the Port heral if it is co	T1. Note tha e assigned F t pin via the (onfigured to	t this pin ass Port pin withc Crossbar. Th skip the sele	ignment is out disturb- e Crossbar cted pin.
3	INOPL	0: INTO Polarity 0: INTO input 1: INTO input	y. is active low is active hig	<i>ı</i> . h.				
2:0	INOSL[2:0]	INTO Port Pi These bits se independent ing the peripl will not assig 000: Select F 001: Select F 010: Select F 100: Select F 100: Select F 101: Select F 110: Select F 111: Select F	n Selection elect which P of the Cross neral that has n the Port pi 20.0 20.1 20.2 20.3 20.4 20.5 20.6 20.7	Bits. Port pin is as bar; INT0 w s been assig n to a periph	signed to IN ill monitor the gned the Port heral if it is co	T0. Note tha e assigned F t pin via the (onfigured to	t this pin ass Port pin withc Crossbar. Th skip the sele	ignment is out disturb- e Crossbar cted pin.

17. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the \overline{RST} pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source. Program execution begins at location 0x0000.

Figure 17.1. Reset Sources

19.6. External Oscillator Drive Circuit

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. Figure 19.1 shows a block diagram of the four external oscillator options. The external oscillator is enabled and configured using the OSCXCN register (see SFR Definition 19.6).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.2 and P0.3 are used as XTAL1 and XTAL2, respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is used as XTAL2. The Port I/O Crossbar should be configured to skip the Port pin used by the oscillator circuit; see Section "20.1. Priority Crossbar Decoder" on page 154 for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as **analog inputs**. In CMOS clock mode, the associated pin should be configured as a **digital input**. See Section "20.2. Port I/O Initialization" on page 158 for details on Port input mode selection.

The external oscillator output may be selected as the system clock or used to clock some of the digital peripherals (e.g. Timers, PCA, etc.). See the data sheet chapters for each digital peripheral for details. See Section "5. Electrical Characteristics" on page 37 for complete oscillator specifications.

19.6.1. External Crystal Mode

If a crystal or ceramic resonator is used as the external oscillator, the crystal/resonator and a 10 M Ω resistor must be wired across the XTAL1 and XTAL2 pins as shown in Figure 19.1, "Crystal Mode". Appropriate loading capacitors should be added to XTAL1 and XTAL2, and both pins should be configured for analog I/O with the digital output drivers disabled.

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The recommended load capacitance depends upon the crystal and the manufacturer. Refer to the crystal data sheet when completing these calculations.

The equation for determining the load capacitance for two capacitors is

$$C_{L} = \frac{C_{A} \times C_{B}}{C_{A} + C_{B}} + C_{S}$$

Where:

 C_A and C_B are the capacitors connected to the crystal leads.

 C_S is the total stray capacitance of the PCB.

The stray capacitance for a typical layout where the crystal is as close as possible to the pins is 2-5 pF per pin.

If C_A and C_B are the same (C), then the equation becomes

$$C_{L} = \frac{C}{2} + C_{S}$$

For example, a tuning-fork crystal of 32 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 19.1, Option 1. With a stray capacitance of 3 pF per pin (6 pF total), the 13 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 19.2.

SFR Definition 20.3. XBR2: Port I/O Crossbar Register 2

Bit	7	6	5	4	3	2	1	0
Name							SMB1E	URT1E
Туре	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE3; SFR Page = All Pages

Bit	Name	Function
7:2	Reserved	Must write 000000b
1	SMB1E	SMBus1 I/O Enable. 0: SMBus1 I/O unavailable at Port pins. 1: SMBus1 I/O routed to Port pins.
0	URT1E	UART1 I/OEnable. 0: UART1 I/O unavailable at Port pins. 1: UART1 TX1, RX1 routed to Port pins.

20.3. General Purpose Port I/O

Port pins that remain unassigned by the Crossbar and are not used by analog peripherals can be used for general purpose I/O. Ports 3-0 are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable. Port 4 (C8051F380/2/4/6 only) uses an SFR which is byte-addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a Port SFR. For these instructions, the value of the register (not the pin) is read, modified, and written back to the SFR.

SFR Definition 20.18. P3MDOUT: Port 3 Output Mode

Bit	7	6	6 5 4 3				1	0			
Name	P3MDOUT[7:0]										
Туре	R/W										
Reset	0	0	0	0	0	0	0	0			

SFR Address = 0xA7; SFR Page = All Pages

Bit	Name	Function
7:0	P3MDOUT[7:0]	Output Configuration Bits for P3.7–P3.0 (respectively).
		These bits are ignored if the corresponding bit in register P3MDIN is logic 0. 0: Corresponding P3.n Output is open-drain. 1: Corresponding P3.n Output is push-pull.

SFR Definition 20.19. P3SKIP: Port 3 Skip

Bit	7	6	5	4	3	2	1	0				
Name	P3SKIP[7:0]											
Туре	R/W											
Reset	0	0	0	0	0	0	0	0				

SFR Address = 0xDF; SFR Page = All Pages

Bit	Name	Function
7:0	P3SKIP[3:0]	Port 3 Crossbar Skip Enable Bits.
		These bits select Port 3 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar.0: Corresponding P3.n pin is not skipped by the Crossbar.1: Corresponding P3.n pin is skipped by the Crossbar.

21.5. FIFO Management

1024 bytes of on-chip XRAM are used as FIFO space for USB0. This FIFO space is split between Endpoints0-3 as shown in Figure 21.3. FIFO space allocated for Endpoints1-3 is configurable as IN, OUT, or both (Split Mode: half IN, half OUT).

Figure 21.3. USB FIFO Allocation

21.5.1. FIFO Split Mode

The FIFO space for Endpoints1-3 can be split such that the upper half of the FIFO space is used by the IN endpoint, and the lower half is used by the OUT endpoint. For example: if the Endpoint3 FIFO is configured for Split Mode, the upper 256 bytes (0x0540 to 0x063F) are used by Endpoint3 IN and the lower 256 bytes (0x0440 to 0x053F) are used by Endpoint3 OUT.

If an endpoint FIFO is not configured for Split Mode, that endpoint IN/OUT pair's FIFOs are combined to form a single IN *or* OUT FIFO. In this case only one direction of the endpoint IN/OUT pair may be used at a time. The endpoint direction (IN/OUT) is determined by the DIRSEL bit in the corresponding endpoint's EINCSRH register (see SFR Definition 21.13).

USB Register Definition 21.9. FRAMEL: USB0 Frame Number Low

Bit	7	6	5	4	3	2	1	0					
Nam	e	FRMEL[7:0]											
Тур	e	R											
Rese	et 0	0	0	0	0	0	0	0					
USB I	Register Addr	ess = 0x0C		•			•						
Bit	Name				Function								
7:0	FRMEL[7:0]	Frame Num	Frame Number Low Bits.										
		This register	contains bit	s 7-0 of the l	ast received	frame numb	ber.						

USB Register Definition 21.10. FRAMEH: USB0 Frame Number High

Bit	7	6	5	4	3	2	0				
Name						FRMEH[2:0]					
Туре	R	R	R	R	R	R					
Reset	0	0	0	0	0	0	0	0			

USB Register Address = 0x0D

Bit	Name	Function
7:3	Unused	Read = 00000b. Write = don't care.
2:0	FRMEH[2:0]	Frame Number High Bits.
		This register contains bits 10-8 of the last received frame number.

21.8. Interrupts

The read-only USB0 interrupt flags are located in the USB registers shown in USB Register Definition 21.11 through USB Register Definition 21.13. The associated interrupt enable bits are located in the USB registers shown in USB Register Definition 21.14 through USB Register Definition 21.16. A USB0 interrupt is generated when any of the USB interrupt flags is set to 1. The USB0 interrupt is enabled via the EIE1 SFR (see Section "16. Interrupts" on page 118).

Important Note: Reading a USB interrupt flag register resets all flags in that register to 0.

22.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames. The position of the ACK interrupt when operating as a receiver depends on whether hardware ACK generation is enabled. As a receiver, the interrupt for an ACK occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled. As a transmitter, interrupts occur **after** the ACK, regardless of whether hardware ACK generation is enabled or not.

22.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. The interface will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt. Figure 22.5 shows a typical master write sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 22.5. Typical Master Write Sequence

Table 22.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0)
--

	Valu	es I	Rea	d			Va V	lues Vrit	sto e	tus ected			
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Sta Vector Exp			
	1110	0	0	х	A master START was gener- ated.	Load slave address + R/W into SMB0DAT.	0	0	Х	1100			
er		0	0	0	A master data or address byte was transmitted; NACK received.	Set STA to restart transfer. Abort transfer.	1 0	0	X X	1110			
Insmitt					A master data or address byte was transmitted; ACK received.	Load next data byte into SMB0- DAT.	0	0	Х	1100			
Tra	1100					End transfer with STOP.	0	1	Х	—			
Aaster	1100	0	0	1		End transfer with STOP and start another transfer.	1	1	Х				
						Send repeated START.	1	0	Х	1110			
						Switch to Master Receiver Mode (clear SI without writing new data to SMB0DAT).	0	0	Х	1000			
						Acknowledge received byte; Read SMB0DAT.	0	0	1	1000			
									Send NACK to indicate last byte, and send STOP.	0	1	0	_
ver						Send NACK to indicate last byte, and send STOP followed by START.	1	1	0	1110			
. Recei	1000	1	0	x	A master data byte was received; ACK requested.	Send ACK followed by repeated START.	1	0	1	1110			
Mastei						Send NACK to indicate last byte, and send repeated START.	1	0	0	1110			
						Send ACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	1	1100			
						Send NACK and switch to Mas- ter Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	0	1100			

Table 22.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0) (Continued)

	Valu	es F	Rea	d			Va V	lues Vrit	sto e	tus ected
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Sta Vector Exp
		0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	0001
smitte	0100	0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	Х	0100
e Tran		0	1	x	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	Х	0001
Slav	0101	0	x	x	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	Х	
					A slave address + RAM was	If Write, Acknowledge received address	0	0	1	0000
		1	0	x	A slave address + R/W was received; ACK requested.	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
						NACK received address.	0	0	0	—
	0010					If Write, Acknowledge received address	0	0	1	0000
iver		1	1	x	Lost arbitration as master; slave address + R/W received;	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
sece					ACK requested.	NACK received address.	0	0	0	
slave R						Reschedule failed transfer; NACK received address.	1	0	0	1110
	0001	0	0	x	A STOP was detected while addressed as a Slave Trans- mitter or Slave Receiver.	Clear STO.	0	0	Х	
		1	1	x	Lost arbitration while attempt- ing a STOP.	No action required (transfer complete/aborted).	0	0	0	
	0000	1	0	x	A slave byte was received;	Acknowledge received byte; Read SMB0DAT.	0	0	1	0000
					non lequested.	NACK received byte.	0	0	0	—

25. Enhanced Serial Peripheral Interface (SPI0)

The Enhanced Serial Peripheral Interface (SPI0) provides access to a flexible, full-duplex synchronous serial bus. SPI0 can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPI0 in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

28.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (RST) and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 28.1.

Figure 28.1. Typical C2 Pin Sharing

The configuration in Figure 28.1 assumes the following:

- 1. The user input (b) cannot change state while the target device is halted.
- 2. The \overline{RST} pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

