
Silicon Labs - C8051F385-GM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 48 MIPS

Connectivity I²C, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 25

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4.25K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.25V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-QFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f385-gm

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f385-gm-4390734
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F380/1/2/3/4/5/6/7/C

31 Rev. 1.4

Figure 3.7. QFN-32 Pinout Diagram (Top View)

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 54

SFR Address = 0xBE; SFR Page = All Pages

SFR Address = 0xBD; SFR Page = All Pages

SFR Definition 6.2. ADC0H: ADC0 Data Word MSB

Bit 7 6 5 4 3 2 1 0

Name ADC0H[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 ADC0H[7:0] ADC0 Data Word High-Order Bits.
For AD0LJST = 0: Bits 7–2 will read 000000b. Bits 1–0 are the upper 2 bits of the 10-
bit ADC0 Data Word.
For AD0LJST = 1: Bits 7–0 are the most-significant bits of the 10-bit ADC0 Data
Word.

SFR Definition 6.3. ADC0L: ADC0 Data Word LSB

Bit 7 6 5 4 3 2 1 0

Name ADC0L[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 ADC0L[7:0] ADC0 Data Word Low-Order Bits.
For AD0LJST = 0: Bits 7–0 are the lower 8 bits of the 10-bit Data Word.
For AD0LJST = 1: Bits 7–6 are the lower 2 bits of the 10-bit Data Word. Bits 5–0 will
read 000000b.

C8051F380/1/2/3/4/5/6/7/C

80 Rev. 1.4

With the CIP-51's maximum system clock at 48 MHz, it has a peak throughput of 48 MIPS. The CIP-51 has
a total of 109 instructions. The table below shows the total number of instructions that require each execu-
tion time.

Programming and Debugging Support
In-system programming of the Flash program memory and communication with on-chip debug support
logic is accomplished via the Silicon Labs 2-Wire Development Interface (C2).

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware
breakpoints, starting, stopping and single stepping through program execution (including interrupt service
routines), examination of the program's call stack, and reading/writing the contents of registers and mem-
ory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or
other on-chip resources. C2 details can be found in Section “28. C2 Interface” on page 316.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs pro-
vides an integrated development environment (IDE) including editor, debugger and programmer. The IDE's
debugger and programmer interface to the CIP-51 via the C2 interface to provide fast and efficient in-sys-
tem device programming and debugging. Third party macro assemblers and C compilers are also avail-
able.

11.1. Instruction Set
The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51™ instruc-
tion set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51
instructions are the binary and functional equivalent of their MCS-51™ counterparts, including opcodes,
addressing modes and effect on PSW flags. However, instruction timing is different than that of the stan-
dard 8051.

11.1.1. Instruction and CPU Timing
In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with
machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based
solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock
cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock
cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 11.1 is the
CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock
cycles for each instruction.

Clocks to Execute 1 2 2/4 3 3/5 4 5 4/6 6 8

Number of Instructions 26 50 5 10 6 5 2 2 2 1

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 87

SFR Address = 0xD0; SFR Page = All Pages; Bit-Addressable

SFR Definition 11.6. PSW: Program Status Word

Bit 7 6 5 4 3 2 1 0

Name CY AC F0 RS[1:0] OV F1 PARITY

Type R/W R/W R/W R/W R/W R/W R

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 CY Carry Flag.
This bit is set when the last arithmetic operation resulted in a carry (addition) or a bor-
row (subtraction). It is cleared to logic 0 by all other arithmetic operations.

6 AC Auxiliary Carry Flag.
This bit is set when the last arithmetic operation resulted in a carry into (addition) or a
borrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arith-
metic operations.

5 F0 User Flag 0.
This is a bit-addressable, general purpose flag for use under software control.

4:3 RS[1:0] Register Bank Select.
These bits select which register bank is used during register accesses.
00: Bank 0, Addresses 0x00-0x07
01: Bank 1, Addresses 0x08-0x0F
10: Bank 2, Addresses 0x10-0x17
11: Bank 3, Addresses 0x18-0x1F

2 OV Overflow Flag.
This bit is set to 1 under the following circumstances:

An ADD, ADDC, or SUBB instruction causes a sign-change overflow.
A MUL instruction results in an overflow (result is greater than 255).
A DIV instruction causes a divide-by-zero condition.

The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all
other cases.

1 F1 User Flag 1.
This is a bit-addressable, general purpose flag for use under software control.

0 PARITY Parity Flag.
This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared
if the sum is even.

C8051F380/1/2/3/4/5/6/7/C

96 Rev. 1.4

SFR Address = 0xAA; SFR Page = All Pages

SFR Definition 14.1. EMI0CN: External Memory Interface Control

Bit 7 6 5 4 3 2 1 0

Name PGSEL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 PGSEL[7:0] XRAM Page Select Bits.
The XRAM Page Select Bits provide the high byte of the 16-bit external data mem-
ory address when using an 8-bit MOVX command, effectively selecting a 256-byte
page of RAM.
0x00: 0x0000 to 0x00FF
0x01: 0x0100 to 0x01FF
...
0xFE: 0xFE00 to 0xFEFF
0xFF: 0xFF00 to 0xFFFF

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 99

Figure 14.3. Non-multiplexed Configuration Example

C8051F380/1/2/3/4/5/6/7/C

112 Rev. 1.4

Table 15.1. Special Function Register (SFR) Memory Map

A
dd

re
ss

P
ag

e

0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

F8 SPI0CN PCA0L PCA0H PCA0CPL0 PCA0CPH0 PCA0CPL4 PCA0CPH4 VDM0CN
F0 B P0MDIN P1MDIN P2MDIN P3MDIN P4MDIN EIP1 EIP2
E8 ADC0CN PCA0CPL1 PCA0CPH1 PCA0CPL2 PCA0CPH2 PCA0CPL3 PCA0CPH3 RSTSRC

E0
0

ACC XBR0 XBR1 XBR2
IT01CF

SMOD1 EIE1 EIE2
F CKCON1

D8 PCA0CN PCA0MD PCA0CPM0 PCA0CPM1 PCA0CPM2 PCA0CPM3 PCA0CPM4 P3SKIP
D0 PSW REF0CN SCON1 SBUF1 P0SKIP P1SKIP P2SKIP USB0XCN

C8
0 TMR2CN

REG01CN
TMR2RLL TMR2RLH TMR2L TMR2H SMB0ADM SMB0ADR

F TMR5CN TMR5RLL TMR5RLH TMR5L TMR5H SMB1ADM SMB1ADR

C0
0 SMB0CN SMB0CF SMB0DAT

ADC0GTL ADC0GTH ADC0LTL ADC0LTH P4
F SMB1CN SMB1CF SMB1DAT

B8
0

IP
CLKMUL

AMX0N AMX0P
ADC0CF

ADC0L ADC0H SFRPAGE
F SMBTC

B0 P3 OSCXCN OSCICN OSCICL SBRLL1 SBRLH1 FLSCL FLKEY
A8 IE CLKSEL EMI0CN SBCON1 P4MDOUT PFE0CN
A0 P2 SPI0CFG SPI0CKR SPI0DAT P0MDOUT P1MDOUT P2MDOUT P3MDOUT
98 SCON0 SBUF0 CPT1CN CPT0CN CPT1MD CPT0MD CPT1MX CPT0MX

90
0

P1
TMR3CN TMR3RLL TMR3RLH TMR3L TMR3H

USB0ADR USB0DAT
F TMR4CN TMR4RLL TMR4RLH TMR4L TMR4H

88 TCON TMOD TL0 TL1 TH0 TH1 CKCON PSCTL
80 P0 SP DPL DPH EMI0TC EMI0CF OSCLCN PCON

0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)
Notes:

1. SFR Addresses ending in 0x0 or 0x8 are bit-addressable locations and can be used with bitwise instructions.
2. Unless indicated otherwise, SFRs are available on both page 0 and page F.

C8051F380/1/2/3/4/5/6/7/C

127 Rev. 1.4

16.3. INT0 and INT1 External Interrupt Sources
The INT0 and INT1 external interrupt sources are configurable as active high or low, edge or level sensi-
tive. The IN0PL (INT0 Polarity) and IN1PL (INT1 Polarity) bits in the IT01CF register select active high or
active low; the IT0 and IT1 bits in TCON (Section “26.1. Timer 0 and Timer 1” on page 266) select level or
edge sensitive. The table below lists the possible configurations.

INT0 and INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 16.7). Note
that INT0 and INT0 Port pin assignments are independent of any Crossbar assignments. INT0 and INT1
will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the
Crossbar. To assign a Port pin only to INT0 and/or INT1, configure the Crossbar to skip the selected pin(s).
This is accomplished by setting the associated bit in register PnSKIP (see Section “20.1. Priority Crossbar
Decoder” on page 154 for complete details on configuring the Crossbar).

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INT0 and INT1 external inter-
rupts, respectively. If an INT0 or INT1 external interrupt is configured as edge-sensitive, the corresponding
interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When
configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined
by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The
external interrupt source must hold the input active until the interrupt request is recognized. It must then
deactivate the interrupt request before execution of the ISR completes or another interrupt request will be
generated.

IT0 IN0PL INT0 Interrupt IT1 IN1PL INT1 Interrupt
1 0 Active low, edge sensitive 1 0 Active low, edge sensitive

1 1 Active high, edge sensitive 1 1 Active high, edge sensitive

0 0 Active low, level sensitive 0 0 Active low, level sensitive

0 1 Active high, level sensitive 0 1 Active high, level sensitive

C8051F380/1/2/3/4/5/6/7/C

152 Rev. 1.4

SFR Address = 0xB1; SFR Page = All Pages

SFR Definition 19.6. OSCXCN: External Oscillator Control

Bit 7 6 5 4 3 2 1 0

Name XCLKVLD XOSCMD[2:0] XFCN[2:0]

Type R R/W R R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 XCLKVLD External Oscillator Valid Flag.
Provides External Oscillator status and is valid at all times for all modes of opera-
tion except External CMOS Clock Mode and External CMOS Clock Mode with
divide by 2. In these modes, XCLKVLD always returns 0.
0: External Oscillator is unused or not yet stable.
1: External Oscillator is running and stable.

6:4 XOSCMD[2:0] External Oscillator Mode Select.
00x: External Oscillator circuit off.
010: External CMOS Clock Mode.
011: External CMOS Clock Mode with divide-by-2 stage.
100: RC Oscillator Mode with divide-by-2 stage.
101: Capacitor Oscillator Mode with divide-by-2 stage.
110: Crystal Oscillator Mode.
111: Crystal Oscillator Mode with divide-by-2 stage.

3 Unused Read = 0; Write = don’t care

2:0 XFCN[2:0] External Oscillator Frequency Control Bits.
Set according to the desired frequency for RC mode.
Set according to the desired K Factor for C mode.

XFCN Crystal Mode RC Mode C Mode

000 f 20 kHz f 25 kHz K Factor = 0.87

001 20 kHz f 58 kHz 25 kHz f 50 kHz K Factor = 2.6

010 58 kHz f 155 kHz 50 kHz f 100 kHz K Factor = 7.7

011 155 kHz f 415 kHz 100 kHz f 200 kHz K Factor = 22

100 415 kHz f 1.1 MHz 200 kHz f 400 kHz K Factor = 65

101 1.1 MHz f 3.1 MHz 400 kHz f 800 kHz K Factor = 180

110 3.1 MHz f 8.2 MHz 800 kHz f 1.6 MHz K Factor = 664

111 8.2 MHz f 25 MHz 1.6 MHz f 3.2 MHz K Factor = 1590

C8051F380/1/2/3/4/5/6/7/C

193 Rev. 1.4

21.9. The Serial Interface Engine
The Serial Interface Engine (SIE) performs all low level USB protocol tasks, interrupting the processor
when data has successfully been transmitted or received. When receiving data, the SIE will interrupt the
processor when a complete data packet has been received; appropriate handshaking signals are automat-
ically generated by the SIE. When transmitting data, the SIE will interrupt the processor when a complete
data packet has been transmitted and the appropriate handshake signal has been received.

The SIE will not interrupt the processor when corrupted/erroneous packets are received.

21.10. Endpoint0
Endpoint0 is managed through the USB register E0CSR (USB Register Definition 21.18). The INDEX reg-
ister must be loaded with 0x00 to access the E0CSR register.

An Endpoint0 interrupt is generated when:

1. A data packet (OUT or SETUP) has been received and loaded into the Endpoint0 FIFO. The OPRDY
bit (E0CSR.0) is set to 1 by hardware.

2. An IN data packet has successfully been unloaded from the Endpoint0 FIFO and transmitted to the
host; INPRDY is reset to 0 by hardware.

3. An IN transaction is completed (this interrupt generated during the status stage of the transaction).
4. Hardware sets the STSTL bit (E0CSR.2) after a control transaction ended due to a protocol violation.
5. Hardware sets the SUEND bit (E0CSR.4) because a control transfer ended before firmware sets the

DATAEND bit (E0CSR.3).

The E0CNT register (USB Register Definition 21.11) holds the number of received data bytes in the End-
point0 FIFO.

Hardware will automatically detect protocol errors and send a STALL condition in response. Firmware may
force a STALL condition to abort the current transfer. When a STALL condition is generated, the STSTL bit
will be set to 1 and an interrupt generated. The following conditions will cause hardware to generate a
STALL condition:

1. The host sends an OUT token during a OUT data phase after the DATAEND bit has been set to 1.
2. The host sends an IN token during an IN data phase after the DATAEND bit has been set to 1.
3. The host sends a packet that exceeds the maximum packet size for Endpoint0.
4. The host sends a non-zero length DATA1 packet during the status phase of an IN transaction.

Firmware sets the SDSTL bit (E0CSR.5) to 1.

21.10.1. Endpoint0 SETUP Transactions
All control transfers must begin with a SETUP packet. SETUP packets are similar to OUT packets, contain-
ing an 8-byte data field sent by the host. Any SETUP packet containing a command field of anything other
than 8 bytes will be automatically rejected by USB0. An Endpoint0 interrupt is generated when the data
from a SETUP packet is loaded into the Endpoint0 FIFO. Software should unload the command from the
Endpoint0 FIFO, decode the command, perform any necessary tasks, and set the SOPRDY bit to indicate
that it has serviced the OUT packet.

21.10.2. Endpoint0 IN Transactions
When a SETUP request is received that requires USB0 to transmit data to the host, one or more IN
requests will be sent by the host. For the first IN transaction, firmware should load an IN packet into the
Endpoint0 FIFO, and set the INPRDY bit (E0CSR.1). An interrupt will be generated when an IN packet is
transmitted successfully. Note that no interrupt will be generated if an IN request is received before firm-

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 207

All transactions are initiated by a master, with one or more addressed slave devices as the target. The
master generates the START condition and then transmits the slave address and direction bit. If the trans-
action is a WRITE operation from the master to the slave, the master transmits the data a byte at a time
waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the
data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master
generates a STOP condition to terminate the transaction and free the bus. Figure 22.3 illustrates a typical
SMBus transaction.

Figure 22.3. SMBus Transaction

22.3.1. Transmitter Vs. Receiver
On the SMBus communications interface, a device is the “transmitter” when it is sending an address or
data byte to another device on the bus. A device is a “receiver” when an address or data byte is being sent
to it from another device on the bus. The transmitter controls the SDA line during the address or data byte.
After each byte of address or data information is sent by the transmitter, the receiver sends an ACK or
NACK bit during the ACK phase of the transfer, during which time the receiver controls the SDA line.

22.3.2. Arbitration
A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL
and SDA lines remain high for a specified time (see Section “22.3.5. SCL High (SMBus Free) Timeout” on
page 208). In the event that two or more devices attempt to begin a transfer at the same time, an arbitra-
tion scheme is employed to force one master to give up the bus. The master devices continue transmitting
until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be
pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning
master continues its transmission without interruption; the losing master becomes a slave and receives the
rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and
no data is lost.

22.3.3. Clock Low Extension
SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different
speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow
slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line
LOW to extend the clock low period, effectively decreasing the serial clock frequency.

22.3.4. SCL Low Timeout
If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore,
the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus
protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than
25 ms as a “timeout” condition. Devices that have detected the timeout condition must reset the communi-
cation no later than 10 ms after detecting the timeout condition.

For the SMBus0 interface, Timer 3 is used to implement SCL low timeouts. Timer 4 is used on the SMBus1
interface for SCL low timeouts. The SCL low timeout feature is enabled by setting the SMBnTOE bit in
SMBnCF. The associated timer is forced to reload when SCL is high, and allowed to count when SCL is

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 225

22.5.3. Write Sequence (Slave)
During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be
a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled
(INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direc-
tion bit (WRITE in this case) is received. If hardware ACK generation is disabled, upon entering Slave
Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the
received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK
generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set
up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the
next START is detected. If the received slave address is acknowledged, zero or more data bytes are
received.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each
received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK,
and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be
set up by the software prior to receiving the byte when hardware ACK generation is enabled.

The interface exits Slave Receiver Mode after receiving a STOP. The interface will switch to Slave Trans-
mitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 22.7 shows a typical slave write
sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that
the ‘data byte transferred’ interrupts occur at different places in the sequence, depending on whether hard-
ware ACK generation is enabled. The interrupt occurs before the ACK with hardware ACK generation dis-
abled, and after the ACK when hardware ACK generation is enabled.

Figure 22.7. Typical Slave Write Sequence

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 232

23. UART0
UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART.
Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details
in Section “23.1. Enhanced Baud Rate Generation” on page 233). Received data buffering allows UART0
to start reception of a second incoming data byte before software has finished reading the previous data
byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0).
The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0
always access the Transmit register. Reads of SBUF0 always access the buffered Receive register;
it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in
SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not
cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually
by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive
complete).

Figure 23.1. UART0 Block Diagram

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 240

24. UART1
UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated
baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide
range of baud rates (details in Section “24.1. Baud Rate Generator” on page 241). A received data FIFO
allows UART1 to receive up to three data bytes before data is lost and an overflow occurs.

UART1 has six associated SFRs. Three are used for the Baud Rate Generator (SBCON1, SBRLH1, and
SBRLL1), two are used for data formatting, control, and status functions (SCON1, SMOD1), and one is
used to send and receive data (SBUF1). The single SBUF1 location provides access to both the transmit
holding register and the receive FIFO. Writes to SBUF1 always access the Transmit Holding Register.
Reads of SBUF1 always access the first byte of the Receive FIFO; it is not possible to read data
from the Transmit Holding Register.

With UART1 interrupts enabled, an interrupt is generated each time a transmit is completed (TI1 is set in
SCON1), or a data byte has been received (RI1 is set in SCON1). The UART1 interrupt flags are not
cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually
by software, allowing software to determine the cause of the UART1 interrupt (transmit complete or receive
complete). Note that if additional bytes are available in the Receive FIFO, the RI1 bit cannot be cleared by
software.

Figure 24.1. UART1 Block Diagram

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 246

SFR Address = 0xE5; SFR Page = All Pages

SFR Definition 24.2. SMOD1: UART1 Mode

Bit 7 6 5 4 3 2 1 0

Name MCE1 S1PT[1:0] PE1 S1DL[1:0] XBE1 SBL1

Type R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 1 1 0 0

Bit Name Function
7 MCE1 Multiprocessor Communication Enable.

0: RI will be activated if stop bit(s) are 1.
1: RI will be activated if stop bit(s) and extra bit are 1 (extra bit must be enabled using
XBE1).
Note: This function is not available when hardware parity is enabled.

6:5 S1PT[1:0] Parity Type Bits.
00: Odd
01: Even
10: Mark
11: Space

4 PE1 Parity Enable.
This bit activates hardware parity generation and checking. The parity type is selected
by bits S1PT1-0 when parity is enabled.
0: Hardware parity is disabled.
1: Hardware parity is enabled.

3:2 S1DL[1:0] Data Length.
00: 5-bit data
01: 6-bit data
10: 7-bit data
11: 8-bit data

1 XBE1 Extra Bit Enable.
When enabled, the value of TBX1 will be appended to the data field.
0: Extra Bit Disabled.
1: Extra Bit Enabled.

0 SBL1 Stop Bit Length.
0: Short—Stop bit is active for one bit time.
1: Long—Stop bit is active for two bit times (data length = 6, 7, or 8 bits), or 1.5 bit times
(data length = 5 bits).

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 268

Figure 26.2. T0 Mode 2 Block Diagram

26.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)
In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The
counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0,
GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0
register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled
using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls
the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0,
1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However,
the Timer 1 overflow can be used to generate baud rates or overflow conditions for other peripherals.
While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run
Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for
Mode 3.

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 281

26.3. Timer 3
Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may
operate in 16-bit auto-reload mode, (split) 8-bit auto-reload mode, USB Start-of-Frame (SOF) capture
mode, or Low-Frequency Oscillator (LFO) Rising Edge capture mode. The Timer 3 operation mode is
defined by the T3SPLIT (TMR3CN.3), T3CE (TMR3CN.4) bits, and T3CSS (TMR3CN.1) bits.

Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator
source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the
internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external preci-
sion oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

26.3.1. 16-bit Timer with Auto-Reload
When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be
clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the
16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3
reload registers (TMR3RLH and TMR3RLL) is loaded into the Timer 3 register as shown in Figure 26.8,
and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled (if EIE1.7 is
set), an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled
and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L)
overflow from 0xFF to 0x00.

Figure 26.8. Timer 3 16-Bit Mode Block Diagram

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 300

27.2. PCA0 Interrupt Sources
Figure 27.3 shows a diagram of the PCA interrupt tree. There are six independent event flags that can be
used to generate a PCA0 interrupt. They are: the main PCA counter overflow flag (CF), which is set upon
a 16-bit overflow of the PCA0 counter and the individual flags for each PCA channel (CCF0, CCF1, CCF2,
CCF3, and CCF4), which are set according to the operation mode of that module. These event flags are
always set when the trigger condition occurs. Each of these flags can be individually selected to generate
a PCA0 interrupt, using the corresponding interrupt enable flag (ECF for CF, and ECCFn for each CCFn).
PCA0 interrupts must be globally enabled before any individual interrupt sources are recognized by the
processor. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1.

Figure 27.3. PCA Interrupt Block Diagram

C8051F380/1/2/3/4/5/6/7/C

Rev. 1.4 308

27.4. Watchdog Timer Mode
A programmable watchdog timer (WDT) function is available through the PCA Module 4. The WDT is used
to generate a reset if the time between writes to the WDT update register (PCA0CPH4) exceed a specified
limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCA0MD register, Module 4 operates as a watchdog timer (WDT). The Mod-
ule 4 high byte is compared to the PCA counter high byte; the Module 4 low byte holds the offset to be
used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some
PCA registers are restricted while the Watchdog Timer is enabled. The WDT will generate a reset
shortly after code begins execution. To avoid this reset, the WDT should be explicitly disabled (and option-
ally re-configured and re-enabled if it is used in the system).

27.4.1. Watchdog Timer Operation
While the WDT is enabled:

 PCA counter is forced on.
 Writes to PCA0L and PCA0H are not allowed.
 PCA clock source bits (CPS2–CPS0) are frozen.
 PCA Idle control bit (CIDL) is frozen.
 Module 4 is forced into software timer mode.
 Writes to the Module 4 mode register (PCA0CPM4) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run
until the WDT is disabled. The PCA counter run control bit (CR) will read zero if the WDT is enabled but
user software has not enabled the PCA counter. If a match occurs between PCA0CPH4 and PCA0H while
the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a
write of any value to PCA0CPH4. Upon a PCA0CPH4 write, PCA0H plus the offset held in PCA0CPL4 is
loaded into PCA0CPH4 (See Figure 27.10).

Figure 27.10. PCA Module 4 with Watchdog Timer Enabled

Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

