

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	48 MIPS
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.25V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f385-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1. Hardware Incompatibilities

While the C8051F38x family includes a number of new features not found on the C8051F34x family, there are some differences that should be considered for any design port.

- Clock Multiplier: The C8051F38x does not include the 4x clock multiplier from the C8051F34x device families. This change only impacts systems which use the clock multiplier in conjunction with an external oscillator source.
- External Oscillator C and RC Modes: The C and RC modes of the oscillator have a divide-by-2 stage on the C8051F38x to aid in noise immunity. This was not present on the C8051F34x device family, and any clock generated with C or RC mode will change accordingly.
- **Fab Technology**: The C8051F38x is manufactured using a different technology process than the C8051F34x. As a result, many of the electrical performance parameters will have subtle differences. These differences should not affect most systems but it is nonetheless important to review the electrical parameters for any blocks that are used in the design, and ensure they are compatible with the existing hardware.

Figure 3.4. LQFP-32 Pinout Diagram (Top View)

Figure 3.6. LQFP-32 Recommended PCB Land Pattern

Dimension	Min	Мах		
C1	8.40	8.50		
C2	8.40 8.50			
E	0.80	BSC		
X1	0.40	0.50		
Y1	1.25	1.35		

Table 3.5. LQFP-32 PCB Land Pattern Dimensions

Notes: General:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design:

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \ \mu m$ minimum, all the way around the pad.

Stencil Design:

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

Card Assembly:

- 7. A No-Clean, Type-3 solder paste is recommended.
- **8.** The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 5.3. Port I/O DC Electrical Characteristics

 V_{DD} = 2.7 to 3.6 V, -40 to +85 °C unless otherwise specified.

Parameter	Test Condition	Min	Тур	Max	Unit
Output High Voltage	I _{OH} = –3 mA, Port I/O push-pull	V _{DD} – 0.7	_	_	V
	I _{OH} = –10 μA, Port I/O push-pull	V _{DD} – 0.1	—		
	I _{OH} = −10 mA, Port I/O push-pull	—	V _{DD} – 0.8	—	
Output Low Voltage	I _{OL} = 8.5 mA	—	_	0.6	V
	I _{OL} = 10 μA		_	0.1	
	I _{OL} = 25 mA	-	1.0	_	
Input High Voltage		2.0	_	_	V
Input Low Voltage		—	_	0.8	V
Input Leakage	Weak Pullup Off	—	_	±1	μA
Current	Weak Pullup On, V _{IN} = 0 V	—	15	50	

Table 5.4. Reset Electrical Characteristics

-40 to +85 °C unless otherwise specified.

Parameter	Test Condition	Min	Тур	Max	Unit
RST Output Low Voltage	I _{OL} = 8.5 mA, V _{DD} = 2.7 V to 3.6 V			0.6	V
RST Input High Voltage		0.7 x V _{DD}		—	V
RST Input Low Voltage			—	0.3 x V _{DD}	V
RST Input Pullup Current	RST = 0.0 V		15	40	μA
V_{DD} Monitor Threshold (V _{RST})		2.60	2.65	2.70	V
Missing Clock Detector Time- out	Time from last system clock rising edge to reset initiation	80	580	800	μs
Reset Time Delay	Delay between release of any reset source and code execution at location 0x0000	_	_	250	μs
Minimum RST Low Time to Generate a System Reset		15		_	μs
V _{DD} Monitor Turn-on Time			—	100	μs
V _{DD} Monitor Supply Current			15	50	μÂ

SFR Definition 6.4. ADC0CN: ADC0 Control

Bit	7	6	5	4	3	2	1	0	
Nam	e AD0EN	AD0TM	AD0INT	AD0BUSY	AD0WINT	AD0CM[2:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W			
Rese	et O	0	0	0	0	0 0 0			
SFR A	ddress = 0xE	8; SFR Page	= All Pages	; Bit-Addres	sable				
Bit	Name				Function				
7	AD0EN	ADC0 Enab	le Bit.						
		0: ADC0 Dis 1: ADC0 Ena	abled. ADC(abled. ADC() is in low-po) is active an	ower shutdov d ready for d	/n. ata conversi	ions.		
6	AD0TM	ADC0 Track	Mode Bit.						
		0: Normal Tr	ack Mode: \	When ADC0	is enabled, t	racking is co	ntinuous unl	ess a con-	
		version is in	progress. C	onversion be	egins immedi	ately on sta	rt-of-convers	ion event,	
		1. Delaved 1	y ADUCIVI[2. Track Mode:	.uj. When ADC() is enabled	input is tracl	ked when a c	conversion	
		is not in prog	gress. A star	t-of-conversi	on signal init	iates three S	SAR clocks of	fadditional	
		tracking, and then begins the conversion. Note that there is not a tracking delay when							
			used (ADUC	VV[2:0] = 100	J). 				
5	AD0INT	ADC0 Conv	ersion Con	plete Interr	upt Flag.				
		0: ADC0 has	s not comple	eted a data conve	onversion sir	ICE ADUIN I	was last clea	ared.	
1			Bit Boo			M/rito:			
4	ADUDUSI	ADC0 Busy		u. CO convers	ion is not in	0 [.] No Ef	fect		
			prog	ress.		1: Initiat	es ADC0 Co	nversion if	
			1: AI	DC0 convers	ion is in prog	- AD0CM	[2:0] = 000b		
			ress	•					
3	ADOWINT	ADC0 Wind	ow Compai	e Interrupt	Flag.				
		0: ADC0 Wir	ndow Compa	arison Data r	match has no	ot occurred s	since this flag	g was last	
		1: ADC0 Wir	ndow Compa	arison Data r	match has oc	curred.			
2:0	AD0CM[2:0]	ADC0 Start of Conversion Mode Select.							
		000: ADC0 s	start-of-conv	ersion sourc	e is write of	1 to AD0BUS	SY.		
		001: ADC0 start-of-conversion source is overflow of Timer 0.							
		010: ADC0 start-of-conversion source is overflow of Timer 2.							
		100: ADC0 s	start-of-conv	ersion sourc	e is overnow e is rising ed	or rimer 1.	al CNVSTR		
		101: ADC0 s	start-of-conv	ersion sourc	e is overflow	of Timer 3.			
		110: ADC0 s	tart-of-conv	ersion sourc	e is overflow	of Timer 4.			
		111: ADC0 s	tart-of-conve	ersion source	e is overflow	of Timer 5.			

6.4.1. Window Detector Example

Figure 6.6 shows two example window comparisons for right-justified, single-ended data, with ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). The input voltage can range from 0 to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 6.7 shows an example using left-justified data with the same comparison values.

Figure 6.6. ADC Window Compare Example: Right-Justified Data

Figure 6.7. ADC Window Compare Example: Left-Justified Data

SFR Definition 8.5. CPT0MX: Comparator0 MUX Selection

Bit	7	6	5	4	3	2	2 1	
Nam	e	CMX0N[2:0] CMX				CMX0P[2:0]		
Туре	e R		R/W		R		R/W	
Rese	et 0	0	0	0	0	0	0	0
SFR A	Address = 0x9I	F; SFR Page	= All Pag	es	1	1	ļ	
Bit	Name				Function			
7	Unused	Read = 0b;	Write = do	on't care.				
6:4	CMX0N[2:0]	Comparato	r0 Negati	ve Input MUX	Selection.			
		Selection	3	2-pin Package	9	48-pin F	Package	
		000:	F	91.1		P2.1		
		001:	F	91.5	P2.6	P2.6		
		010:	F	2.1	P3.5	P3.5		
		011:	F	2.5		P4.4	P4.4	
		100:	F	0.1		P0.4		
		101-111:	F	Reserved		Reserve	ed	
3	Unused	Read = 0b;	Write = do	on't care.		I		
2:0	CMX0P[2:0]	Comparato	r0 Positiv	e Input MUX	Selection.			
		Selection	3	2-pin Package	9	48-pin F	Package	
		000:	F	91.0		P2.0		
		001: P1.4			P2.5			
		010: P2.0			P3.4			
		011: P2.4		2.4		P4.3		
		100:	F	0.0		P0.3		
		101-111:	F	Reserved		Reserve	ed	

Table 15.2. Special Function Registers (Continued)

SFRs are listed in a	Iphabetical order.	All undefined SFR	locations are reserved
----------------------	--------------------	-------------------	------------------------

Register	Address	Page	Description	Page
PCA0CPL2	0xEB	All Pages	PCA Capture 2 Low	315
PCA0CPL3	0xED	All Pages	PCA Capture 3 Low	315
PCA0CPL4	0xFD	All Pages	PCA Capture 4 Low	315
PCA0CPM0	0xDA	All Pages	PCA Module 0 Mode Register	313
PCA0CPM1	0xDB	All Pages	PCA Module 1 Mode Register	313
PCA0CPM2	0xDC	All Pages	PCA Module 2 Mode Register	313
PCA0CPM3	0xDD	All Pages	PCA Module 3 Mode Register	313
PCA0CPM4	0xDE	All Pages	PCA Module 4 Mode Register	313
PCA0H	0xFA	All Pages	PCA Counter High	314
PCA0L	0xF9	All Pages	PCA Counter Low	314
PCA0MD	0xD9	All Pages	PCA Mode	312
PCON	0x87	All Pages	Power Control	78
PFE0CN	0xAF	All Pages	Prefetch Engine Control	88
PSCTL	0x8F	All Pages	Program Store R/W Control	139
PSW	0xD0	All Pages	Program Status Word	87
REF0CN	0xD1	All Pages	Voltage Reference Control	63
REG01CN	0xC9	All Pages	Voltage Regulator 0 and 1 Control	75
RSTSRC	0xEF	All Pages	Reset Source Configuration/Status	134
SBCON1	0xAC	All Pages	UART1 Baud Rate Generator Control	248
SBRLH1	0xB5	All Pages	UART1 Baud Rate Generator High	248
SBRLL1	0xB4	All Pages	UART1 Baud Rate Generator Low	249
SBUF0	0x99	All Pages	UART0 Data Buffer	238
SBUF1	0xD3	All Pages	UART1 Data Buffer	247
SCON0	0x98	All Pages	UART0 Control	237
SCON1	0xD2	All Pages	UART1 Control	245
SFRPAGE	0xBF	All Pages	SFR Page Select	111
SMB0ADM	0xCE	0	SMBus0 Address Mask	219
SMB0ADR	0xCF	0	SMBus0 Address	218
SMB0CF	0xC1	0	SMBus0 Configuration	211
SMB0CN	0xC0	0	SMBus0 Control	215
SMB0DAT	0xC2	0	SMBus0 Data	221
SMB1ADM	0xCE	F	SMBus1 Address Mask	220
SMB1ADR	0xCF	F	SMBus1 Address	219
SMB1CF	0xC1	F	SMBus1 Configuration	211

17.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in Section "27.4. Watchdog Timer Mode" on page 308; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to 1. The state of the RST pin is unaffected by this reset.

17.7. Flash Error Reset

If a Flash program read, write, or erase operation targets an illegal address, a system reset is generated. This may occur due to any of the following:

- Programming hardware attempts to write or erase a Flash location which is above the user code space address limit.
- A Flash read from firmware is attempted above user code space. This occurs when a MOVC operation is attempted above the user code space address limit.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above the user code space address limit.
- A Flash read, write, or erase attempt is restricted due to a Flash security setting.
- A Flash write or erase is attempted when the V_{DD} monitor is not enabled.

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the \overline{RST} pin is unaffected by this reset.

17.8. Software Reset

Software may force a reset by writing a 1 to the SWRSF bit (RSTSRC.4). The SWRSF bit will read 1 following a software forced reset. The state of the \overline{RST} pin is unaffected by this reset.

17.9. USB Reset

Writing 1 to the USBRSF bit in register RSTSRC selects USB0 as a reset source. With USB0 selected as a reset source, a system reset will be generated when either of the following occur:

- 1. RESET signaling is detected on the USB network. The USB Function Controller (USB0) must be enabled for RESET signaling to be detected. See Section "21. Universal Serial Bus Controller (USB0)" on page 172 for information on the USB Function Controller.
- 2. A falling or rising voltage on the VBUS pin.

The USBRSF bit will read 1 following a USB reset. The state of the \overline{RST} pin is unaffected by this reset.

19.3. Programmable Internal High-Frequency (H-F) Oscillator

All C8051F380/1/2/3/4/5/6/7/C devices include a programmable internal high-frequency oscillator that defaults as the system clock after a system reset. The internal oscillator period can be adjusted via the OSCICL register as defined by SFR Definition 19.2.

On C8051F380/1/2/3/4/5/6/7/C devices, OSCICL is factory calibrated to obtain a 48 MHz base frequency. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8 after a divide by 4 stage, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset, which results in a 1.5 MHz system clock.

19.3.1. Internal Oscillator Suspend Mode

When software writes a logic 1 to SUSPEND (OSCICN.5), the internal oscillator is suspended. If the system clock is derived from the internal oscillator, the input clock to the peripheral or CIP-51 will be stopped until a non-idle USB event is detected or a rising or falling edge occurs on the VBUS signal. Note that the USB transceiver can still detect USB events when it is disabled.

When one of the oscillator awakening events occur, the internal oscillator, CIP-51, and affected peripherals resume normal operation. The CPU resumes execution at the instruction following the write to the SUS-PEND bit.

Note: The prefetch engine can be turned off in suspend mode to save power. Additionally, both Voltage Regulators (REG0 and REG1) have low-power modes for additional power savings in suspend mode.

SFR Definition 19.2. OSCICL: Internal H-F Oscillator Calibration

Bit	7	6	5	4	3	2	1	0	
Name			OSCICL[6:0]						
Туре	R		R/W						
Reset	0	Varies	Varies	Varies	Varies	Varies	Varies	Varies	

SFR Address = 0xB3; SFR Page = All Pages

Bit	Name	Function
7	Unused	Read = 0; Write = don't care
6:0	OSCICL[6:0]	Internal Oscillator Calibration Bits.
		These bits determine the internal oscillator period. When set to 0000000b, the H-F oscillator operates at its fastest setting. When set to 1111111b, the H-F oscillator operates at its slowest setting. The reset value is factory calibrated to generate an internal oscillator frequency of 48 MHz. OSCICL should only be changed by firmware when the H-F oscillator is disabled (IOSCEN = 0).

SFR Definition 20.8. P1: Port 1

Bit	7	6	5	4	3	2	1	0
Name	P1[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0x90; SFR Page = All Pages; Bit Addressable

Bit	Name	Description	Write	Read
7:0	P1[7:0]	Port 1 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P1.n Port pin is logic LOW. 1: P1.n Port pin is logic HIGH.

SFR Definition 20.9. P1MDIN: Port 1 Input Mode

Bit	7	6	5	4	3	2	1	0	
Name	P1MDIN[7:0]								
Туре		R/W							
Reset	1*	1* 1 1 1 1 1 1 1							

SFR Address = 0xF2; SFR Page = All Pages

Bit	Name	Function
7:0	P1MDIN[7:0]	Analog Configuration Bits for P1.7–P1.0 (respectively).
		Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
		0: Corresponding P1.n pin is configured for analog mode.
		1: Corresponding P1.n pin is not configured for analog mode.

SFR Definition 20.16. P3: Port 3

Bit	7	6	5	4	3	2	1	0	
Name	P3[7:0]								
Туре	R/W								
Reset	1 1 1 1 1 1 1 1								

SFR Address = 0xB0; SFR Page = All Pages; Bit Addressable

Bit	Name	Description	Write	Read
7:0	P3[7:0]	Port 3 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P3.n Port pin is logic LOW. 1: P3.n Port pin is logic HIGH.

SFR Definition 20.17. P3MDIN: Port 3 Input Mode

Bit	7	6	5	4	3	2	1	0	
Name	P3MDIN[7:0]								
Туре		R/W							
Reset	1	1 1 1 1 1 1 1 1							

SFR Address = 0xF4; SFR Page = All Pages

Bit	Name	Function
7:0	P3MDIN[7:0]	Analog Configuration Bits for P3.7–P3.0 (respectively).
		Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
		0: Corresponding P3.n pin is configured for analog mode.
		1: Corresponding P3.n pin is not configured for analog mode.

SFR Definition 21.1. USB0XCN: USB0 Transceiver Control

Bit	7	6	5	4 3 2 1 0					
Nam	e PREN	PHYEN	SPEED	PHYT	ST[1:0]	DFREC	Dp	Dn	
Туре	e R/W	R/W	R/W	R	W	R	R	R	
Rese	et 0	0	0	0	0	0	0	0	
SFR A	Address = 0xD7	7; SFR Page	e = All Pages	5					
Bit	Name				Function				
7	PREN	Internal Pu The locatio 0: Internal p 1: Internal p USB netwo	ernal Pull-up Resistor Enable. e location of the pull-up resistor (D+ or D-) is determined by the SPEED bit. Internal pull-up resistor disabled (device effectively detached from USB network). Internal pull-up resistor enabled when VBUS is present (device attached to the B network).						
6	PHYEN	Physical L 0: USB0 ph 1: USB0 ph	r sical Layer Enable. JSB0 physical layer Transceiver disabled (suspend). JSB0 physical layer Transceiver enabled (normal).						
5	SPEED	 USB0 Speed Select. This bit selects the USB0 speed. 0: USB0 operates as a Low Speed device. If enabled, the internal pull-up resistor appears on the D- line. 1: USB0 operates as a Full Speed device. If enabled, the internal pull-up resistor appears on the D+ line. 							
4:3	PHYTST[1:0]	Physical L 00: Mode 0 01: Mode 1	ayer Test B : Normal (no : Differential	its. on-test mode 1 Forced (E	e) (D+ = X, D 9+ = 1, D- =	9- = X) 0)			
		10: Mode 2 11: Mode 3	: Differential : Single-Enc	0 Forced (E led 0 Forced	0+ = 0, D- = (D+ = 0, D-	1) - = 0)			
2	DFREC	Differentia	I Receiver I	Bit					
		The state o lines when 0: Different 1: Different	The state of this bit indicates the current differential value present on the D+ and D- ines when PHYEN = 1. D: Differential 0 signalling on the bus. 1: Differential 1 signalling on the bus.						
1	Dp	D+ Signal	Status.						
		This bit indi 0: D+ signa 1: D+ signa	This bit indicates the current logic level of the D+ pin.): D+ signal currently at logic 0. 1: D+ signal currently at logic 1.						
0	Dn	D- Signal S	Status.						
		This bit indi 0: D- signal 1: D- signal	icates the cu currently at currently at	irrent logic le logic 0. logic 1.	evel of the D	- pin.			

USB Register Definition 21.21. EINCSRH: USB0 IN Endpoint Control High

Bit	7	6	5	4	3	2	1	0
Name	DBIEN	ISO	DIRSEL		FCDT	SPLIT		
Туре	R/W	R/W	R/W	R	R/W	R/W	R	R
Reset	0	0	0	0	0	0	0	0

USB Register Address = 0x12

Bit	Name	Function
7	DBIEN	IN Endpoint Double-buffer Enable.
		0: Double-buffering disabled for the selected IN endpoint.
		1: Double-buffering enabled for the selected IN endpoint.
6	ISO	Isochronous Transfer Enable.
		This bit enables/disables isochronous transfers on the current endpoint.
		1: Endpoint configured for isochronous transfers
5		Endpoint Direction Select
5	DINGEL	This bit is valid only when the selected EIEQ is not split (SPLIT = 0)
		0: Endpoint direction selected as OUT.
		1: Endpoint direction selected as IN.
4	Unused	Read = 0b. Write = don't care.
3	FCDT	Force Data Toggle Bit.
		0: Endpoint data toggle switches only when an ACK is received following a data packet transmission.
		1: Endpoint data toggle forced to switch after every data packet is transmitted, regard-less of ACK reception.
2	SPLIT	FIFO Split Enable.
		When SPLIT = 1, the selected endpoint FIFO is split. The upper half of the selected FIFO is used by the IN endpoint; the lower half of the selected FIFO is used by the OUT endpoint.
1:0	Unused	Read = 00b. Write = don't care.

the incoming slave address. Additionally, if the GCn bit in register SMBnADR is set to 1, hardware will recognize the General Call Address (0x00). Table 22.4 shows some example parameter settings and the slave addresses that will be recognized by hardware under those conditions.

Hardware Slave Address SLVn[6:0]	Slave Address Mask SLVMn[6:0]	GCn bit	Slave Addresses Recognized by Hardware
0x34	0x7F	0	0x34
0x34	0x7F	1	0x34, 0x00 (General Call)
0x34	0x7E	0	0x34, 0x35
0x34	0x7E	1	0x34, 0x35, 0x00 (General Call)
0x70	0x73	0	0x70, 0x74, 0x78, 0x7C

Table 22.4	. Hardware	Address	Recognition	Examples	(EHACK =	= 1)
------------	------------	---------	-------------	----------	----------	------

SFR Definition 22.6. SMB0ADR: SMBus0 Slave Address

Bit	7	6	5	4	3	2	1	0	
Name	SLV0[6:0]								
Туре	R/W							R/W	
Reset	0 0 0 0 0 0 0								

SFR Address = 0xCF; SFR Page = 0

Bit	Name	Function
7:1	SLV0[6:0]	SMBus Hardware Slave Address.
		Defines the SMBus0 Slave Address(es) for automatic hardware acknowledge- ment. Only address bits which have a 1 in the corresponding bit position in SLVM0[6:0] are checked against the incoming address. This allows multiple addresses to be recognized.
0	GC0	General Call Address Enable.
		 When hardware address recognition is enabled (EHACK0 = 1), this bit will determine whether the General Call Address (0x00) is also recognized by hardware. 0: General Call Address is ignored. 1: General Call Address is recognized.

SFR Definition 26.13. TMR2H Timer 2 High Byte

Bit	7	6	5	4	3	2	1	0		
Nam	e	TMR2H[7:0]								
Тур	e	R/W								
Rese	et 0	0	0	0	0	0	0	0		
SFR A	SFR Address = 0xCD; SFR Page = 0									
Bit	Name	Function								
7:0	TMR2H[7:0]	Timer 2 Low Byte.								

7:0	TMR2H[7:0]	Timer 2 Low Byte.
		In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8- bit mode, TMR2H contains the 8-bit high byte timer value.

26.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode, (split) 8-bit auto-reload mode, USB Start-of-Frame (SOF) capture mode, or Low-Frequency Oscillator (LFO) Rising Edge capture mode. The Timer 3 operation mode is defined by the T3SPLIT (TMR3CN.3), T3CE (TMR3CN.4) bits, and T3CSS (TMR3CN.1) bits.

Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

26.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TMR3RLL) is loaded into the Timer 3 register as shown in Figure 26.8, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled (if EIE1.7 is set), an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x00.

Figure 26.8. Timer 3 16-Bit Mode Block Diagram

27.5. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 27.1. PCA0CN: PCA Control

Bit	7	6	5	4	3	2	1	0
Name	CF	CR		CCF4	CCF3	CCF2	CCF1	CCF0
Туре	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD8; SFR Page = All Pages; Bit-Addressable

Bit	Name	Function
7	CF	PCA Counter/Timer Overflow Flag.
		Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
6	CR	PCA Counter/Timer Run Control.
		This bit enables/disables the PCA Counter/Timer.
		0: PCA Counter/Timer disabled.
		1: PCA Counter/Timer enabled.
5	Unused	Read = 0b, Write = Don't care.
2	CCF4	PCA Module 4 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF4 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
1	CCF3	PCA Module 3 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF3 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
2	CCF2	PCA Module 2 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
1	CCF1	PCA Module 1 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
0	CCF0	PCA Module 0 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF0 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.

C2 Register Definition 28.4. FPCTL: C2 Flash Programming Control

Bit	7	6	5	4	3	2	1	0
Name	FPCTL[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

C2 Address: 0x02

Bit	Name	Function
7:0	FPCTL[7:0]	Flash Programming Control Register.
		This register is used to enable Flash programming via the C2 interface. To enable C2 Flash programming, the following codes must be written in order: 0x02, 0x01. Note that once C2 Flash programming is enabled, a system reset must be issued to resume normal operation.

C2 Register Definition 28.5. FPDAT: C2 Flash Programming Data

Bit	7	6	5	4	3	2	1	0
Name	FPDAT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

C2 Address: 0xAD

Bit	Name	Function						
7:0	FPDAT[7:0]	C2 Flash Program	C2 Flash Programming Data Register.					
		This register is used to pass Flash commands, addresses, and data during C2 Flash accesses. Valid commands are listed below.						
		Code Command						
		0x06	Flash Block Read					
		0x07	Flash Block Write					
		0x08	Flash Page Erase					
		0x03	Device Erase					

