

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	48 MIPS
Connectivity	I²C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.25V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f387-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

25.6 SPI Special Function Registers	256
26 Timers	263
26.1 Timer 0 and Timer 1	266
26 1 1 Mode 0: 13-bit Counter/Timer	266
26.1.2 Mode 1: 16-bit Counter/Timer	267
26.1.2. Mode 2: 8-bit Counter/Timer with Auto-Reload	267
26.1.4 Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	268
26.2 Timer 2	274
26.2.1 16-bit Timer with Auto-Reload	274
26.2.2. 8-bit Timers with Auto-Reload	275
26.2.3 Timer 2 Capture Modes: USB Start-of-Frame or LEO Falling Edge	275
26.3 Timer 3	281
26.3.1. 16-bit Timer with Auto-Reload	
26.3.2. 8-bit Timers with Auto-Reload	282
26.3.3. Timer 3 Capture Modes: USB Start-of-Frame or LFO Falling Edge	282
26.4. Timer 4	288
26.4.1. 16-bit Timer with Auto-Reload	288
26.4.2. 8-bit Timers with Auto-Reload	289
26.5. Timer 5	293
26.5.1. 16-bit Timer with Auto-Reload	293
26.5.2. 8-bit Timers with Auto-Reload	294
27. Programmable Counter Array	298
27.1. PCA Counter/Timer	299
27.2. PCA0 Interrupt Sources	300
27.3. Capture/Compare Modules	301
27.3.1. Edge-triggered Capture Mode	302
27.3.2. Software Timer (Compare) Mode	303
27.3.3. High-Speed Output Mode	304
27.3.4. Frequency Output Mode	305
27.3.5. 8-bit Pulse Width Modulator Mode	306
27.3.6. 16-Bit Pulse Width Modulator Mode	307
27.4. Watchdog Timer Mode	308
27.4.1. Watchdog Timer Operation	308
27.4.2. Watchdog Timer Usage	309
27.5. Register Descriptions for PCA0	311
28. C2 Interface	316
28.1. C2 Interface Registers	316
28.2. C2 Pin Sharing	319
Document Change List	320
Contact Information	321

2. C8051F34x Compatibility

The C8051F38x family is designed to be a pin and code compatible replacement for the C8051F34x device family, with an enhanced feature set. The C8051F38x device should function as a drop-in replacement for the C8051F34x devices in most applications. Table 2.1 lists recommended replacement part numbers for C8051F34x devices. See "2.1. Hardware Incompatibilities" to determine if any changes are necessary when upgrading an existing C8051F34x design to the C8051F38x.

C8051F34x Part Number	C8051F38x Part Number
C8051F340-GQ	C8051F380-GQ
C8051F341-GQ	C8051F382-GQ
C8051F342-GQ	C8051F381-GQ
C8051F342-GM	C8051F381-GM
C8051F343-GQ	C8051F383-GQ
C8051F343-GM	C8051F383-GM
C8051F344-GQ	C8051F380-GQ
C8051F345-GQ	C8051F382-GQ
C8051F346-GQ	C8051F381-GQ
C8051F346-GM	C8051F381-GM
C8051F347-GQ	C8051F383-GQ
C8051F347-GM	C8051F383-GM
C8051F348-GQ	C8051F386-GQ
C8051F349-GQ	C8051F387-GQ
C8051F349-GM	C8051F387-GM
C8051F34A-GQ	C8051F381-GQ
C8051F34A-GM	C8051F381-GM
C8051F34B-GQ	C8051F383-GQ
C8051F34B-GM	C8051F383-GM
C8051F34C-GQ	C8051F384-GQ
C8051F34D-GQ	C8051F385-GQ

Table 2.1. C8051F38x Replacement Part Numbers

6.5. ADC0 Analog Multiplexer (C8051F380/1/2/3/C only)

AMUX0 selects the positive and negative inputs to the ADC. The positive input (AIN+) can be connected to individual Port pins, the on-chip temperature sensor, or the positive power supply (V_{DD}). The negative input (AIN-) can be connected to individual Port pins, VREF, or GND. When GND is selected as the negative input, ADC0 operates in Single-ended Mode; at all other times, ADC0 operates in Differential Mode. The ADC0 input channels are selected in the AMX0P and AMX0N registers as described in SFR Definition 6.9 and SFR Definition 6.10.

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to 0 the corresponding bit in register PnMDIN. To force the Crossbar to skip a Port pin, set to 1 the corresponding bit in register PnSKIP. See Section "20. Port Input/Output" on page 153 for more Port I/O configuration details.

SFR Definition 8.3. CPT1CN: Comparator1 Control

Bit	7	6	5	4	3	2	1	0
Name	CP1EN	CP1OUT	CP1RIF	CP1FIF	CP1HYP[1:0]		CP1HYN[1:0]	
Туре	R/W	R	R/W	R/W	R/W		R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x9A; SFR Page = All Pages

Bit	Name	Function
7	CP1EN	Comparator1 Enable Bit.
		0: Comparator1 Disabled.
		1: Comparator1 Enabled.
6	CP1OUT	Comparator1 Output State Flag.
		0: Voltage on CP1+ < CP1
		1: Voltage on CP1+ > CP1
5	CP1RIF	Comparator1 Rising-Edge Flag. Must be cleared by software.
		0: No Comparator1 Rising Edge has occurred since this flag was last cleared.
		1: Comparator1 Rising Edge has occurred.
4	CP1FIF	Comparator1 Falling-Edge Flag. Must be cleared by software.
		0: No Comparator1 Falling-Edge has occurred since this flag was last cleared.
		1: Comparator1 Falling-Edge has occurred.
3:2	CP1HYP[1:0]	Comparator1 Positive Hysteresis Control Bits.
		00: Positive Hysteresis Disabled.
		01: Positive Hysteresis = 5 mV.
		10: Positive Hysteresis = 10 mV.
		11: Positive Hysteresis = 20 mV.
1:0	CP1HYN[1:0]	Comparator1 Negative Hysteresis Control Bits.
		00: Negative Hysteresis Disabled.
		U1: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV
		10. Negative Hysteresis = 10 IIIV. 11: Negative Hysteresis = 20 mV

nitely, waiting for an external stimulus to wake up the system. Refer to Section "17.6. PCA Watchdog Timer Reset" on page 133 for more information on the use and configuration of the WDT.

10.2. Stop Mode

Setting the stop mode Select bit (PCON.1) causes the controller core to enter stop mode as soon as the instruction that sets the bit completes execution. In stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering stop mode. Stop mode can only be terminated by an internal or external reset. On reset, the device performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout.

By default, when in stop mode the internal regulator is still active. However, the regulator can be configured to shut down while in stop mode to save power. To shut down the regulator in stop mode, the STOPCF bit in register REG01CN should be set to 1 prior to setting the STOP bit (see SFR Definition 9.1). If the regulator is shut down using the STOPCF bit, only the RST pin or a full power cycle are capable of resetting the device.

10.3. Suspend Mode

Setting the SUSPEND bit (OSCICN.5) causes the hardware to halt the high-frequency internal oscillator and go into suspend mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. The CPU is not halted in Suspend, so code can still be executed using an oscillator other than the internal high-frequency oscillator.

Suspend mode can be terminated by resume signalling on the USB data pins, or a device reset event. When suspend mode is terminated, if the oscillator source is the internal high-frequency oscillator, the device will continue execution on the instruction following the one that set the SUSPEND bit. If the wake event was configured to generate an interrupt, the interrupt will be serviced upon waking the device. If suspend mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

14.7. Timing

The timing parameters of the External Memory Interface can be configured to enable connection to devices having different setup and hold time requirements. The Address Setup time, Address Hold time, RD and WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in units of SYSCLK periods through EMI0TC, shown in SFR Definition 14.3, and EMI0CF[1:0].

The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for RD or WR pulse + 4 SYSCLKs). For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional SYSCLK cycles. Therefore, the minimum execution time for an off-chip XRAM operation in multiplexed mode is 7 SYSCLK cycles (2 for \overline{ALE} + 1 for \overline{RD} or \overline{WR} + 4). The programmable setup and hold times default to the maximum delay settings after a reset. Table 14.1 lists the AC parameters for the External Memory Interface, and Figure 14.5 through Figure 14.10 show the timing diagrams for the different External Memory Interface modes and MOVX operations.

SFR Definition 16.5. EIE2: Extended Interrupt Enable 2

Bit	7	6	5	4	3	2	1	0
Name			ET5	ET4	ESMB1		ES1	EVBUS
Туре	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE7; SFR Page = All Pages

Bit	Name	Function					
7:6	Unused	Read = 00b, Write = Don't Care.					
5	ET5	Enable Timer 5 Interrupt.					
		This bit sets the masking of the Timer 5 interrupt.					
		1: Enable interrupt requests generated by the TF5L or TF5H flags.					
4	ET4	Enable Timer 4 Interrupt.					
		This bit sets the masking of the Timer 4 interrupt.					
		0: Disable Timer 4interrupts.					
		1: Enable interrupt requests generated by the TF4L or TF4H flags.					
3	ESMB1	Enable SMBus1 Interrupt.					
		This bit sets the masking of the SMB1 interrupt.					
		0: Disable all SMB1 interrupts.					
		1: Enable Interrupt requests generated by SMB1.					
2	Reserved	Must Write 0b.					
1	ES1	Enable UART1 Interrupt.					
		This bit sets the masking of the UART1 interrupt.					
		0: Disable UART1 interrupt.					
0	EVBUS	Enable VBUS Level Interrupt.					
		This bit sets the masking of the VBUS interrupt.					
		U: Disable all VBUS Interrupts.					
		T. Enable interrupt requests generated by VDOS level sense.					

16.3. INTO and INT1 External Interrupt Sources

The INTO and INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The INOPL (INTO Polarity) and IN1PL (INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (Section "26.1. Timer 0 and Timer 1" on page 266) select level or edge sensitive. The table below lists the possible configurations.

IT0	IN0PL	INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	INT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

INTO and INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 16.7). Note that INT0 and INT0 Port pin assignments are independent of any Crossbar assignments. INT0 and INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to INT0 and/or INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register PnSKIP (see Section "20.1. Priority Crossbar Decoder" on page 154 for complete details on configuring the Crossbar).

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INTO and INT1 external interrupts, respectively. If an INT0 or INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (INOPL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

17.2. Power-Fail Reset / V_{DD} Monitor

When a power-down transition or power irregularity causes V_{DD} to drop below V_{RST} , the power supply monitor will drive the \overline{RST} pin low and hold the CIP-51 in a reset state (see Figure 17.2). When V_{DD} returns to a level above V_{RST} , the CIP-51 will be released from the reset state. Note that even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if V_{DD} dropped below the level required for data retention. If the PORSF flag reads 1, the data may no longer be valid. The V_{DD} monitor is enabled after power-on resets. Its defined state (enabled/disabled) is not altered by any other reset source. For example, if the V_{DD} monitor is disabled by code and a software reset is performed, the V_{DD} monitor will still be disabled after the reset.

Important Note: If the V_{DD} monitor is being turned on from a disabled state, it should be enabled before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it is enabled and stabilized may cause a system reset. In some applications, this reset may be undesirable. If this is not desirable in the application, a delay should be introduced between enabling the monitor and selecting it as a reset source. The procedure for enabling the V_{DD} monitor and configuring it as a reset source from a disabled state is shown below:

- 1. Enable the V_{DD} monitor (VDMEN bit in VDM0CN = 1).
- 2. If necessary, wait for the V_{DD} monitor to stabilize (see Table 5.4 for the V_{DD} Monitor turn-on time).
- 3. Select the V_{DD} monitor as a reset source (PORSF bit in RSTSRC = 1).

See Figure 17.2 for V_{DD} monitor timing; note that the power-on-reset delay is not incurred after a V_{DD} monitor reset. See Table 5.4 for complete electrical characteristics of the V_{DD} monitor.

SFR Definition 18.2. FLKEY: Flash Lock and Key

Bit	7	6	5	4	3	2	1	0	
Name	FLKEY[7:0]								
Туре	R/W								
Reset	0	0 0 0 0 0 0 0 0							

SFR Address = 0xB7; SFR Page = All Pages

Bit	Name	Function
7:0	FLKEY[7:0]	Flash Lock and Key Register.
		Write:
		This register provides a lock and key function for Flash erasures and writes. Flash writes and erases are enabled by writing 0xA5 followed by 0xF1 to the FLKEY register. Flash writes and erases are automatically disabled after the next write or erase is complete. If any writes to FLKEY are performed incorrectly, or if a Flash write or erase operation is attempted while these operations are disabled, the Flash will be permanently locked from writes or erasures until the next device reset. If an application never writes to Flash, it can intentionally lock the Flash by writing a non-0xA5 value to FLKEY from software.
		Read:
		When read, bits 1–0 indicate the current Flash lock state.
		00: Flash is write/erase locked.
		01: The first key code has been written (0xA5).
		10: Flash is unlocked (writes/erases allowed).
		11: Flash writes/erases disabled until the next reset.

SFR Definition 19.3. OSCICN: Internal H-F Oscillator Control

Bit	7	6	5	4	3	2	1	0
Name	IOSCEN	IFRDY	SUSPEND				IFCN	l[1:0]
Туре	R/W	R	R/W	R	R	R	R/W	
Reset	1	1	0	0	0	0	0	0

SFR Address = 0xB2; SFR Page = All Pages

ode. The inter- vakening
de-by-4 stage.
(1.5 MHz).
(3 MHz).
12 MHz).

SFR Definition 20.12. P2: Port 2

Bit	7	6	5	4	3	2	1	0
Name		P2[7:0]						
Туре		R/W						
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xA0; SFR Page = All Pages; Bit Addressable

Bit	Name	Description	Write	Read
7:0	P2[7:0]	Port 2 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P2.n Port pin is logic LOW. 1: P2.n Port pin is logic HIGH.

SFR Definition 20.13. P2MDIN: Port 2 Input Mode

Bit	7	6	5	4	3	2	1	0
Name		P2MDIN[7:0]						
Туре		R/W						
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xF3; SFR Page = All Pages

Bit	Name	Function
7:0	P2MDIN[7:0]	Analog Configuration Bits for P2.7–P2.0 (respectively).
		Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
		0: Corresponding P2.n pin is configured for analog mode.
		1: Corresponding P2.n pin is not configured for analog mode.

USB Register Definition 21.22. EOUTCSRL: USB0 OUT Endpoint Control Low Byte

Bit	7	6	5	4	3	2	1	0
Name	CLRDT	STSTL	SDSTL	FLUSH	DATERR	OVRUN	FIFOFUL	OPRDY
Туре	W	R/W	R/W	R/W	R	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

USB Register Address = 0x14

Bit	Name	ame Description	Write	Read			
7	CLRDT	.RDT Clear Data Toggle Bit.	Software should write 1 to this bit to reset the OUT endpoint data toggle to 0.	This bit always reads 0.			
6	STSTL	TSTL Sent Stall Bit. Hardware sets this bit to must be cleared by softw	1 when a STALL handshake s vare.	signal is transmitted. This flag			
5	SDSTL	DSTL Send Stall Bit. Software should write 1 write 0 to this bit to termi	to this bit to generate a STALL inate the STALL signal. This bi	handshake. Software should t has no effect in ISO mode.			
4	FLUSH	USH FIFO Flush Bit. Writing a 1 to this bit flus The FIFO pointer is rese flushed individually. Hard Note: If data for the currer not be used to flush	 FIFO Flush Bit. Writing a 1 to this bit flushes the next packet to be read from the OUT endpoint FIFO. The FIFO pointer is reset and the OPRDY bit is cleared. Multiple packets must be flushed individually. Hardware resets the FLUSH bit to 0 when the flush is complete. Note: If data for the current packet has already been read from the FIFO, the FLUSH bit should not be used to flush the packet. Instead, the FIFO should be read manually. 				
3	DATERR	TERR Data Error Bit. In ISO mode, this bit is s error. It is cleared when	set by hardware if a received pa software clears OPRDY. This b	acket has a CRC or bit-stuffing bit is only valid in ISO mode.			
2	OVRUN	/RUNData Overrun Bit.This bit is set by hardwaOUT endpoint FIFO. This0: No data overrun.1: A data packet was los	re when an incoming data pac s bit is only valid in ISO mode, st because of a full FIFO since	ket cannot be loaded into the and must be cleared by software. this flag was last cleared.			
1	FIFOFUL	OFUL OUT FIFO Full. This bit indicates the cor 1), the FIFO is full when when the FIFO contains 0: OUT endpoint FIFO is 1: OUT endpoint FIFO is	OUT FIFO Full. This bit indicates the contents of the OUT FIFO. If double buffering is enabled (DBIEN = 1), the FIFO is full when the FIFO contains two packets. If DBIEN = 0, the FIFO is full when the FIFO contains one packet. 0: OUT endpoint FIFO is not full. 1: OUT endpoint FIFO is full.				
0	OPRDY	PRDY OUT Packet Ready. Hardware sets this bit to Software should clear th FIFO.	OUT Packet Ready. Hardware sets this bit to 1 and generates an interrupt when a data packet is available. Software should clear this bit after each data packet is unloaded from the OUT endpoint FIFO.				

SFR Definition 22.4. SMB0CN: SMBus Control

Bit	7	6	5	4	3	2	1	0
Name	MASTER0	TXMODE0	STA0	STO0	ACKRQ0	ARBLOST0	ACK0	SI0
Туре	R	R	R/W	R/W	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC0; SFR Page = 0; Bit-Addressable

Bit	Name	Description	Read	Write
7	MASTER0	SMBus0 Master/Slave Indicator. This read-only bit indicates when the SMBus0 is operating as a master.	0: SMBus0 operating in slave mode. 1: SMBus0 operating in master mode.	N/A
6	TXMODE0	SMBus0 Transmit Mode Indicator. This read-only bit indicates when the SMBus0 is operating as a transmitter.	0: SMBus0 in Receiver Mode. 1: SMBus0 in Transmitter Mode.	N/A
5	STA0	SMBus0 Start Flag.	0: No Start or repeated Start detected. 1: Start or repeated Start detected.	0: No Start generated. 1: When Configured as a Master, initiates a START or repeated START.
4	STO0	SMBus0 Stop Flag.	0: No Stop condition detected. 1: Stop condition detected (if in Slave Mode) or pending (if in Master Mode).	0: No STOP condition is transmitted. 1: When configured as a Master, causes a STOP condition to be transmit- ted after the next ACK cycle. Cleared by Hardware.
3	ACKRQ0	SMBus0 Acknowledge Request.	0: No ACK requested 1: ACK requested	N/A
2	ARBLOST0	SMBus0 Arbitration Lost Indicator.	0: No arbitration error. 1: Arbitration Lost	N/A
1	ACK0	SMBus0 Acknowledge.	0: NACK received. 1: ACK received.	0: Send NACK 1: Send ACK
0	SIO	SMBus0 Interrupt Flag. This bit is set by hardware under the conditions listed in Table 15.3. SI0 must be cleared by software. While SI0 is set, SCL0 is held low and the SMBus0 is stalled.	0: No interrupt pending 1: Interrupt Pending	0: Clear interrupt, and initiate next state machine event.1: Force interrupt.

SFR Definition 24.1. SCON1: UART1 Control

Bit	7	6	5	4	3	2	1	0
Name	OVR1	PERR1	PERR1 THRE1 REN1 TBX1 RBX1 TI1					RI1
Туре	R/W	V R/W R R/W R/W R/W R/W					R/W	
Rese	t 0	0	1	0	0	0	0	0
SFR A	ddress = 0	xD2; SFR Page	e = All Pages	3		•		
Bit	Name				Function			
7	OVR1	Receive FIFO (This bit indicate due to a full FIF 0: Receive FIFC 1: Receive FIFC	Dverrun Flag s a receive Fl O. This bit mu O Overrun has O Overrun has	FO overrun c ust be cleared onot occurred occurred.	ondition, when to 0 by softw l.	re an incoming are.	g character is	discarded
6	PERR1	Parity Error Fla When parity is e parity of the old cleared to 0 by 0: Parity Error h 1: Parity Error h	Parity Error Flag. When parity is enabled, this bit indicates that a parity error has occurred. It is set to 1 when a parity of the oldest byte in the FIFO does not match the selected Parity Type. This bit must be cleared to 0 by software. 0: Parity Error has not occurred. 1: Parity Error has occurred.					1 when the it must be
5	THRE1	Transmit Holdi 0: Transmit Hold 1: Transmit Hold	ng Register ding Register ding Register	Empty Flag. not Empty - d Empty - it is s	o not write to afe to write to	SBUF1. SBUF1.		
4	REN1	Receive Enables This bit enables receive FIFO. 0: UART1 recep 1: UART1 recep	e. /disables the otion disabled otion enabled.	UART receive	er. When disal	bled, bytes ca	n still be read	from the
3	TBX1	Extra Transmis The logic level of not used when	ssion Bit. of this bit will b Parity is enab	be assigned to led.	the extra trar	nsmission bit v	when XBE1 =	1. This bit is
2	RBX1	Extra Receive RBX1 is assigned the log	Bit. ed the value o gic level of the	of the extra bit e first stop bit.	when XBE1 = This bit is not	= 1. If XBE1 is t valid when P	s cleared to 0, arity is enable	RBX1 is ed.
1	TI1	Transmit Interrupt Flag. Set to a 1 by hardware after data has been transmitted at the beginning of the STOP bit. Wh the UART1 interrupt is enabled, setting this bit causes the CPU to vector to the UART1 inter service routine. This bit must be cleared manually by software.				P bit. When RT1 interrupt		
0	RI1	Receive Interru Set to 1 by hard pling time). Whe to the UART1 ir RI1 will remain been shifted fro	upt Flag. ware when a en the UART1 aterrupt servic set to '1' as lo m the FIFO to	byte of data h interrupt is e routine. Thi ng as there is SBUF1, RI1	as been recei nabled, setting s bit must be o still data in th can be cleare	ved by UART ² g this bit to 1 o cleared manua ne UART FIFC ed.	1 (set at the S causes the CF ally by softwa). After the las	TOP bit sam- PU to vector re. Note that it byte has

SFR Definition 26.2. CKCON1: Clock Control 1

Bit	7	6	5	4	3	2	1	0
Name					T5MH	T5ML	T4MH	T4ML
Туре	R	R	R	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE4; SFR Page = F

Bit	Name	Function
7:4	Unused	Read = 0000b; Write = don't care
3	T5MH	Timer 5 High Byte Clock Select.
		Selects the clock supplied to the Timer 5 high byte (split 8-bit timer mode only).
		0: Timer 5 high byte uses the clock defined by the T5XCLK bit in TMR5CN.
	T CN 41	
2	15ML	Timer 5 Low Byte Clock Select.
		Selects the clock supplied to Timer 5. Selects the clock supplied to the lower 8-bit timer in split 8-bit timer mode.
		0: Timer 5 low byte uses the clock defined by the T5XCLK bit in TMR5CN.
		1: Timer 5 low byte uses the system clock.
1	T4MH	Timer 4 High Byte Clock Select.
		Selects the clock supplied to the Timer 4 high byte (split 8-bit timer mode only).
		0: Timer 4 high byte uses the clock defined by the T4XCLK bit in TMR4CN.
		1: Timer 4 high byte uses the system clock.
0	T4ML	Timer 4 Low Byte Clock Select.
		Selects the clock supplied to Timer 4. If Timer 4 is configured in split 8-bit timer mode, this bit selects the clock supplied to the lower 8-bit timer.
		0: Timer 4 low byte uses the clock defined by the T4XCLK bit in TMR4CN.
		1: Timer 4 low byte uses the system clock.

SFR Definition 26.4. TMOD: Timer Mode

Bit	7	6	5	4	3	2	1	0
Nam	e GATE1	C/T1	T1M[1:0]		GATE0	C/T0	T0M[1:0]	
Туре	R/W	R/W	R/W		R/W	R/W	R/W	
Reset 0 <td>0</td> <td>0</td> <td>0</td>		0	0	0				
SFR Address = 0x89; SFR Page = All Pages								
Bit	Name				Function			
7	GATE1	Timer 1 Ga	Timer 1 Gate Control.					
		0: Timer 1 e	nabled wher	n TR1 = 1 irr	espective of	INT1 logic le	evel.	
		1: Timer 1 e register IT0 ⁻	nabled only 1CF (see SF	when TR1 = R Definition	1 AND INT1 16.7).	is active as	defined by b	it IN1PL in
6	C/T1	Counter/Tir	ner 1 Select	t.				
		0: Timer: Tir 1: Counter:	0: Timer: Timer 1 incremented by clock defined by T1M bit in register CKCON. 1: Counter: Timer 1 incremented by high-to-low transitions on external pin (T1).					
5:4	T1M[1:0]	Timer 1 Mode Select.						
		These bits s	These bits select the Timer 1 operation mode.					
		00: Mode 0,	Mode 0, 13-bit Counter/Timer					
		01: Mode 1,	1, 16-bit Counter/Timer					
		10: Mode 2,	2, 8-bit Counter/Timer with Auto-Reload					
	0.4750	11: Mode 3, Timer 1 Inactive						
3	GATEO							
0: Timer 0 enabled when TR0 = 1 irrespective of INT0 logic level				evel. defined by b	it INOPL in			
		register IT01CF (see SFR Definition 16.7).						
2	C/T0	Counter/Timer 0 Select.						
		0: Timer: Timer 0 incremented by clock defined by T0M bit in register CK					CON.	
		1: Counter: Timer 0 incremented by high-to-low transitions on external pin (T0).						
1:0	T0M[1:0]	Timer 0 Mode Select.						
		These bits select the Timer 0 operation mode.						
		01: Mode 1, 16 bit Counter/Timer						
10: Mode 2, 8-bit Counter/Timer with Auto-Reloa		d						
11: Mode 3, Two 8-bit Counter/Timers		-						

Figure 26.10. Timer 3 Capture Mode (T3SPLIT = 0)

When T3SPLIT = 1, the Timer 3 registers (TMR3H and TMR3L) act as two 8-bit counters. Each counter counts up independently and overflows from 0xFF to 0x00. Each time a capture event is received, the contents of the Timer 3 registers are latched into the Timer 3 Reload registers (TMR3RLH and TMR3RLL). A Timer 3 interrupt is generated if enabled.

C2 Register Definition 28.4. FPCTL: C2 Flash Programming Control

Bit	7	6	5	4	3	2	1	0
Name	FPCTL[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

C2 Address: 0x02

Bit	Name	Function
7:0	FPCTL[7:0]	Flash Programming Control Register.
		This register is used to enable Flash programming via the C2 interface. To enable C2 Flash programming, the following codes must be written in order: 0x02, 0x01. Note that once C2 Flash programming is enabled, a system reset must be issued to resume normal operation.

C2 Register Definition 28.5. FPDAT: C2 Flash Programming Data

Bit	7	6	5	4	3	2	1	0
Name	FPDAT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

C2 Address: 0xAD

Bit	Name	Function				
7:0	FPDAT[7:0]	C2 Flash Programming Data Register.				
		This register is used to pass Flash commands, addresses, and data during C2 Flash accesses. Valid commands are listed below.				
		Code	Command			
		0x06	Flash Block Read			
		0x07	Flash Block Write			
		0x08	Flash Page Erase			
		0x03	Device Erase			

