E·XFL

NXP USA Inc. - MC908JK3MDWE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	LED, LVD, POR, PWM
Number of I/O	15
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908jk3mdwe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Sections

Technical Data

MC68H(R)C908JL3-Rev. 1.1

List of Tables

Table	Title	Page
12-1	Port A Pin Functions	152
12-2	Port B Pin Functions	154
12-3	Port D Pin Functions	157
18-1	Absolute Maximum Ratings	192
18-2	Operating Range	193
18-3	Thermal Characteristics	193
18-4	DC Electrical Characteristics (5V)	194
18-5	Control Timing (5V)	195
18-6	Oscillator Component Specifications (5V)	196
18-7	DC Electrical Characteristics (3V)	197
18-8	Control Timing (3V)	198
18-9	Oscillator Component Specifications (3V)	199
18-10	ADC Characteristics	201
18-11	Memory Characteristics	202
20-1	MC Order Numbers	208

General Description

1.3 Features

Features of the MC68H(R)C908JL3 include the following:

- High-performance M68HC08 architecture
- Fully upward-compatible object code with M6805, M146805, and M68HC05 Families
- Low-power design; fully static with stop and wait modes
- 5V and 3V operating voltages
- 8MHz internal bus operation
- RC-oscillator circuit or crystal-oscillator options
- In-system FLASH programming
- FLASH security¹
- User FLASH memory
 - 4096 bytes for MC68H(R)C908JL3/JK3
 - 1536 bytes for MC68H(R)C908JK1
- 128 bytes of on-chip random-access memory (RAM)
- 2-channel, 16-bit timer interface module (TIM)
- 12-channel, 8-bit analog-to-digital converter (ADC)
- 23 general purpose I/O ports for MC68H(R)C908JL3:
 - 7 keyboard interrupt with internal pull-up
 - 10 LED drivers
 - 2 × 25mA open-drain I/O with pull-up
 - 2 ICAP/OCAP/PWM
- 15 general purpose I/O ports for MC68H(R)C908JK3/JK1:
 - 1 keyboard interrupt with internal pull-up (with RC oscillator option selected)
 - 4 LED drivers
 - 2 \times 25mA open-drain I/O with pull-up
 - 2 ICAP/OCAP/PWM

Technical Data

^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.

- System protection features:
 - Optional computer operating properly (COP) reset
 - Optional low-voltage detection with reset and selectable trip points for 3V and 5V operation.
 - Illegal opcode detection with reset
 - Illegal address detection with reset
- Master reset pin with internal pull-up and power-on reset
- IRQ1 with programmable pull-up and schmitt-trigger input
- 28-pin PDIP and 28-pin SOIC packages for MC68H(R)C908JL3
- 20-pin PDIP and 20-pin SOIC packages for MC68H(R)C908JK3/JK1

Features of the CPU08 include the following:

- Enhanced HC05 programming model
- Extensive loop control functions
- 16 addressing modes (eight more than the HC05)
- 16-bit index register and stack pointer
- Memory-to-memory data transfers
- Fast 8 × 8 multiply instruction
- Fast 16/8 divide instruction
- Binary-coded decimal (BCD) instructions
- Optimization for controller applications
- Efficient C language support

1.4 MCU Block Diagram

Figure 1-1 shows the structure of the MC68H(R)C908JL3.

Vector Priority	Vector	Address	Vector				
Lowest	1515	\$FFDE	ADC Conversion Complete Vector (High)				
	IFIJ	\$FFDF	ADC Conversion Complete Vector (Low)				
		\$FFE0	Keyboard Vector (High)				
	117 14	\$FFE1	Keyboard Vector (Low)				
	IF13						
	to IF6	_	Not Used				
	IES	\$FFF2	TIM Overflow Vector (High)				
	IFS	\$FFF3	TIM Overflow Vector (Low)				
	IF4	\$FFF4	TIM Channel 1 Vector (High)				
		\$FFF5	TIM Channel 1 Vector (Low)				
	IF3	\$FFF6	TIM Channel 0 Vector (High)				
		\$FFF7	TIM Channel 0 Vector (Low)				
	IF2		Not Used				
	154	\$FFFA	IRQ Vector (High)				
		\$FFFB	IRQ Vector (Low)				
		\$FFFC	SWI Vector (High)				
		\$FFFD	SWI Vector (Low)				
▼		\$FFFE	Reset Vector (High)				
Highest		\$FFFF	Reset Vector (Low)				

Table 2-1. Vector Addresses

Source	Operation	Description			Effect on CCR				e ess	ode	rand	es
Form			v	н	I	Ν	z	С	Add	Opc	Oper	Cycl
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP	Compare A with M	(A) – (M)	↓	_	_	⊅	⊅	⊅	IMM DIR EXT IX2 IX1 IX SP1 SP2	A1 B1 C1 E1 F1 9EE1 9ED1	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	$\begin{array}{l} M \leftarrow (\overline{M}) = \$FF - (M) \\ A \leftarrow (\overline{A}) = \$FF - (M) \\ X \leftarrow (\overline{X}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \end{array}$	0	_	_	\$	€	1	DIR INH INH IX1 IX SP1	33 43 53 63 73 9E63	dd ff ff	4 1 4 3 5
CPHX #opr CPHX opr	Compare H:X with M	(H:X) – (M:M + 1)	\$	_	_	\$	\$	¢	IMM DIR	65 75	ii ii+1 dd	3 4
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP	Compare X with M	(X) – (M)	\$	_	_	⊅	⊅	¢	IMM DIR EXT IX2 IX1 IX SP1 SP2	A3 B3 C3 D3 E3 F3 9EE3 9ED3	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
DAA	Decimal Adjust A	(A) ₁₀	U	Ι	Ι	\$	¢	¢	INH	72		2
DBNZ opr,rel DBNZA rel DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel	Decrement and Branch if Not Zero	$\begin{array}{l} A \leftarrow (A) - 1 \text{ or } M \leftarrow (M) - 1 \text{ or } X \leftarrow (X) - \\ 1 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 4 + \mathit{rel} ? (\mathit{result}) \neq 0 \end{array}$	_	_	_	_	_	_	DIR INH INH IX1 IX SP1	3B 4B 5B 6B 7B 9E6B	dd rr rr rr ff rr ff rr ff rr	5 3 5 4 6
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP	Decrement	$\begin{array}{c} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \end{array}$	€	_	_	\$	\$	_	DIR INH INH IX1 IX SP1	3A 4A 5A 6A 7A 9E6A	dd ff ff	4 1 4 3 5
DIV	Divide	$A \leftarrow (H:A)/(X)$ $H \leftarrow Remainder$	_	-	_	-	\$	\$	INH	52		7

Table 6-1. Instruction Set Summary

Central Processor Unit (CPU)

Table 6-1. Instruction Set Summary

Sou Fo	ırce rm	Operation	Description		Cycles Address Mode ess Cycles					
А	Accumu	lator		n	Any bit					
С	Carry/bo	prrow bit		opr	Operand (one or two bytes)					
CCR	Conditio	n code register		PC	Program counter					
dd	Direct ad	ddress of operand		PCH	Program counter high byte					
dd rr	Direct ad	ddress of operand and relative offset	of branch instruction	PCL	Program counter low byte					
DD	Direct to	direct addressing mode		REL	Relative addressing mode					
DIR	Direct ad	ddressing mode		rel	Relative program counter offset byte					
DIX+	Direct to	indexed with post increment address	sing mode	rr	Relative program counter offset byte					
ee ff	High and	d low bytes of offset in indexed, 16-bi	t offset addressing	SP1	Stack pointer, 8-bit offset addressing mode					
EXT	Extende	d addressing mode		SP2	Stack pointer 16-bit offset addressing mode					
ff	Offset by	yte in indexed, 8-bit offset addressing]	SP	Stack pointer					
Н	Half-cari	ry bit		U	Undefined					
Н	Index re	gister high byte		V	Overflow bit					
hh ll	High and	d low bytes of operand address in ext	tended addressing	Х	Index register low byte					
I	Interrupt	tmask		Z	Zero bit					
ii	Immedia	ate operand byte		&	Logical AND					
IMD	Immedia	ate source to direct destination addres	ssing mode		Logical OR					
IMM	Immedia	ate addressing mode		\oplus	Logical EXCLUSIVE OR					
INH	Inherent	addressing mode		()	Contents of					
IX	Indexed	, no offset addressing mode		-()	Negation (two's complement)					
IX+	Indexed	, no offset, post increment addressing	g mode	#	Immediate value					
IX+D	Indexed	with post increment to direct address	sing mode	«	Sign extend					
IX1	Indexed,	, 8-bit offset addressing mode		\leftarrow	Loaded with					
IX1+	Indexed,	, 8-bit offset, post increment addressi	ing mode	?	lf					
IX2	Indexed,	, 16-bit offset addressing mode		:	Concatenated with					
М	Memory	location		Ĵ	Set or cleared					
Ν	Negative	e bit		—	Not affected					

System Integration Module (SIM)

Low-Power Modes
Wait Mode
Stop Mode
SIM Registers
Break Status Register (BSR)91
Reset Status Register (RSR)
Break Flag Control Register (BFCR)94

7.2 Introduction

This section describes the system integration module (SIM), which supports up to 24 external and/or internal interrupts. Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in **Figure 7-1**. **Figure 7-2** is a summary of the SIM I/O registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for:

- Bus clock generation and control for CPU and peripherals
 - Stop/wait/reset/break entry and recovery
 - Internal clock control
- Master reset control, including power-on reset (POR) and COP timeout
- Interrupt control:
 - Acknowledge timing
 - Arbitration control timing
 - Vector address generation
- CPU enable/disable timing
- Modular architecture expandable to 128 interrupt sources

Figure 7-1. SIM Block Diagram

Table 7-	1. Signal	Name	Conventions
----------	-----------	------	-------------

Signal Name	Description
2OSCOUT	Buffered clock from the X-tal oscillator circuit or the RC oscillator circuit.
OSCOUT	The 2OSCOUT frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks. (Bus clock = 2OSCOUT ÷ 4)
IAB	Internal address bus
IDB	Internal data bus
PORRST	Signal from the power-on reset module to the SIM
IRST	Internal reset signal
R/W	Read/write signal

MC68H(R)C908JL3 - Rev. 1.1

Technical Data

7.4.2.2 Computer Operating Properly (COP) Reset

An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the reset status register (RSR). The SIM actively pulls down the $\overline{\text{RST}}$ pin for all internal reset sources.

To prevent a COP module time-out, write any value to location \$FFFF. Writing to location \$FFFF clears the COP counter and stages 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every $(2^{12} - 2^4)$ 2OSCOUT cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first time-out.

The COP module is disabled if the RST pin or the IRQ1 pin is held at $V_{DD} + V_{HI}$ while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST or the IRQ1 pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, $V_{DD} + V_{HI}$ on the RST pin disables the COP module.

7.4.2.3 Illegal Opcode Reset

The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the reset status register (RSR) and causes a reset.

If the stop enable bit, STOP, in the mask option register is logic zero, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the $\overline{\text{RST}}$ pin for all internal reset sources.

7.4.2.4 Illegal Address Reset

An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the reset status register (RSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources.

MC68H(R)C908JL3 - Rev. 1.1

Figure 9-1. Monitor Mode Circuit

MC68H(R)C908JL3 - Rev. 1.1

Technical Data

If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.

10.8 TIM During Break Interrupts

A break interrupt stops the TIM counter.

The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See **7.8.3 Break Flag Control Register** (BFCR).)

To allow software to clear status bits during a break interrupt, write a logic one to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect status bits during the break state, write a logic zero to the BCFE bit. With BCFE at logic zero (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic zero. After the break, doing the second step clears the status bit.

10.9 I/O Signals

Port D shares two of its pins with the TIM. The two TIM channel I/O pins are PTD4/TCH0 and PTD5/TCH1.

Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTD4/TCH0 can be configured as a buffered output compare or buffered PWM pin.

Technical Data

MC68H(R)C908JL3 – Rev. 1.1

Figure 10-8. CHxMAX Latency

10.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L)

These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown.

In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read.

In output compare mode (MSxB:MSxA \neq 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written.

Technical Data — MC68H(R)C908JL3

Section 11. Analog-to-Digital Converter (ADC)

11.1 Contents

11.2 Introduction
11.3 Features
11.4Functional Description13811.4.1ADC Port I/O Pins13911.4.2Voltage Conversion14011.4.3Conversion Time14011.4.4Continuous Conversion14011.4.5Accuracy and Precision141
11.5 Interrupts
11.6 Low-Power Modes
11.7 I/O Signals
11.8I/O Registers14211.8.1ADC Status and Control Register14211.8.2ADC Data Register14411.8.3ADC Input Clock Register.145

11.2 Introduction

This section describes the analog-to-digital converter (ADC). The ADC is an 8-bit, 12-channels analog-to-digital converter.

MC68H(R)C908JL3 - Rev. 1.1

Analog-to-Digital Converter (ADC)

CH4	СНЗ	CH2	CH1	CH0	ADC Channel	Input Select	
0	0	0	0	0	ADC0	PTB0	
0	0	0	0	1	ADC1	PTB1	
0	0	0	1	0	ADC2	PTB2	
0	0	0	1	1	ADC3	PTB3	
0	0	1	0	0	ADC4	PTB4	
0	0	1	0	1	ADC5	PTB5	
0	0	1	1	0	ADC6	PTB6	
0	0	1	1	1	ADC7	PTB7	
0	1	0	0	0	ADC8	PTD3	
0	1	0	0	1	ADC9	PTD2	
0	1	0	1	0	ADC10	PTD1	
0	1	0	1	1	ADC11	PTD0	
0	1	1	0	0			
:	:	:	:	:	—	Unused (see Note 1)	
1	1	0	1	0		()	
1	1	0	1	1	—	Reserved	
1	1	1	0	0	—	Unused	
1	1	1	0	1		V _{DDA} (see Note 2)	
1	1	1	1	0		V _{SSA} (see Note 2)	
1	1	1	1	1		ADC power off	

Table 11-1. MUX Channel Select

NOTES:

1. If any unused channels are selected, the resulting ADC conversion will be unknown.

2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of the ADC converter both in production test and for user applications.

11.8.2 ADC Data Register

One 8-bit result register is provided. This register is updated each time an ADC conversion completes.

MC68H(R)C908JL3 – Rev. 1.1

12.6 Port D

Port D is an 8-bit special function port that shares two of its pins with Timer Interface Module, (see Section 10.) and shares four of its pins with Analog to Digital Conversion Module (see Section 11.). PTD6 and PTD7 each has high current drive (25mA sink) and programmable pull-up. PTD2, PTD3, PTD6 and PTD7 each has LED driving capability.

12.6.1 Port D Data Register (PTD)

The port D data register contains a data latch for each of the eight port D pins.

Address:	\$0003							
	Bit 7	6	5	4	3	2	1	Bit 0
Read:		DTD6			מחדם			ρτρο
Write:	FIDI	FIDO	FTD5	FID4	FIDS	FIDZ	FIUI	FIDU
Reset:								
Additional Functions	LED	LED			LED	LED		
					ADC8	ADC9	ADC10	ADC11
			TCH1	TCH0				
	25mA sink (Slow Edge)	25mA sink (Slow Edge)						
	5k pull-up	5k pull-up						

Figure 12-9. Port D Data Register (PTD)

PTD[7:0] — Port D Data Bits

These read/write bits are software programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data.

14.5 Wait Mode

The keyboard modules remain active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode.

14.6 Stop Mode

The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode.

14.7 Keyboard Module During Break Interrupts

The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state.

To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect.

Break Module (BREAK)

17.5.2 Break Address Registers

The break address registers contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers.

Figure 17-4. Break Address Register High (BRKH)

Figure 17-5. Break Address Register Low (BRKL)

17.5.3 Break Status Register

The break status register contains a flag to indicate that a break caused an exit from stop or wait mode.

Technical Data — MC68H(R)C908JL3

Section 19. Mechanical Specifications

19.1 Contents

19.2		203
19.3	20-Pin PDIP	204
19.4	20-Pin SOIC	204
19.5	28-Pin PDIP	205
19.6	28-Pin SOIC	205

19.2 Introduction

This section gives the dimensions for:

- 20-pin plastic dual in-line package (case #738)
- 20-pin small outline integrated circuit package (case #751D)
- 28-pin plastic dual in-line package (case #710)
- 28-pin small outline integrated circuit package (case #751F)

The following figures show the latest package drawings at the time of this publication. To make sure that you have the latest package specifications, please visit the Freescale website at http://freescale.com. Follow or Worldwide Web on-line instructions to retrieve the current mechanical specifications.

