

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	LED, LVD, POR, PWM
Number of I/O	23
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.3V
Data Converters	A/D 12x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	28-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908jl3cpe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figur	re Title	Page
7-11	Interrupt Recognition Example	
7-12	Interrupt Status Register 1 (INT1)	
7-13	Interrupt Status Register 2 (INT2)	
7-14	Interrupt Status Register 3 (INT3)	
7-15	Wait Mode Entry Timing	
7-16	Wait Recovery from Interrupt or Break	
7-17	Wait Recovery from Internal Reset	
7-18	Stop Mode Entry Timing	
7-19	Stop Mode Recovery from Interrupt or Break	
7-20	Break Status Register (BSR)	
7-21	Reset Status Register (RSR)	
7-22	Break Flag Control Register (BFCR)	94
8-1	X-tal Oscillator External Connections	
8-2	RC Oscillator External Connections	97
9-1	Monitor Mode Circuit	103
9-2	Low-Voltage Monitor Mode Entry Flowchart.	106
9-3	Monitor Data Format	108
9-4	Sample Monitor Waveforms	108
9-5	Read Transaction	108
9-6	Break Transaction.	109
9-7	Monitor Mode Entry Timing.	113
10-1	TIM Block Diagram	117
10-2	TIM I/O Register Summary	118
10-3	PWM Period and Pulse Width	122
10-4	TIM Status and Control Register (TSC)	
10-5	TIM Counter Registers (TCNTH:TCNTL)	130
10-6	TIM Counter Modulo Registers (TMODH:TMODL)	
10-7	TIM Channel Status and Control Registers (TSC0:TSC1)	
10-8	CHxMAX Latency	
10-9	TIM Channel Registers (TCH0H/L:TCH1H/L)	136
11-1	ADC I/O Register Summary	138
11-2	ADC Block Diagram	139
11-3	ADC Status and Control Register (ADSCR)	142

4.9 FLASH Block Protect Register

The FLASH Block Protect Register is implemented as an 8-bit I/O register. The value in this register determines the starting address of the protected range within the FLASH memory.

Address: \$FE09

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	BPR7	BPR6	BPR5	BPR4	BPR3	BPR2	BPR1	0
Write:	DENT	DENO	DF NJ	DF N4	DENS	DF NZ	DENT	
Reset:	0	0	0	0	0	0	0	0

Figure 4-3. FLASH Block Protect Register (FLBPR)

BPR[7:1], bit-0 — FLASH Protection Register Bits [7:1]

These eight bits in FLBPR (bit-0 is always 0) represent bits [12:5] of a 16-bit memory address. Bits [15:13] are logic 1s and bits [4:0] are logic 0s.

The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at \$FFFF. With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 within the FLASH memory.

Examples of protect start address:

BPR[7:0]	Start of Address of Protect Range
\$00–\$60	The entire FLASH memory is protected.
\$62 (0110 0010)	\$EC40 (111 0 1100 010 0 0000)
\$64 (0110 0100)	\$EC80 (111 0 1100 100 0 0000)
\$68 (0110 1000)	\$ED00 (111 0 1101 000 0 0000)
and so on	
\$DE (1101 1110)	\$FBC0 (111 1 1011 11<i>0</i>0 0000)
\$FE (1111 1110)	\$FFC0 (111 1 1111 110 0 0000)
\$FF	The entire FLASH memory is not protected.

Technical Data — MC68H(R)C908JL3

Section 7. System Integration Module (SIM)

7.1 Contents

7.2 Introduction	72
7.3 SIM Bus Clock Control and Generation	75
7.3.1 Bus Timing	75
7.3.2 Clock Start-Up from POR	75
7.3.3 Clocks in Stop Mode and Wait Mode	75
7.4 Reset and System Initialization.	76
7.4.1 External Pin Reset	76
7.4.2 Active Resets from Internal Sources	77
7.4.2.1 Power-On Reset	78
7.4.2.2 Computer Operating Properly (COP) Reset	79
7.4.2.3 Illegal Opcode Reset	79
7.4.2.4 Illegal Address Reset	79
7.4.2.5 LVI Reset	80
7.5 SIM Counter	80
7.5.1 SIM Counter During Power-On Reset	80
7.5.2 SIM Counter During Stop Mode Recovery	80
7.5.3 SIM Counter and Reset States	81
7.6 Exception Control	81
7.6.1 Interrupts	
7.6.1.1 Hardware Interrupts	
7.6.1.2 SWI Instruction	
7.6.2 Interrupt Status Registers.	85
7.6.2.1 Interrupt Status Register 1	
7.6.2.2 Interrupt Status Register 2	86
7.6.2.3 Interrupt Status Register 3	87
7.6.3 Reset	87
7.6.4 Break Interrupts	87
7.6.5 Status Flag Protection in Break Mode	87

MC68H(R)C908JL3 - Rev. 1.1

7.4.2.2 Computer Operating Properly (COP) Reset

An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the reset status register (RSR). The SIM actively pulls down the $\overline{\text{RST}}$ pin for all internal reset sources.

To prevent a COP module time-out, write any value to location \$FFFF. Writing to location \$FFFF clears the COP counter and stages 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every $(2^{12} - 2^4)$ 2OSCOUT cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first time-out.

The COP module is disabled if the RST pin or the IRQ1 pin is held at $V_{DD} + V_{HI}$ while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST or the IRQ1 pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, $V_{DD} + V_{HI}$ on the RST pin disables the COP module.

7.4.2.3 Illegal Opcode Reset

The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the reset status register (RSR) and causes a reset.

If the stop enable bit, STOP, in the mask option register is logic zero, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the $\overline{\text{RST}}$ pin for all internal reset sources.

7.4.2.4 Illegal Address Reset

An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the reset status register (RSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources.

MC68H(R)C908JL3 - Rev. 1.1

Monitor ROM (MON)

9.4.3 Data Format

Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. (See Figure 9-3 and Figure 9-4.)

Figure 9-4. Sample Monitor Waveforms

The data transmit and receive rate can be anywhere from 4800 baud to 28.8k-baud. Transmit and receive baud rates must be identical.

9.4.4 Echoing

As shown in **Figure 9-5**, the monitor ROM immediately echoes each received byte back to the PTB0 pin for error checking.

Figure 9-5. Read Transaction

Any result of a command appears after the echo of the last byte of the command.

Description	Read next 2 bytes in memory from last address accessed			
Operand	Specifies 2-byte address in high byte:low byte order			
Data Returned	Returns contents of next two addresses			
Opcode	\$1A			
Command Sequence				
SENT TO MONITOR	IREAD DATA DATA X			

Table 9-6. IREAD (Indexed Read) Command

Table 9-7. IWRITE (Indexed Write) Command

NOTE: A sequence of IREAD or IWRITE commands can sequentially access a block of memory over the full 64-Kbyte memory map.

NP

Timer Interface Module (TIM)

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
TIM Status and Control		Read:	TOF	TOIL	TOTOD	0	0	D 00	PS1	D 00
\$0020	Register	Write:	0	TOIE	TSTOP	TRST		PS2	P51	PS0
	(TSC)	Reset:	0	0	1	0	0	0	0	0
		Read:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
\$0021	TIM Counter Register High (TCNTH)	Write:								
		Reset:	0	0	0	0	0	0	0	0
		Read:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
\$0022	TIM Counter Register Low (TCNTL)	Write:								
	(-)	Reset:	0	0	0	0	0	0	0	0
	TIM Counter Modulo	Read:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
\$0023	Register High	Write:	DILID	DILI4	DILIS	DILIZ	DILII	BILTU	DIIƏ	Dito
	(TMODH)	Reset:	1	1	1	1	1	1	1	1
	TIM Counter Modulo	Read:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
\$0024	Register Low	Write:	DIL/	DILO	Dito	Dit4	Dito	DILZ	Ditt	Bito
	(TMODL)	Reset:	1	1	1	1	1	1	1	1
	TIM Channel 0 Status and	Read:	CH0F	CHOIE	MS0B	MS0A	ELS0B	ELS0A	TOV0	CHOMAX
\$0025	Control Register	Write:	0		IVIOUD	IVISUA	ELOUD	ELSUA	1000	CHUMAX
	(TSC0)	Reset:	0	0	0	0	0	0	0	0
	TIM Channel 0	Read:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
\$0026	Register High	Write:	DILIS DILI4	DILIS	DILIZ	DILTI	DILIU	DIIA	Dito	
	(TCH0H)	Reset:	Indeterminate after reset							
\$0027	TIM Channel 0	Read:	Bit7	Bit6	Rit5	Dit/	Di+2	Bit0	Di+1	BitO
	Register Low	Write:	DIL/	DILO	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	(TCH0L)	Reset:			Ir	determinat	te after rese	et		
	TIM Channel 1 Status and	Read:	CH1F	CH1IE	0	MS1A	ELS1B	ELS1A	TOV1	СЦ1МАХ
\$0028	Control Register	Write:	0	UTTIE		IVIS I A		ELSIA	TOV1	CH1MAX
	(TSC1)	Reset:	0	0	0	0	0	0	0	0

Figure 10-2. TIM I/O Register Summary

Technical Data

MC68H(R)C908JL3 - Rev. 1.1

write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written.

Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:

- When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value.
- When changing to a longer pulse width, enable channel x TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.
- **NOTE:** In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.

10.5.4.2 Buffered PWM Signal Generation

Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output.

Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register

MSxB	MSxA	ELSxB	ELSxA	Mode	Configuration
Х	0	0	0	Output	Pin under Port Control; Initial Output Level High
Х	1	0	0	Preset	Pin under Port Control; Initial Output Level Low
0	0	0	1		Capture on Rising Edge Only
0	0	1	0	Input Capture	Capture on Falling Edge Only
0	0	1	1	Captaro	Capture on Rising or Falling Edge
0	1	0	1	Output	Toggle Output on Compare
0	1	1	0	Compare	Clear Output on Compare
0	1	1	1	or PWM	Set Output on Compare
1	Х	0	1	Buffered	Toggle Output on Compare
1	Х	1	0	Output Compare or	Clear Output on Compare
1	х	1	1	Buffered PWM	Set Output on Compare

Table 10-3. Mode, Edge, and Level Selection

NOTE: Before enabling a TIM channel register for input capture operation, make sure that the TCHx pin is stable for at least two bus clocks.

TOVx — Toggle-On-Overflow Bit

When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit.

1 = Channel x pin toggles on TIM counter overflow.

0 = Channel x pin does not toggle on TIM counter overflow.

NOTE: When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time.

CHxMAX — Channel x Maximum Duty Cycle Bit

When the TOVx bit is at logic zero, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As **Figure 10-8** shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.

Technical Data

MC68H(R)C908JL3 – Rev. 1.1

12.4 Port A Data Register (PTA)

The port A data register (PTA) contains a data latch for each of the seven port A pins.

Figure 12-2. Port A Data Register (PTA)

PTA[6:0] — Port A Data Bits

These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data.

KBI[6:0] — Port A Keyboard Interrupts

The keyboard interrupt enable bits, KBIE6-KBIE0, in the keyboard interrupt control register (KBAIER) enable the port A pins as external interrupt pins, (see Section 14. Keyboard Interrupt Module (KBI)).

Figure 12-4. Port A I/O Circuit

When DDRAx is a logic 1, reading address \$0000 reads the PTAx data latch. When DDRAx is a logic 0, reading address \$0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit.

12.4.2 Port A Input Pull-up Enable Register (PTAPUE)

The Port A Input Pull-up Enable Register (PTAPUE) contains a software configurable pull-up device for each if the seven port A pins. Each bit is individually configurable and requires the corresponding data direction register, DDRAx be configured as input. Each pull-up device is automatically and dynamically disabled when its corresponding DDRAx bit is configured as output.

When DDRDx is a logic 1, reading address \$0003 reads the PTDx data latch. When DDRDx is a logic 0, reading address \$0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. **Table 12-3** summarizes the operation of the port D pins.

DDRD Bit	PTD Bit	I/O Pin Mode	Accesses to DDRA	Accesses to PTD		
Dit		Mode	Read/Write	Read	Write	
0	X ⁽¹⁾	Input, Hi-Z ⁽²⁾	DDRD[7:0]	Pin	PTD[7:0] ⁽³⁾	
1	Х	Output	DDRD[7:0]	Pin	PTD[7:0]	

Table 12-3. Port D Pin Functions

1. X = don't care 2. Hi-Z = high impedance

3. Writing affects data register, but does not affect the input.

12.6.3 Port D Control Register (PDCR)

The Port D Control Register enables/disables the pull-up resistor and slow-edge high current capability of pins PTD6 and PTD7.

SLOWDx — Slow Edge Enable

The SLOWD6 and SLOWD7 bits enable the Slow-edge, open-drain, high current output (25mA sink) of port pins PTD6 and PTD7 respectively. DDRx bit is not affected by SLOWDx.

- 1 = Slow edge enabled; pin is open-drain output
- 0 = Slow edge disabled; pin is push-pull

PTDPUx — Pull-up Enable

The PTDPU6 and PTDPU7 bits enable the 5k pull-up on PTD6 and PTD7 respectively, regardless the status of DDRDx bit.

- 1 = Enable 5k pull-up
- 0 = Disable 5k pull-up

External Interrupt (IRQ)

- Vector fetch or software clear A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic one to the ACK1 bit in the interrupt status and control register (ISCR). The ACK1 bit is useful in applications that poll the IRQ1 pin and require software to clear the IRQ1 latch. Writing to the ACK1 bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK1 does not affect subsequent transitions on the IRQ1 pin. A falling edge that occurs after writing to the ACK1 bit latches another interrupt request. If the IRQ1 mask bit, IMASK1, is clear, the CPU loads the program counter with the vector address at locations \$FFFA and \$FFFB.
- Return of the IRQ1 pin to logic one As long as the IRQ1 pin is at logic zero, IRQ1 remains active.

The vector fetch or software clear and the return of the $\overline{IRQ1}$ pin to logic one may occur in any order. The interrupt request remains pending as long as the $\overline{IRQ1}$ pin is at logic zero. A reset will clear the latch and the MODE1 control bit, thereby clearing the interrupt even if the pin stays low.

If the MODE1 bit is clear, the IRQ1 pin is falling-edge-sensitive only. With MODE1 clear, a vector fetch or software clear immediately clears the IRQ1 latch.

The IRQF1 bit in the ISCR register can be used to check for pending interrupts. The IRQF1 bit is not affected by the IMASK1 bit, which makes it useful in applications where polling is preferred.

Use the BIH or BIL instruction to read the logic level on the IRQ1 pin.

- **NOTE:** When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine.
- **NOTE:** An internal pull-up resistor to V_{DD} is connected to the $\overline{IRQ1}$ pin; this can be disabled by setting the IRQPUD bit in the CONFIG2 register (\$001E).

Technical Data — MC68H(R)C908JL3

Section 14. Keyboard Interrupt Module (KBI)

14.1 Contents

14.2 Introduction
14.3 Features
14.4 Functional Description
14.4.1 Keyboard Initialization168
14.4.2 Keyboard Status and Control Register169
14.4.3 Keyboard Interrupt Enable Register
14.5 Wait Mode
14.6 Stop Mode
14.7 Keyboard Module During Break Interrupts

14.2 Introduction

The keyboard interrupt module (KBI) provides seven independently maskable external interrupts which are accessible via PTA0–PTA6 pins.

14.3 Features

Features of the keyboard interrupt module include the following:

- Seven keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask
- Software configurable pull-up device if input pin is configured as input port bit
- Programmable edge-only or edge- and level- interrupt sensitivity
- Exit from low-power modes

MC68H(R)C908JL3 - Rev. 1.1

Section 15. Computer Operating Properly (COP)

15.1 Contents

15.2 Introduction
15.3 Functional Description174
15.4 I/O Signals 175 15.4.1 2OSCOUT 175 15.4.2 COPCTL Write 175 15.4.3 Power-On Reset 175 15.4.4 Internal Reset 175
15.4.4 Internal Resett 173 15.4.5 Reset Vector Fetch. 176 15.4.6 COPD (COP Disable). 176 15.4.7 COPRS (COP Rate Select) 176
15.5 COP Control Register 177 15.6 Interrupts 177
15.7 Monitor Mode
15.8 Low-Power Modes 177 15.8.1 Wait Mode 177 15.8.2 Stop Mode 178
15.9 COP Module During Break Mode

15.2 Introduction

The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG1 register.

MC68H(R)C908JL3 - Rev. 1.1

15.8.2 Stop Mode

Stop mode turns off the 2OSCOUT input to the COP and clears the SIM counter. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode.

15.9 COP Module During Break Mode

The COP is disabled during a break interrupt when $V_{DD} + V_{HI}$ is present on the RST pin.

Technical Data

MC68H(R)C908JL3 – Rev. 1.1

Break Module (BREAK)

17.5.2 Break Address Registers

The break address registers contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers.

Figure 17-4. Break Address Register High (BRKH)

Figure 17-5. Break Address Register Low (BRKL)

17.5.3 Break Status Register

The break status register contains a flag to indicate that a break caused an exit from stop or wait mode.

Technical	Data
-----------	------

Electrical Specifications

Table 18-7.	DC Electrical	Characteristics (3V)
-------------	----------------------	----------------------

Characteristic ⁽¹⁾ Symbol Min Typ ⁽²⁾	Max	Unit
---	-----	------

NOTES:

1. V_{DD} = 2.7 to 3.3 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted.

2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.

 Run (operating) I_{DD} measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C_L = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I_{DD}. Measured with all modules enabled.

4. Wait I_{DD} measured using external square wave clock source (f_{OP} = 4MHz); all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. C_L = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects wait I_{DD}.

5. STOP IDD measured with OSC1 grounded, no port pins sourcing current. LVI is disabled.

6. Maximum is highest voltage that POR is guaranteed.

7. If minimum V_{DD} is not reached before the internal POR reset is released, RST must be driven low externally until minimum V_{DD} is reached.

8. R_{PU1} and R_{PU2} are measured at $V_{DD} = 5.0V$

18.10 3V Control Timing

Table 18-8. Control Timing (3V)

Characteristic ⁽¹⁾		Min	Мах	Unit
Internal operating frequency ⁽²⁾	f _{OP}	_	4	MHz
RST input pulse width low ⁽³⁾	t _{IRL}	1.5	_	μs

NOTES:

- 1. V_{DD} = 2.7 to 3.3 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H; timing shown with respect to 20% V_{DD} and 70% V_{DD}, unless otherwise noted.
- 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information.

3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.

18.13 ADC Characteristics

Characteristic	Symbol	Min	Max	Unit	Comments
Supply voltage	V _{DDAD}	2.7 (V _{DD} min)	5.5 (V _{DD} max)	V	
Input voltages	V _{ADIN}	V _{SS}	V _{DD}	V	
Resolution	B _{AD}	8	8	Bits	
Absolute accuracy	A _{AD}	± 0.5	± 1.5	LSB	Includes quantization
ADC internal clock	f _{ADIC}	0.5	1.048	MHz	t _{AIC} = 1/f _{ADIC} , tested only at 1 MHz
Conversion range	R _{AD}	V _{SS}	V _{DD}	V	
Power-up time	t _{ADPU}	16		t _{AIC} cycles	
Conversion time	t _{ADC}	16	17	t _{AIC} cycles	
Sample time ⁽¹⁾	t _{ADS}	5	_	t _{AIC} cycles	
Zero input reading ⁽²⁾	Z _{ADI}	00	01	Hex	V _{IN} = V _{SS}
Full-scale reading ⁽³⁾	F _{ADI}	FE	FF	Hex	V _{IN} = V _{DD}
Input capacitance	C _{ADI}		(20) 8	pF	Not tested
Input leakage ⁽³⁾ Port B/port D	_		± 1	μΑ	

Table 18-10. ADC Characteristics

NOTES:

 Source impedances greater than 10 kΩ adversely affect internal RC charging time during input sampling.
 Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.
 The external system error caused by input leakage current is approximately equal to the product of R source and input current.

