

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

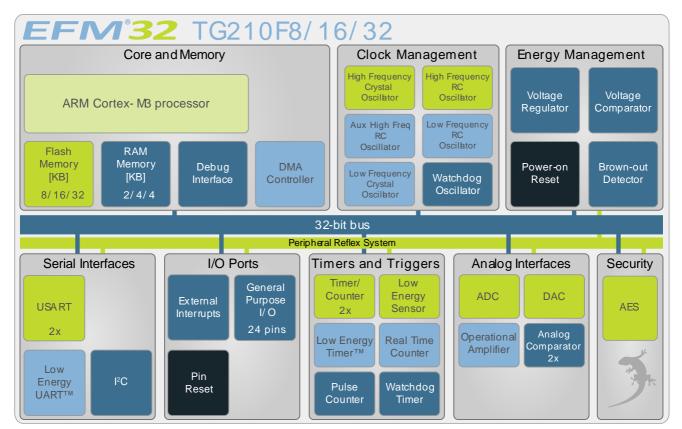
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 4x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VQFN Exposed Pad
Supplier Device Package	32-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg210f16-qfn32

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 System Summary

2.1 System Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32TG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32TG210 devices. For a complete feature set and indepth information on the modules, the reader is referred to the *EFM32TG Reference Manual*.

A block diagram of the EFM32TG210 is shown in Figure 2.1 (p. 3) .

Figure 2.1. Block Diagram

2.1.1 ARM Cortex-M3 Core

The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is included as well. The EFM32 implementation of the Cortex-M3 is described in detail in *EFM32 Cortex-M3 Reference Manual*.

2.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface . In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.

2.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32TG microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is

2.1.19 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

2.1.20 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 4 external pins and 6 internal signals.

2.1.21 Digital to Analog Converter (DAC)

The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has one single ended output buffer connected to channel 0. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

2.1.22 Operational Amplifier (OPAMP)

The EFM32TG210 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable gain using internal resistors etc.

2.1.23 Low Energy Sensor Interface (LESENSE)

The Low Energy Sensor Interface (LESENSETM), is a highly configurable sensor interface with support for up to 5 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.

2.1.24 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

2.1.25 General Purpose Input/Output (GPIO)

In the EFM32TG210, there are 24 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 14 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

3 Electrical Characteristics

3.1 Test Conditions

3.1.1 Typical Values

The typical data are based on $T_{AMB}=25^{\circ}C$ and $V_{DD}=3.0$ V, as defined in Table 3.2 (p. 9), by simulation and/or technology characterisation unless otherwise specified.

3.1.2 Minimum and Maximum Values

The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 9), by simulation and/or technology characterisation unless otherwise specified.

3.2 Absolute Maximum Ratings

The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 9) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 9).

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{STG}	Storage tempera- ture range		-40		150 ¹	°C
T _S	Maximum soldering temperature	Latest IPC/JEDEC J-STD-020 Standard			260	°C
V _{DDMAX}	External main sup- ply voltage		0		3.8	V
V _{IOPIN}	Voltage on any I/O pin		-0.3		V _{DD} +0.3	V

Table 3.1. Absolute Maximum Ratings

¹Based on programmed devices tested for 10000 hours at 150°C. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures.

3.3 General Operating Conditions

3.3.1 General Operating Conditions

Table 3.2. General Operating Conditions

Symbol	Parameter	Min	Тур	Мах	Unit
T _{AMB}	Ambient temperature range	-40		85	°C
V _{DDOP}	Operating supply voltage	1.98		3.8	V
f _{APB}	Internal APB clock frequency			32	MHz
f _{AHB}	Internal AHB clock frequency			32	MHz

3.5 Transition between Energy Modes

The transition times are measured from the trigger to the first clock edge in the CPU.

Table 3.4. Energy Modes Transitions

Symbol	Parameter	Min	Тур	Max	Unit
t _{EM10}	Transition time from EM1 to EM0		0		HF- CORE- CLK cycles
t _{EM20}	Transition time from EM2 to EM0		2		μs
t _{EM30}	Transition time from EM3 to EM0		2		μs
t _{EM40}	Transition time from EM4 to EM0		163		μs

3.6 Power Management

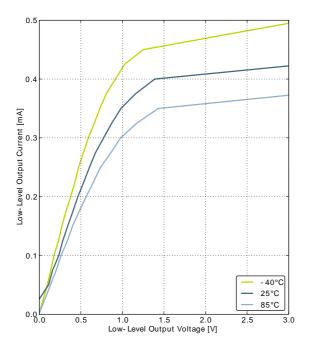
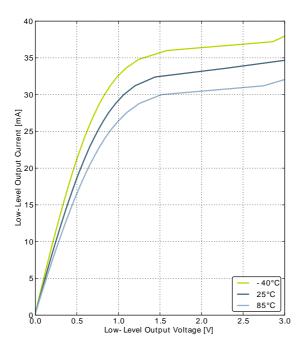
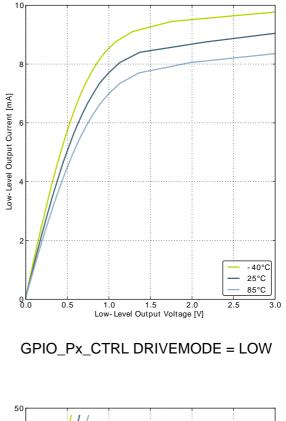
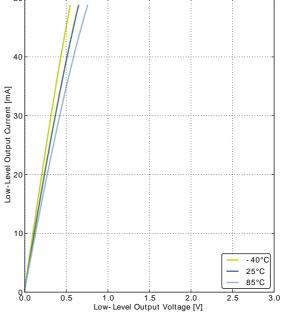

The EFM32TG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations".

Table 3.5. Power Management

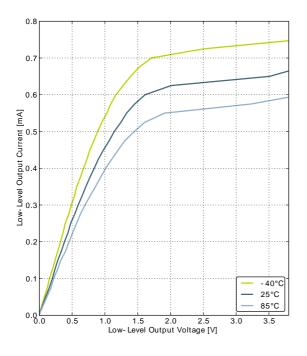

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{BODextthr} -	BOD threshold on falling external supply voltage		1.74		1.96	V
V _{BODextthr+}	BOD threshold on rising external sup- ply voltage			1.85	1.98	V
V _{PORthr+}	Power-on Reset (POR) threshold on rising external sup- ply voltage				1.98	V
t _{RESET}	Delay from reset is released until program execution starts	Applies to Power-on Reset, Brown-out Reset and pin reset.		163		μs
C _{DECOUPLE}	Voltage regulator decoupling capaci- tor.	X5R capacitor recommended. Apply between DECOUPLE pin and GROUND		1		μF

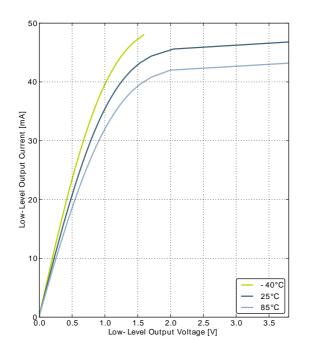

Figure 3.6. Typical Low-Level Output Current, 3V Supply Voltage

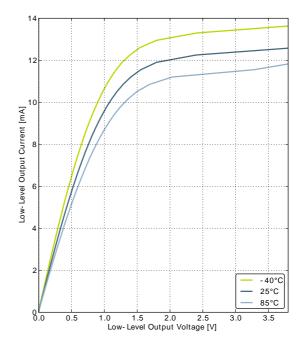


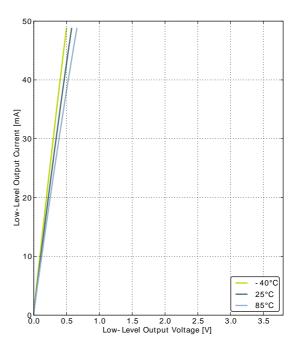
GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD




GPIO_Px_CTRL DRIVEMODE = HIGH


Figure 3.8. Typical Low-Level Output Current, 3.8V Supply Voltage


GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD

GPIO_Px_CTRL DRIVEMODE = LOW

GPIO_Px_CTRL DRIVEMODE = HIGH

3.9 Oscillators

3.9.1 LFXO

Table 3.8. LFXO

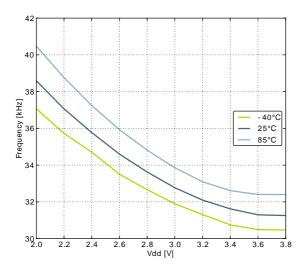
Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFXO}	Supported nominal crystal frequency			32.768		kHz
ESR _{LFXO}	Supported crystal equivalent series re- sistance (ESR)			30	120	kOhm
C _{LFXOL}	Supported crystal external load range		X ¹		25	pF
I _{LFXO}	Current consump- tion for core and buffer after startup.	ESR=30 kOhm, C _L =10 pF, LFXOBOOST in CMU_CTRL is 1		190		nA
t _{LFXO}	Start- up time.	ESR=30 kOhm, C _L =10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1		400		ms

¹See Minimum Load Capacitance (C_{LFXOL}) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio

For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration".

3.9.2 HFXO

Table 3.9. HFXO


Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{HFXO}	Supported nominal crystal Frequency		4		32	MHz
FOD	Supported crystal	Crystal frequency 32 MHz		30	60	Ohm
ESR _{HFXO}	equivalent series re- sistance (ESR)	Crystal frequency 4 MHz		400	1500	Ohm
g _{mHFXO}	The transconduc- tance of the HFXO input transistor at crystal startup	HFXOBOOST in CMU_CTRL equals 0b11	20			mS
C _{HFXOL}	Supported crystal external load range		5		25	pF
1	Current consump- tion for HFXO after startup	4 MHz: ESR=400 Ohm, C _L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11		85		μΑ
IHFXO		32 MHz: ESR=30 Ohm, C _L =10 pF, HFXOBOOST in CMU_CTRL equals $0b11$		165		μA
t _{HFXO}	Startup time	32 MHz: ESR=30 Ohm, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		400		μs

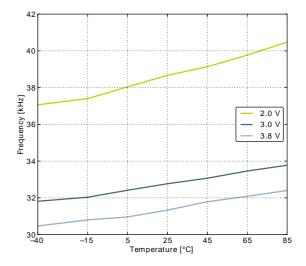
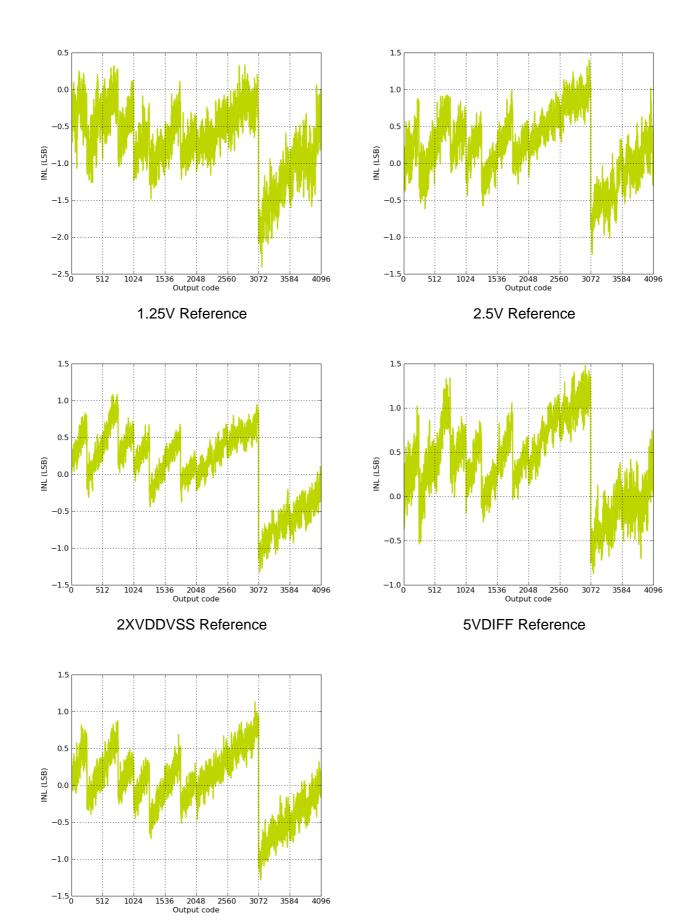

3.9.3 LFRCO

Table 3.10. LFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFRCO}	Oscillation frequen- cy , V_{DD} = 3.0 V, T_{AMB} =25°C		31.29	32.768	34.24	kHz
t _{LFRCO}	Startup time not in- cluding software calibration			150		μs
I _{LFRCO}	Current consump- tion			210	380	nA
TUNESTEP _L . FRCO	Frequency step for LSB change in TUNING value			1.5		%

Figure 3.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage



3.9.4 HFRCO

Table 3.11. HFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		28 MHz frequency band	27.16	28.0	28.84	MHz
		21 MHz frequency band	20.37	21.0	21.63	MHz
f	Oscillation frequen-	14 MHz frequency band	13.58	14.0	14.42	MHz
t _{HFRCO}	су, V _{DD} = 3.0 V, Т _{АМВ} =25°С	11 MHz frequency band	10.67	11.0	11.33	MHz
		7 MHz frequency band	6.40 ¹	6.60 ¹	6.80 ¹	MHz
		1 MHz frequency band	1.16 ²	1.20 ²	1.24 ²	MHz
t _{HFRCO_settling}	Settling time after start-up	f _{HFRCO} = 14 MHz		0.6		Cycles
I _{HFRCO}	Current consump-	f _{HFRCO} = 28 MHz		160	190	μA
	tion (Production test condition = 14 MHz)	f _{HFRCO} = 21 MHz		125	155	μA

Figure 3.20. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C

VDD Reference

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		Continuous Mode			1000	kHz
f _{DAC}	DAC clock frequen-	Sample/Hold Mode			250	kHz
		Sample/Off Mode			250	kHz
CYC _{DACCONV}	Clock cyckles per conversion			2		
t _{DACCONV}	Conversion time		2			μs
t _{DACSETTLE}	Settling time			5		μs
SNR _{DAC}	Signal to Noise Ra-	500 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		58		dB
	tio (SNR)	500 kSamples/s, 12 bit, single ended, internal 2.5V reference		59		dB
SNDR _{DAC}	Signal to Noise- pulse Distortion Ra- tio (SNDR)	500 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		57		dB
2.10		500 kSamples/s, 12 bit, single ended, internal 2.5V reference		54		dB
SFDR _{DAC}	Spurious-Free Dynamic	500 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		62		dBc
	Range(SFDR)	500 kSamples/s, 12 bit, single ended, internal 2.5V reference		56		dBc
VDACOFFSET	Offset voltage	After calibration, single ended		2		mV
DNL _{DAC}	Differential non-lin- earity	V_{DD} = 3.0 V, V_{DD} reference		±1		LSB
INL _{DAC}	Integral non-lineari- ty	V_{DD} = 3.0 V, V_{DD} reference		±5		LSB
MC _{DAC}	No missing codes			12		bits

3.12 Operational Amplifier (OPAMP)

The electrical characteristics for the Operational Amplifiers are based on simulations.

Table 3.16. OPAMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{OPAMP}		OPA2 BIASPROG=0xF, HALFBIAS=0x0, Unity Gain		350	405	μΑ
	Active Current	OPA2 BIASPROG=0x7, HALFBIAS=0x1, Unity Gain		95	115	μΑ
		OPA2 BIASPROG=0x0, HALFBIAS=0x1, Unity Gain		13	17	μA
		OPA2 BIASPROG=0xF, HALFBIAS=0x0		101		dB
G _{OL}	Open Loop Gain	OPA2 BIASPROG=0x7, HALFBIAS=0x1		98		dB
		OPA2 BIASPROG=0x0, HALFBIAS=0x1		91		dB

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		OPA0/OPA1 BIASPROG=0xF, HALFBIAS=0x0		0.09		μs
		OPA0/OPA1 BIASPROG=0x7, HALFBIAS=0x1		1.52		μs
DIL	Power-up Time	OPA0/OPA1 BIASPROG=0x0, HALFBIAS=0x1		12.74		μs
PU _{OPAMP}	Fower-up Time	OPA2 BIASPROG=0xF, HALFBIAS=0x0		0.09		μs
		OPA2 BIASPROG=0x7, HALFBIAS=0x1		0.13		μs
		OPA2 BIASPROG=0x0, HALFBIAS=0x1		0.17		μs
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<10 khz,="" opax-<br="">HCMDIS=0</f<10>		101		μV _{RMS}
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<10 khz,="" opax-<br="">HCMDIS=1</f<10>		141		μV _{RMS}
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<1 mhz,="" opaxhcmdis="0</td"><td></td><td>196</td><td></td><td>μV_{RMS}</td></f<1>		196		μV _{RMS}
N _{OPAMP}	Voltage Noise	V _{out} =1V, RESSEL=0, 0.1 Hz <f<1 mhz,="" opaxhcmdis="1</td"><td></td><td>229</td><td></td><td>μV_{RMS}</td></f<1>		229		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<10 khz,<br="">OPAxHCMDIS=0</f<10>		1230		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<10 khz,<br="">OPAxHCMDIS=1</f<10>		2130		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<1 mhz,<br="">OPAxHCMDIS=0</f<1>		1630		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<1 mhz,<br="">OPAxHCMDIS=1</f<1>		2590		μV _{RMS}

Figure 3.24. OPAMP Common Mode Rejection Ratio

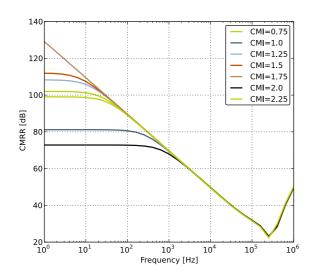
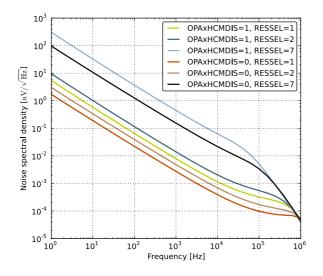



Figure 3.28. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)

3.14 Voltage Comparator (VCMP)

Table 3.18. VCMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{VCMPIN}	Input voltage range			V _{DD}		V
V _{VCMPCM}	VCMP Common Mode voltage range			V _{DD}		V
I _{VCMP}	Active current	BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register		0.3	0.6	μA
	Active current	BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0.		22	30	μA
t _{VCMPREF}	Startup time refer- ence generator	NORMAL		10		μs
V	Offect veltage	Single ended		10		mV
V _{VCMPOFFSET}	Offset voltage	Differential		10		mV
V _{VCMPHYST}	VCMP hysteresis			17		mV
t _{VCMPSTART}	Startup time				10	μs

The V_{DD} trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation:

VCMP Trigger Level as a Function of Level Setting

V_{DD Trigger Level}=1.667V+0.034 ×TRIGLEVEL

3.15 I2C

Table 3.19. I2C Standard-mode (Sm)

Symbol	Parameter	Min	Тур	Мах	Unit
f _{SCL}	SCL clock frequency	0		100 ¹	kHz
t _{LOW}	SCL clock low time	4.7			μs
t _{HIGH}	SCL clock high time	4.0			μs
t _{SU,DAT}	SDA set-up time	250			ns
t _{HD,DAT}	SDA hold time	8		3450 ^{2,3}	ns
t _{SU,STA}	Repeated START condition set-up time	4.7			μs
t _{HD,STA}	(Repeated) START condition hold time	4.0			μs
t _{SU,STO}	STOP condition set-up time	4.0			μs
t _{BUF}	Bus free time between a STOP and START condition	4.7			μs

¹For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32TG Reference Manual. ²The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

³When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10⁻⁹ [s] * f_{HFPERCLK} [Hz]) - 4).

(3.2)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{RTC}	RTC current	RTC idle current, clock enabled		40		nA
I _{AES}	AES current	AES idle current, clock enabled		2.5		µA/ MHz
I _{GPIO}	GPIO current	GPIO idle current, clock en- abled		5.31		µA/ MHz
I _{PRS}	PRS current	PRS idle current		2.81		µA/ MHz
I _{DMA}	DMA current	Clock enable		8.12		μΑ/ MHz

	QFN32 Pin# Pin Alternate Functionality / Description and Name								
Pin#	Pin Name	Analog	Timers	Communication	Other				
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0				
4	IOVDD_0	Digital IO power supply 0.	l		I				
5	PC0	ACMP0_CH0 DAC0_OUT0ALT #0/ OPAMP_OUT0ALT	TIM0_CC1 #4 PCNT0_S0IN #2	US0_TX #5 US1_TX #0 I2C0_SDA #4	LES_CH0 #0 PRS_CH2 #0				
6	PC1	ACMP0_CH1 DAC0_OUT0ALT #1/ OPAMP_OUT0ALT	TIM0_CC2 #4 PCNT0_S1IN #2	US0_RX #5 US1_RX #0 I2C0_SCL #4	LES_CH1 #0 PRS_CH3 #0				
7	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4 US1_CLK #0					
8	PB8	LFXTAL_N	TIM1_CC1 #3	US0_RX #4 US1_CS #0					
9	RESETn	Reset input, active low. To apply an external reset sou ensure that reset is released.	rce to this pin, it is required to on	ly drive this pin low during reset,	and let the internal pull-up				
10	PB11	DAC0_OUT0 / OPAMP_OUT0	TIM1_CC2 #3 LETIM0_OUT0 #1						
11	AVDD_2	Analog power supply 2.							
12	PB13	HFXTAL_P		US0_CLK #4/5 LEU0_TX #1					
13	PB14	HFXTAL_N		US0_CS #4/5 LEU0_RX #1					
14	IOVDD_3	Digital IO power supply 3.	4						
15	AVDD_0	Analog power supply 0.							
16	PD4	ADC0_CH4 OPAMP_P2		LEU0_TX #0					
17	PD5	ADC0_CH5 OPAMP_OUT2 #0		LEU0_RX #0					
18	PD6	ADC0_CH6 DAC0_P1 / OPAMP_P1	TIM1_CC0 #4 LETIM0_OUT0 #0 PCNT0_S0IN #3	US1_RX #2 I2C0_SDA #1	LES_ALTEX0 #0 ACMP0_O #2				
19	PD7	ADC0_CH7 DAC0_N1 / OPAMP_N1	TIM1_CC1 #4 LETIM0_OUT1 #0 PCNT0_S1IN #3	US1_TX #2 I2C0_SCL #1	CMU_CLK0 #2 LES_ALTEX1 #0 ACMP1_O #2				
20	VDD_DREG	Power supply for on-chip volta	ge regulator.						
21	DECOUPLE	Decouple output for on-chip vo	ltage regulator. An external capa	acitance of size C _{DECOUPLE} is rec	quired at this pin.				
22	PC13	ACMP1_CH5 DAC0_OUT1ALT #1/ OPAMP_OUT1ALT	TIM1_CC0 #0 TIM1_CC2 #4 PCNT0_S0IN #0		LES_CH13 #0				
23	PC14	ACMP1_CH6 DAC0_OUT1ALT #2/ OPAMP_OUT1ALT	TIM1_CC1 #0 PCNT0_S1IN #0	US0_CS #3	LES_CH14 #0				
24	PC15	ACMP1_CH7 DAC0_OUT1ALT #3/ OPAMP_OUT1ALT	TIM1_CC2 #0	US0_CLK #3	LES_CH15 #0 DBG_SWO #1				
25	PF0		TIM0_CC0 #5 LETIM0_OUT0 #2	US1_CLK #2 LEU0_TX #3 I2C0_SDA #5	DBG_SWCLK #0/1				
26	PF1		TIM0_CC1 #5 LETIM0_OUT1 #2	US1_CS #2 LEU0_RX #3 I2C0_SCL #5	DBG_SWDIO #0/1 GPIO_EM4WU3				
27	PF2		TIM0_CC2 #5	LEU0_TX #4	ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4				

...the world's most energy friendly microcontrollers

Alternate			L		N			
Functionality	0	1	2	3	4	5	6	Description
OPAMP_OUT0ALT								OPAMP alternative output for channel 0.
DAC0_OUT1ALT / OPAMP_OUT1ALT		PC13	PC14	PC15				Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5							Operational Amplifier 2 output.
DAC0_P1 / OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7			PC1	PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6			PC0	PF0	PE12	I2C0 Serial Data input / output.
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX5	PE11							LESENSE alternate exite output 5.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.
LES_ALTEX7	PE13							LESENSE alternate exite output 7.
LES_CH0	PC0							LESENSE channel 0.
LES_CH1	PC1							LESENSE channel 1.
LES_CH13	PC13							LESENSE channel 13.
LES_CH14	PC14							LESENSE channel 14.
LES_CH15	PC15							LESENSE channel 15.
LETIM0_OUT0	PD6	PB11	PF0					Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1					Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14		PF1	PA0			LEUART0 Receive input.
LEU0_TX	PD4	PB13		PF0	PF2			LEUART0 Transmit output. Also used as receive input in hall duplex communication.
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0	PD6				Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1	PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0							Peripheral Reflex System PRS, channel 0.

- 3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is acceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional

Table 4.4. QFN32 (Dimensions in mm)

Symbol	Α	A1	A3	b	D	E	D2	E2	е	L	L1	aaa	bbb	ссс	ddd	eee
Min	0.80	0.00		0.25			4.30	4.30		0.35	0.00					
Nom	0.85	-	0.203 REF	0.30	6.00 BSC	6.00 BSC	4.40	4.40	0.65 BSC	0.40		0.10	0.10	0.10	0.05	0.08
Max	0.90	0.05		0.35			4.50	4.50		0.45	0.10					

The QFN32 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

A Disclaimer and Trademarks

A.1 Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

A.2 Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISO-modem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

List of Figures

2.1. Block Diagram	. 3
2.2. EFM32TG210 Memory Map with largest RAM and Flash sizes	8
3.1. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO.	
3.2. EM3 current consumption.	
3.3. EM4 current consumption	11
3.4. Typical Low-Level Output Current, 2V Supply Voltage	15
3.5. Typical High-Level Output Current, 2V Supply Voltage	
3.6. Typical Low-Level Output Current, 3V Supply Voltage	
3.7. Typical High-Level Output Current, 3V Supply Voltage	
3.8. Typical Low-Level Output Current, 3.8V Supply Voltage	
3.9. Typical High-Level Output Current, 3.8V Supply Voltage	
3.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage	
3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature	23
3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature	
3.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature	24
3.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature	
3.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature	
3.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature	
3.17. Integral Non-Linearity (INL)	
3.18. Differential Non-Linearity (DNL)	
3.19. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C	
3.20. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C	
3.21. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C	
3.22. ADC Absolute Offset, Common Mode = Vdd /2	34
3.23. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V	
3.24. OPAMP Common Mode Rejection Ratio	
3.25. OPAMP Positive Power Supply Rejection Ratio	
3.26. OPAMP Negative Power Supply Rejection Ratio	38
3.27. OPAMP Voltage Noise Spectral Density (Unity Gain) V _{out} =1V	38
3.28. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)	39
3.29. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1	41
4.1. EFM32TG210 Pinout (top view, not to scale)	
4.2. Opamp Pinout	
4.3. QFN32	
5.1. QFN32 PCB Land Pattern	
5.2. QFN32 PCB Solder Mask	
5.3. QFN32 PCB Stencil Design	
6.1. Example Chip Marking (top view)	55

silabs.com

