

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, Serial Port
Clock Rate	80MHz
Non-Volatile Memory	External
On-Chip RAM	20kB
Voltage - I/O	3.30V
Voltage - Core	1.80V
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA, CSPBGA
Supplier Device Package	144-CSPBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-2184nkca-320

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

General Description
Architecture Overview
Modes Of Operation 5
Interrupts 5
Low-power Operation
System Interface 7
Reset
Power Supplies
Memory Architecture
Bus Request and Bus Grant 14
Flag I/O Pins 15
Instruction Set Description15
Development System 15
Additional Information 17
Pin Descriptions
Memory Interface Pins 19
Terminating Unused Pins 19
Specifications
Recommended Operating Conditions 22
Electrical Characteristics 22
Absolute Maximum Ratings 23
ESD Sensitivity 23
ESD Diode Protection 24
Power Dissipation 24
Environmental Conditions 25
Test Conditions 25
Timing Specifications
LQFP Package Pinout 40
BGA Package Pinout 42
Outline Dimensions
Surface Mount Design 46
Ordering Guide 47

REVISION HISTORY3 8/06—Rev. 0 to Rev. A

8/06—Rev. 0 to Rev. A	
Miscellaneous Format Updates	Universal
Applied Corrections or Additional Information to:	
Clock Signals	8
External Crystal Connections	8
ADSP-2185 Memory Architecture	9
Electrical Characteristics	22
Absolute Maximum Ratings	23
ESD Diode Protection	24
Memory Read	31
Memory Write	32
Serial Ports	33
Outline Dimensions	45
Ordering Guide	47

GENERAL DESCRIPTION

The ADSP-218xN series consists of six single chip microcomputers optimized for digital signal processing applications. The high-level block diagram for the ADSP-218xN series members appears on the previous page. All series members are pin-compatible and are differentiated solely by the amount of on-chip SRAM. This feature, combined with ADSP-21xx code compatibility, provides a great deal of flexibility in the design decision. Specific family members are shown in Table 1.

Device	Program Memory (K words)	Data Memory (K words)
ADSP-2184N	4	4
ADSP-2185N	16	16
ADSP-2186N	8	8
ADSP-2187N	32	32
ADSP-2188N	48	56
ADSP-2189N	32	48

Table 1. ADSP-218xN DSP Microcomputer Family

ADSP-218xN series members combine the ADSP-2100 family base architecture (three computational units, data address generators, and a program sequencer) with two serial ports, a 16-bit internal DMA port, a byte DMA port, a programmable timer, Flag I/O, extensive interrupt capabilities, and on-chip program and data memory.

ADSP-218xN series members integrate up to 256K bytes of onchip memory configured as up to 48K words (24-bit) of program RAM, and up to 56K words (16-bit) of data RAM. Powerdown circuitry is also provided to meet the low power needs of battery-operated portable equipment. The ADSP-218xN is available in a 100-lead LQFP package and 144-ball BGA.

Fabricated in a high-speed, low-power, 0.18 µm CMOS process, ADSP-218xN series members operate with a 12.5 ns instruction cycle time. Every instruction can execute in a single processor cycle.

The ADSP-218xN's flexible architecture and comprehensive instruction set allow the processor to perform multiple operations in parallel. In one processor cycle, ADSP-218xN series members can:

- · Generate the next program address
- Fetch the next instruction
- Perform one or two data moves
- · Update one or two data address pointers
- Perform a computational operation

This takes place while the processor continues to:

- Receive and transmit data through the two serial ports
- Receive and/or transmit data through the internal DMA port

- Receive and/or transmit data through the byte DMA port
- Decrement timer

ARCHITECTURE OVERVIEW

The ADSP-218xN series instruction set provides flexible data moves and multifunction (one or two data moves with a computation) instructions. Every instruction can be executed in a single processor cycle. The ADSP-218xN assembly language uses an algebraic syntax for ease of coding and readability. A comprehensive set of development tools supports program development.

The functional block diagram is an overall block diagram of the ADSP-218xN series. The processor contains three independent computational units: the ALU, the multiplier/accumulator (MAC), and the shifter. The computational units process 16-bit data directly and have provisions to support multiprecision computations. The ALU performs a standard set of arithmetic and logic operations; division primitives are also supported. The MAC performs single-cycle multiply, multiply/add, and multiply/subtract operations with 40 bits of accumulation. The shifter performs logical and arithmetic shifts, normalization, denormalization, and derive exponent operations.

The shifter can be used to efficiently implement numeric format control, including multiword and block floating-point representations.

The internal result (R) bus connects the computational units so that the output of any unit may be the input of any unit on the next cycle.

A powerful program sequencer and two dedicated data address generators ensure efficient delivery of operands to these computational units. The sequencer supports conditional jumps, subroutine calls, and returns in a single cycle. With internal loop counters and loop stacks, ADSP-218xN series members execute looped code with zero overhead; no explicit jump instructions are required to maintain loops.

Two data address generators (DAGs) provide addresses for simultaneous dual operand fetches (from data memory and program memory). Each DAG maintains and updates four address pointers. Whenever the pointer is used to access data (indirect addressing), it is post-modified by the value of one of four possible modify registers. A length value may be associated with each pointer to implement automatic modulo addressing for circular buffers.

Five internal buses provide efficient data transfer:

- Program Memory Address (PMA) Bus
- Program Memory Data (PMD) Bus
- Data Memory Address (DMA) Bus
- Data Memory Data (DMD) Bus
- Result (R) Bus

Table 3.	Interrupt	Priority and	Interrupt	Vector Addresses
----------	-----------	---------------------	-----------	------------------

Source Of Interrupt	Interrupt Vector Address (Hex)
Reset (or Power-Up with PUCR = 1)	0x0000 (Highest Priority)
Power-Down (Nonmaskable)	0x002C
IRQ2	0x0004
IRQL1	0x0008
IRQLO	0x000C
SPORT0 Transmit	0x0010
SPORT0 Receive	0x0014
IRQE	0x0018
BDMA Interrupt	0x001C
SPORT1 Transmit or IRQ1	0x0020
SPORT1 Receive or IRQ0	0x0024
Timer	0x0028 (Lowest Priority)

Interrupt routines can either be nested with higher priority interrupts taking precedence or processed sequentially. Interrupts can be masked or unmasked with the IMASK register. Individual interrupt requests are logically ANDed with the bits in IMASK; the highest priority unmasked interrupt is then selected. The power-down interrupt is nonmaskable.

ADSP-218xN series members mask all interrupts for one instruction cycle following the execution of an instruction that modifies the IMASK register. This does not affect serial port autobuffering or DMA transfers.

The interrupt control register, ICNTL, controls interrupt nesting and defines the IRQ0, IRQ1, and IRQ2 external interrupts to be either edge- or level-sensitive. The IRQE pin is an external edge-sensitive interrupt and can be forced and cleared. The IRQL0 and IRQL1 pins are external level sensitive interrupts.

The IFC register is a write-only register used to force and clear interrupts. On-chip stacks preserve the processor status and are automatically maintained during interrupt handling. The stacks are 12 levels deep to allow interrupt, loop, and subroutine nesting. The following instructions allow global enable or disable servicing of the interrupts (including power-down), regardless of the state of IMASK:

ENA INTS;

DIS INTS;

Disabling the interrupts does not affect serial port autobuffering or DMA. When the processor is reset, interrupt servicing is enabled.

LOW-POWER OPERATION

ADSP-218xN series members have three low-power modes that significantly reduce the power dissipation when the device operates under standby conditions. These modes are:

- Power-Down
- Idle
- Slow Idle

The CLKOUT pin may also be disabled to reduce external power dissipation.

Power-Down

ADSP-218xN series members have a low-power feature that lets the processor enter a very low-power dormant state through hardware or software control. Following is a brief list of powerdown features. Refer to the *ADSP-218x DSP Hardware Reference*, "System Interface" chapter, for detailed information about the power-down feature.

- Quick recovery from power-down. The processor begins executing instructions in as few as 200 CLKIN cycles.
- Support for an externally generated TTL or CMOS processor clock. The external clock can continue running during power-down without affecting the lowest power rating and 200 CLKIN cycle recovery.
- Support for crystal operation includes disabling the oscillator to save power (the processor automatically waits approximately 4096 CLKIN cycles for the crystal oscillator to start or stabilize), and letting the oscillator run to allow 200 CLKIN cycle start-up.
- Power-down is initiated by either the power-down pin (PWD) or the software power-down force bit. Interrupt support allows an unlimited number of instructions to be executed before optionally powering down. The power-down interrupt also can be used as a nonmaskable, edge-sensitive interrupt.
- Context clear/save control allows the processor to continue where it left off or start with a clean context when leaving the power-down state.
- The RESET pin also can be used to terminate power-down.
- Power-down acknowledge pin (PWDACK) indicates when the processor has entered power-down.

Idle

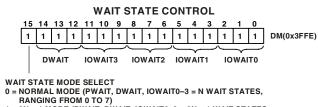
When the ADSP-218xN is in the Idle Mode, the processor waits indefinitely in a low-power state until an interrupt occurs. When an unmasked interrupt occurs, it is serviced; execution then continues with the instruction following the IDLE instruction. In Idle mode IDMA, BDMA, and autobuffer cycle steals still occur.

Slow Idle

The IDLE instruction is enhanced on ADSP-218xN series members to let the processor's internal clock signal be slowed, further reducing power consumption. The reduced clock frequency, a programmable fraction of the normal clock rate, is specified by a selectable divisor given in the IDLE instruction.

The format of the instruction is:

IDLE (n);


where n = 16, 32, 64, or 128. This instruction keeps the processor fully functional, but operating at the slower clock rate. While it is in this state, the processor's other internal clock signals,

IOWAIT0-3 as shown in Figure 10, which in combination with the wait state mode bit, specify up to 15 wait states to be automatically generated for each of four regions. The wait states act on address ranges, as shown in Table 6.

Note: In Full Memory Mode, all 2048 locations of I/O space are directly addressable. In Host Memory Mode, only address pin A0 is available; therefore, additional logic is required externally to achieve complete addressability of the 2048 I/O space locations.

Table 6. Wait States

Address Range	Wait State Register
0x000-0x1FF	IOWAIT0 and Wait State Mode Select Bit
0x200-0x3FF	IOWAIT1 and Wait State Mode Select Bit
0x400-0x5FF	IOWAIT2 and Wait State Mode Select Bit
0x600-0x7FF	IOWAIT3 and Wait State Mode Select Bit

1 = 2N + 1 MODE (PWAIT, DWAIT, IOWAIT0-3 = 2N + 1 WAIT STATES, RANGING FROM 0 TO 15)

Figure 10. Wait State Control Register

Composite Memory Select

ADSP-218xN series members have a programmable memory select signal that is useful for generating memory select signals for memories mapped to more than one space. The \overline{CMS} signal is generated to have the same timing as each of the individual memory select signals (\overline{PMS} , \overline{DMS} , \overline{BMS} , \overline{IOMS}) but can combine their functionality. Each bit in the CMSSEL register, when set, causes the \overline{CMS} signal to be asserted when the selected memory select is asserted. For example, to use a 32K word memory to act as both program and data memory, set the \overline{PMS} and \overline{DMS} bits in the CMSSEL register and use the \overline{CMS} pin to drive the chip select of the memory, and use either \overline{DMS} or \overline{PMS} as the additional address bit.

The $\overline{\text{CMS}}$ pin functions like the other memory select signals with the same timing and bus request logic. A 1 in the enable bit causes the assertion of the $\overline{\text{CMS}}$ signal at the same time as the selected memory select signal. All enable bits default to 1 at reset, except the $\overline{\text{BMS}}$ bit.

See Figure 11 and Figure 12 for illustration of the programmable flag and composite control register and the system control register.

Byte Memory Select

The ADSP-218xN's $\overline{\text{BMS}}$ disable feature combined with the $\overline{\text{CMS}}$ pin allows use of multiple memories in the byte memory space. For example, an EPROM could be attached to the $\overline{\text{BMS}}$

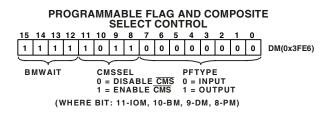


Figure 11. Programmable Flag and Composite Control Register

SYSTEM CONTROL										
15 14 13 12 11 1	09	87	6	5	4	3	2	1	0	
0 0 0 0 1	0	0 0	0	0	0	0	1	1	1	DM(0x3FFF)
RESERVED SET TO 0 SPORT0 ENABLE	RES	SET			AYS		PR		RAN	MEMORY
0 = DISABLE 1 = ENABLE			0 =	EN	LE ABI	LE	BMS			
SPORT1 ENABLE 0 = DISABLE 1 = ENABLE			1 =	DIS	SAB	LE	ВМ	s		
SPORT1 CONFIGUR 0 = FI, FO, IRQO, IRC 1 = SPORT1		LK								
NOTE: RESERVED BITS ARE SHOWN ON A GRAY FIELD. THESE BITS SHOULD ALWAYS BE WRITTEN WITH ZEROS.										

Figure 12. System Control Register

select, and a flash memory could be connected to $\overline{\text{CMS}}$. Because at reset $\overline{\text{BMS}}$ is enabled, the EPROM would be used for booting. After booting, software could disable $\overline{\text{BMS}}$ and set the $\overline{\text{CMS}}$ signal to respond to $\overline{\text{BMS}}$, enabling the flash memory.

Byte Memory

The byte memory space is a bidirectional, 8-bit-wide, external memory space used to store programs and data. Byte memory is accessed using the BDMA feature. The byte memory space consists of 256 pages, each of which is $16K \times 8$ bits.

The byte memory space on the ADSP-218xN series supports read and write operations as well as four different data formats. The byte memory uses data bits 15-8 for data. The byte memory uses data bits 23-16 and address bits 13-0 to create a 22-bit address. This allows up to a 4 megabit × 8 (32 megabit) ROM or RAM to be used without glue logic. All byte memory accesses are timed by the BMWAIT register and the wait state mode bit.

Byte Memory DMA (BDMA, Full Memory Mode)

The byte memory DMA controller (Figure 13) allows loading and storing of program instructions and data using the byte memory space. The BDMA circuit is able to access the byte memory space while the processor is operating normally and steals only one DSP cycle per 8-, 16-, or 24-bit word transferred.

PIN DESCRIPTIONS

ADSP-218xN series members are available in a 100-lead LQFP package and a 144-ball BGA package. In order to maintain maximum functionality and reduce package size and pin count, some serial port, programmable flag, interrupt and external bus pins have dual, multiplexed functionality. The external bus pins are configured during $\overline{\text{RESET}}$ only, while serial port pins are

software configurable during program execution. Flag and interrupt functionality is retained concurrently on multiplexed pins. In cases where pin functionality is reconfigurable, the default state is shown in plain text in Table 9, while alternate functionality is shown in *italics*.

Table 9.	Common-Mode Pins
----------	-------------------------

Pin Name	No. of Pins	I/O	Function
RESET	1	1	Processor Reset Input
BR	1	1	Bus Request Input
BG	1	0	Bus Grant Output
BGH	1	0	Bus Grant Hung Output
DMS	1	0	Data Memory Select Output
PMS	1	0	Program Memory Select Output
IOMS	1	0	Memory Select Output
BMS	1	0	Byte Memory Select Output
CMS	1	0	Combined Memory Select Output
RD	1	0	Memory Read Enable Output
WR	1	0	Memory Write Enable Output
IRQ2	1	1	Edge- or Level-Sensitive Interrupt Request ¹
PF7		I/O	Programmable I/O Pin
IRQL1	1	1	Level-Sensitive Interrupt Requests ¹
PF6		I/O	Programmable I/O Pin
IRQLO	1	1	Level-Sensitive Interrupt Requests ¹
PF5		I/O	Programmable I/O Pin
IRQE	1	1	Edge-Sensitive Interrupt Requests ¹
PF4		I/O	Programmable I/O Pin
Mode D	1	1	Mode Select Input—Checked Only During RESET
PF3		I/O	Programmable I/O Pin During Normal Operation
Mode C	1	1	Mode Select Input—Checked Only During RESET
PF2		I/O	Programmable I/O Pin During Normal Operation
Mode B	1	1	Mode Select Input—Checked Only During RESET
PF1		I/O	Programmable I/O Pin During Normal Operation
Mode A	1	1	Mode Select Input—Checked Only During RESET
PFO		I/O	Programmable I/O Pin During Normal Operation
CLKIN	1	I	Clock Input
XTAL	1	0	Quartz Crystal Output
CLKOUT	1	0	Processor Clock Output
SPORT0	5	I/O	Serial Port I/O Pins
SPORT1	5	I/O	Serial Port I/O Pins
IRQ1–0, FI, FO			Edge- or Level-Sensitive Interrupts, FI, FO ²
PWD	1	1	Power-Down Control Input
PWDACK	1	0	Power-Down Acknowledge Control Output
FL0, FL1, FL2	3	0	Output Flags
V _{DDINT}	2	1	Internal V _{DD} (1.8 V) Power (LQFP)
V _{DDEXT}	4	1	External V _{DD} (1.8 V, 2.5 V, or 3.3 V) Power (LQFP)
GND	10	1	Ground (LQFP)

Table 9. Common-Mode Pins (Continued)

Pin Name	No. of Pins	I/O	Function
V _{DDINT}	4	1	Internal V _{DD} (1.8 V) Power (BGA)
V _{DDEXT}	7	I	External V _{DD} (1.8 V, 2.5 V, or 3.3 V) Power (BGA)
GND	20	1	Ground (BGA)
EZ-Port	9	I/O	For Emulation Use

¹ Interrupt/Flag pins retain both functions concurrently. If IMASK is set to enable the corresponding interrupts, the DSP will vector to the appropriate interrupt vector address when the pin is asserted, either by external devices or set as a programmable flag.

² SPORT configuration determined by the DSP System Control Register. Software configurable.

MEMORY INTERFACE PINS

ADSP-218xN series members can be used in one of two modes: Full Memory Mode, which allows BDMA operation with full external overlay memory and I/O capability, or Host Mode, which allows IDMA operation with limited external addressing capabilities. The operating mode is determined by the state of the Mode C pin during RESET and cannot be changed while the processor is running. Table 10 and Table 11 list the active signals at specific pins of the DSP during either of the two operating modes (Full Memory or Host). A signal in one table shares a pin with a signal from the other table, with the active signal determined by the mode that is set. For the shared pins and their alternate signals (e.g., A4/IAD3), refer to the package pinouts in Table 27 on Page 41 and Table 28 on Page 43.

Table 10. Full Memory Mode Pins (Mode C = 0)

Pin Name	No. of Pins	I/O	Function
A13-0	14	0	Address Output Pins for Program, Data, Byte, and I/O Spaces
D23-0	24	I/O	Data I/O Pins for Program, Data, Byte, and I/O Spaces (8 MSBs are also used as Byte Memory Addresses.)

Pin Name	No. of Pins	I/O	Function	
IAD15-0	16	I/O	IDMA Port Address/Data Bus	
A0	1	0	Address Pin for External I/O, Program, Data, or Byte Access ¹	
D23-8	16	I/O	Data I/O Pins for Program, Data, Byte, and I/O Spaces	
IWR	1	1	IDMA Write Enable	
IRD	1	1	DMA Read Enable	
IAL	1	1	IDMA Address Latch Pin	
ĪS	1	1	IDMA Select	
IACK	1	0	IDMA Port Acknowledge Configurable in Mode D; Open Drain	

Table 11. Host Mode Pins (Mode C = 1)

¹ In Host Mode, external peripheral addresses can be decoded using the A0, <u>CMS</u>, <u>PMS</u>, <u>DMS</u>, and <u>IOMS</u> signals.

TERMINATING UNUSED PINS

Table 12 shows the recommendations for terminating unused pins.

Table 12. Unu	sed Pin Terminations
---------------	----------------------

Pin Name ¹	I/O 3-State (Z) ²	Reset State	Hi-Z ³ Caused By	Unused Configuration
XTAL	0	0		Float
CLKOUT	0	0		Float ⁴
A13-1 or	O (Z)	Hi-Z	BR, EBR	Float
IAD12-0	I/O (Z)	Hi-Z	ĪS	Float
A0	O (Z)	Hi-Z	BR, EBR	Float

Parameter ¹	Description	Test Conditions	Min	Тур Мах	Unit
I _{DD}	Supply Current (Idle) ⁹	@ $V_{DDINT} = 1.9 V$, t _{CK} = 12.5 ns, T _{AMB} = 25°C		6.5	mA
I _{DD}	Supply Current (Dynamic) ¹⁰	@ $V_{DDINT} = 1.9 V$, $t_{CK} = 12.5 ns^{11}$, $T_{AMB} = 25^{\circ}C$		26	mA
I _{DD}	Supply Current (Power-Down) ¹²	@ $V_{DDINT} = 1.8 V$, $T_{AMB} = 25^{\circ}C$ in Lowest Power Mode		100	μΑ
Cı	Input Pin Capacitance ^{3, 6}	@ $V_{IN} = 1.8 V$, $f_{IN} = 1.0 MHz$, $T_{AMB} = 25^{\circ}C$		8	pF
Co	Output Pin Capacitance ^{6, 7, 12, 13}	@ $V_{IN} = 1.8 V$, $f_{IN} = 1.0 MHz$, $T_{AMB} = 25^{\circ}C$		8	pF

¹Specifications subject to change without notice.

² Bidirectional pins: D23-0, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, A13-1, PF7-0.

³Input only pins: CLKIN, RESET, BR, DR0, DR1, PWD.

⁴Output pins: BG, PMS, DMS, BMS, IOMS, CMS, RD, WR, PWDACK, A0, DT0, DT1, CLKOUT, FL2-FL0, BGH.

⁵ Although specified for TTL outputs, all ADSP-218xN outputs are CMOS-compatible and will drive to V_{DDEXT} and GND, assuming no dc loads.

⁶Guaranteed but not tested.

⁷ Three-statable pins: A13 – A1, D23 – D0, PMS, DMS, BMS, IOMS, CMS, RD, WR, DT0, DT1, SCLK0, SCLK1, TFS0, TFS1, RFS0, RFS1, PF7 – PF0.

 8 0 V on $\overline{\text{BR}}$.

⁹Idle refers to ADSP-218xN state of operation during execution of IDLE instruction. Deasserted pins are driven to either V_{DD} or GND.

¹⁰I_{DD} measurement taken with all instructions executing from internal memory. 50% of the instructions are multifunction (Types 1, 4, 5, 12, 13, 14), 30% are Type 2 and Type 6, and 20% are idle instructions.

 $^{11}\mathrm{V_{IN}}$ = 0 V and 3 V. For typical values for supply currents, refer to Power Dissipation section.

¹²See ADSP-218x DSP Hardware Reference for details.

¹³Output pin capacitance is the capacitive load for any three-stated output pin.

ABSOLUTE MAXIMUM RATINGS

-	
Parameter	Rating
Internal Supply Voltage (V _{DDINT}) ¹	-0.3 V to +2.2 V
External Supply Voltage (V _{DDEXT})	–0.3 V to +4.0 V
Input Voltage ²	–0.5 V to +4.0 V
Output Voltage Swing ³	-0.5 V to V _{DDEXT} $+0.5$ V
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C

¹ Stresses greater than those listed above may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

² Applies to Bidirectional pins (D23-0, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, A13-1, PF7-0) and Input only pins (CLKIN, RESET, BR, DR0, DR1, PWD).

³ Applies to Output pins (BG, PMS, DMS, BMS, IOMS, CMS, RD, WR, PWDACK, A0, DT0, DT1, CLKOUT, FL2-0, BGH).

ESD SENSITIVITY

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADSP-218xN features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TIMING SPECIFICATIONS

This section contains timing information for the DSP's external signals.

General Notes

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, parameters cannot be added up meaningfully to derive longer times.

Timing Notes

Switching characteristics specify how the processor changes its signals. Designers have no control over this timing—circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell what the processor will do in a given circumstance. Switching characteristics can also be used to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

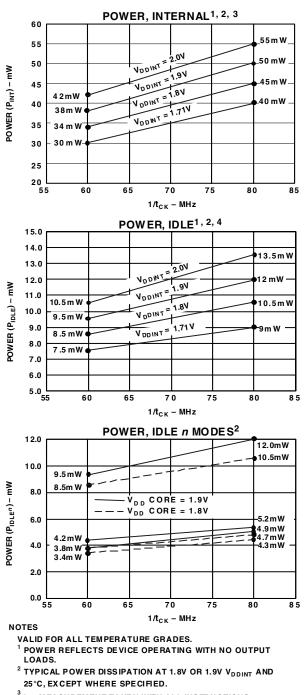
Frequency Dependency For Timing Specifications

 $t_{\rm CK}$ is defined as 0.5 $t_{\rm CKI}.$ The ADSP-218xN uses an input clock with a frequency equal to half the instruction rate. For example, a 40 MHz input clock (which is equivalent to 25 ns) yields a 12.5 ns processor cycle (equivalent to 80 MHz). $t_{\rm CK}$ values within the range of 0.5 $t_{\rm CKI}$ period should be substituted for all relevant timing parameters to obtain the specification value.

Example: $t_{CKH} = 0.5 t_{CK} - 2 ns = 0.5 (12.5 ns) - 2 ns = 4.25 ns$

Output Drive Currents

Figure 21 shows typical I-V characteristics for the output drivers on the ADSP-218xN series. The curves represent the current drive capability of the output drivers as a function of output voltage.


Figure 23 shows the typical power-down supply current.

Capacitive Loading

Figure 24 and Figure 25 show the capacitive loading characteristics of the ADSP-218xN.

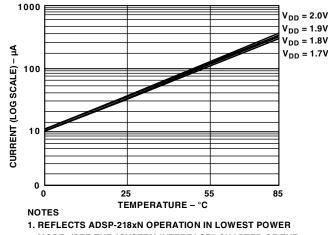


Figure 21. Typical Output Driver Characteristics for V_{DDEXT} at 3.6 V, 3.3 V, 2.5 V, and 1.8 V

- 3 I_{DD} MEASUREMENT TAKEN WITH ALL INSTRUCTIONS EXECUTING FROM INTERNAL MEMORY. 50% OF THE INSTRUCTIONS ARE MULT IFUNCTION (TYPES 1, 4, 5, 12, 13, 14), 30% ARE TYPE 2 AND TYPE 6, AND 20% ARE IDLE INSTRUCTIONS.
- 4 IDLE REFERS TO STATE OF OPERATION DURING EXECUTION OF IDLE INSTRUCTION. DEASSERTED PINS ARE DRIVEN TO EITHER V_{DD} OR GND.

Figure 22. Power vs. Frequency

MODE. (SEE THE "SYSTEM INTERFACE" CHAPTER OF THE *ADSP-218x DSP HARDWARE REFERENCE* FOR DETAILS.) 2. CURRENT REFLECTS DEVICE OPERATING WITH NO INPUT LOADS.

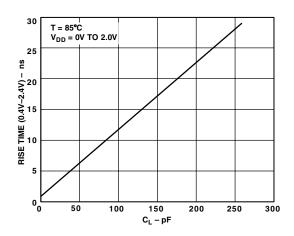


Figure 24. Typical Output Rise Time vs. Load Capacitance (at Maximum Ambient Operating Temperature)

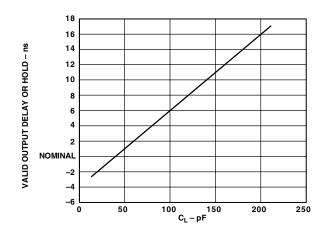


Figure 25. Typical Output Valid Delay or Hold vs. Load Capacitance, C_L (at Maximum Ambient Operating Temperature)

Clock Signals and Reset

Table 15. Clock Signals and Reset

Paramet	er	Min	Мах	Unit
Timing Re	equirements:			
t _{CKI}	CLKIN Period	25	40	ns
t _{CKIL}	CLKIN Width Low	8		ns
t _{CKIH}	CLKIN Width High	8		ns
Switching	g Characteristics:			
t _{CKL}	CLKOUT Width Low	0.5t _{CK} – 3		ns
t _{CKH}	CLKOUT Width High	0.5t _{CK} – 3		ns
t _{CKOH}	CLKIN High to CLKOUT High	0	8	ns
Control S	ignals Timing Requirements:			
t _{RSP}	RESET Width Low	5t _{CK} ¹		ns
t _{MS}	Mode Setup before RESET High	7		ns
t _{MH}	Mode Hold after RESET High	5		ns

¹ Applies after power-up sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles, assuming stable CLKIN (not including crystal oscillator start-up time).

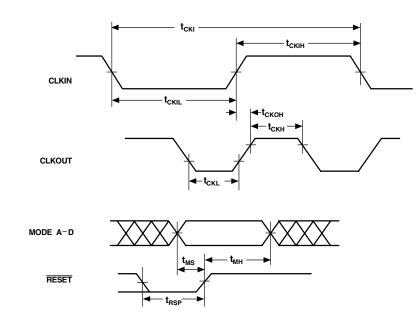


Figure 26. Clock Signals and Reset

Bus Request–Bus Grant

Table 17. Bus Request-Bus Grant

Paramet	er	Min	Max	Unit
Timing Re	equirements:			
t _{BH}	BR Hold after CLKOUT High ¹	0.25t _{CK} + 2		ns
t _{BS}	BR Setup before CLKOUT Low ¹	0.25t _{CK} + 8		ns
Switching	g Characteristics:			
t _{SD}	CLKOUT High to xMS, RD, WR Disable ²		0.25t _{CK} + 8	ns
t _{SDB}	xMS, RD, WR Disable to BG Low	0		ns
t _{SE}	\overline{BG} High to \overline{xMS} , \overline{RD} , \overline{WR} Enable	0		ns
t _{SEC}	xMS, RD, WR Enable to CLKOUT High	0.25t _{CK} – 3		ns
t _{sdbh}	$\overline{\text{xMS}}$, $\overline{\text{RD}}$, $\overline{\text{WR}}$ Disable to $\overline{\text{BGH}}$ Low ³	0		ns
t _{SEH}	$\overline{\text{BGH}}$ High to $\overline{\text{xMS}}$, $\overline{\text{RD}}$, $\overline{\text{WR}}$ Enable ³	0		ns

¹ BR is an asynchronous signal. If BR meets the setup/hold requirements, it will be recognized during the current clock cycle; otherwise the signal will be recognized on the following cycle. Refer to the *ADSP-2100 Family User's Manual* for BR/BG cycle relationships.

 $^{2}\overline{\text{xMS}} = \overline{\text{PMS}}, \overline{\overline{\text{DMS}}}, \overline{\text{CMS}}, \overline{\text{IOMS}}, \overline{\text{BMS}}.$

 ${}^{3}\overline{\text{BGH}}$ is asserted when the bus is granted and the processor or BDMA requires control of the bus to continue.

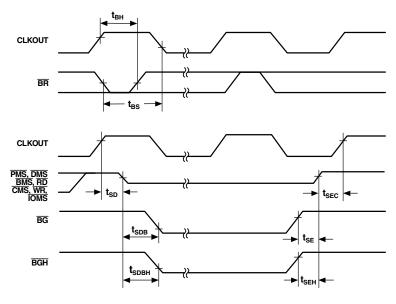


Figure 28. Bus Request-Bus Grant

Memory Read

Table 18. Memory Read

Paramet	er	Min	Max	Unit
Timing Re	equirements:			
t _{RDD}	RD Low to Data Valid ¹		$0.5t_{CK} - 5 + w$	ns
t _{AA}	A13–0, \overline{xMS} to Data Valid ²		$0.75t_{CK} - 6 + w$	ns
t _{RDH}	Data Hold from RD High	0		ns
Switching	Characteristics:			
t _{RP}	RD Pulse Width	0.5t _{CK} – 3 + w		ns
t _{CRD}	CLKOUT High to RD Low	0.25t _{CK} – 2	0.25t _{CK} + 4	ns
t _{ASR}	A13–0, xMS Setup before RD Low	0.25t _{CK} – 3		ns
t _{RDA}	A13–0, xMS Hold after RD Deasserted	0.25t _{CK} – 3		ns
t _{RWR}	RD High to RD or WR Low	0.5t _{CK} – 3		ns

 ${}^{1}w$ = wait states 3 t_{CK}. ${}^{2}\overline{\text{xMS}}$ = $\overline{\text{PMS}}$, $\overline{\text{DMS}}$, $\overline{\text{CMS}}$, $\overline{\text{IOMS}}$, $\overline{\text{BMS}}$.

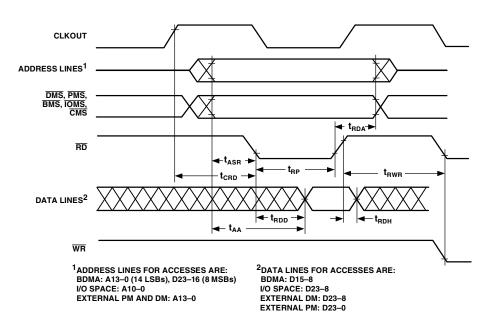


Figure 29. Memory Read

Serial Ports

Table 20. Serial Ports

Paramet	er	Min	Мах	Unit
Timing Re	quirements:			
t _{SCK}	SCLK Period	30		ns
t _{SCS}	DR/TFS/RFS Setup Before SCLK Low	4		ns
t _{SCH}	DR/TFS/RFS Hold After SCLK Low	7		ns
t _{SCP}	SCLKIN Width	12		ns
Switching	Characteristics:			
t _{cc}	CLKOUT High to SCLKOUT	0.25t _{CK}	0.25t _{CK} + 6	ns
t _{SCDE}	SCLK High to DT Enable	0		ns
t _{SCDV}	SCLK High to DT Valid		7	ns
t _{RH}	TFS/RFS _{OUT} Hold after SCLK High	0		ns
t _{RD}	TFS/RFS _{out} Delay from SCLK High		7	ns
t _{SCDH}	DT Hold after SCLK High	0		ns
t _{TDE}	TFS (Alt) to DT Enable	0		ns
t _{TDV}	TFS (Alt) to DT Valid		7	ns
t _{SCDD}	SCLK High to DT Disable		7	ns
t _{RDV}	RFS (Multichannel, Frame Delay Zero) to DT Valid		7	ns

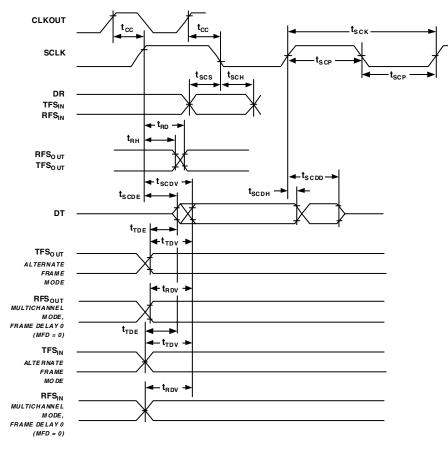


Figure 31. Serial Ports

IDMA Write, Short Write Cycle

Table 22. IDMA Write, Short Write Cycle

Paramete	er	Min	Max	Unit
Timing Re	equirements:			
t _{IKW}	IACK Low Before Start of Write ¹	0		ns
t _{IWP}	Duration of Write ^{1, 2}	10		ns
t _{IDSU}	IAD15-0 Data Setup Before End of Write ^{2, 3, 4}	3		ns
t _{IDH}	IAD15-0 Data Hold After End of Write ^{2, 3, 4}	2		ns
Switching	Characteristic:			
t _{IKHW}	Start of Write to IACK High		10	ns

¹ Start of Write = \overline{IS} Low and \overline{IWR} Low.

² End of Write = \overline{IS} High or \overline{IWR} High.

 3 If Write Pulse ends before \overline{IACK} Low, use specifications $t_{IDSU}, t_{IDH}.$

 4 If Write Pulse ends after \overline{IACK} Low, use specifications $t_{IKSU},\,t_{IKH}.$

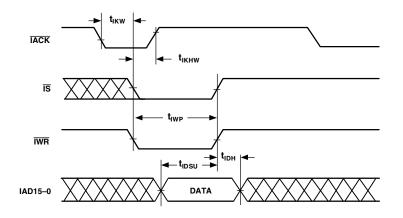


Figure 33. IDMA Write, Short Write Cycle

IDMA Write, Long Write Cycle

Table 23. IDMA Write, Long Write Cycle

Paramet	er	Min	Max	Unit	
Timing Re	quirements:				
t _{IKW}	IACK Low Before Start of Write ¹	0		ns	
t _{IKSU}	IAD15–0 Data Setup Before End of Write ^{2, 3, 4}	0.5t _{CK} + 5		ns	
t _{IKH}	IAD15-0 Data Hold After End of Write ^{2, 3, 4}	0		ns	
Switching	Characteristics:				
t _{IKLW}	Start of Write to IACK Low ⁴	1.5t _{ск}		ns	
t _{IKHW}	Start of Write to IACK High		10	ns	

¹ Start of Write = \overline{IS} Low and \overline{IWR} Low.

 2 If Write Pulse ends before \overline{IACK} Low, use specifications $t_{IDSU}, t_{IDH}.$

 3 If Write Pulse ends after \overline{IACK} Low, use specifications $t_{IKSU}, t_{IKH}.$

⁴ This is the earliest time for IACK Low from Start of Write. For IDMA Write cycle relationships, please refer to the ADSP-2100 Family User's Manual.

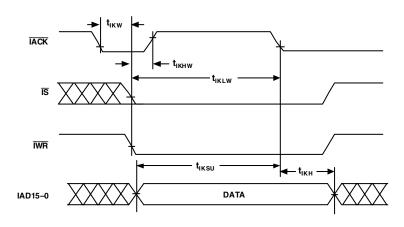


Figure 34. IDMA Write, Long Write Cycle

IDMA Read, Long Read Cycle

Table 24. IDMA Read, Long Read Cycle

Paramete	er	Min	Max	Unit
Timing Re	quirements:			
t _{IKR}	IACK Low Before Start of Read ¹	0		ns
t _{IRK}	End of read After IACK Low ²	2		ns
Switching	Characteristics:			
t _{IKHR}	IACK High After Start of Read ¹		10	ns
t _{IKDS}	IAD15–0 Data Setup Before IACK Low	0.5t _{CK} – 3		ns
t _{IKDH}	IAD15 – 0 Data Hold After End of Read ²	0		ns
t _{IKDD}	IAD15-0 Data Disabled After End of Read ²		10	ns
t _{IRDE}	IAD15-0 Previous Data Enabled After Start of Read	0		ns
t _{IRDV}	IAD15-0 Previous Data Valid After Start of Read		11	ns
t _{IRDH1}	IAD15-0 Previous Data Hold After Start of Read (DM/PM1) ³	2t _{CK} – 5		ns
t _{IRDH2}	IAD15–0 Previous Data Hold After Start of Read (PM2) ⁴	t _{ск} – 5		ns

¹ Start of Read = \overline{IS} Low and \overline{IRD} Low.

² End of Read = \overline{IS} High or \overline{IRD} High.

³DM read or first half of PM read.

⁴ Second half of PM read.

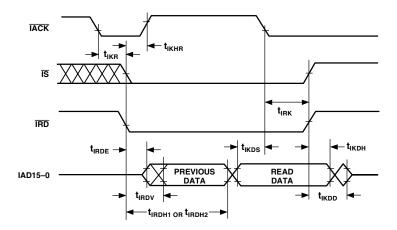


Figure 35. IDMA Read, Long Read Cycle

LQFP PACKAGE PINOUT

The LQFP package pinout is shown Figure 38 and in Table 27. Pin names in bold text in the table replace the plain-text-named functions when Mode C = 1. A + sign separates two functions when either function can be active for either major I/O mode. Signals enclosed in brackets [] are state bits latched from the

value of the pin at the deassertion of $\overline{\text{RESET}}$. The multiplexed pins DT1/FO, TFS1/ $\overline{\text{IRQ1}}$, RFS1/ $\overline{\text{IRQ0}}$, and DR1/FI, are mode selectable by setting Bit 10 (SPORT1 configure) of the System Control Register. If Bit 10 = 1, these pins have serial port functionality. If Bit 10 = 0, these pins are the external interrupt and flag pins. This bit is set to 1 by default, upon reset.

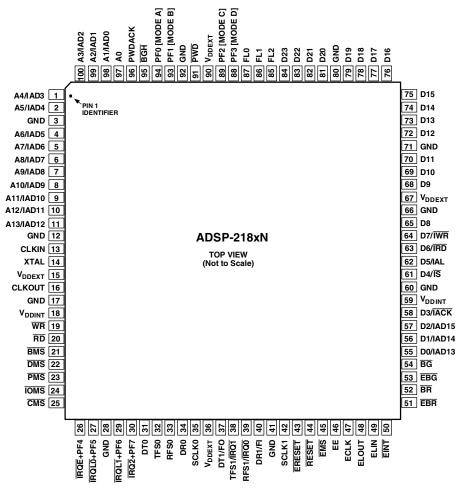


Figure 38. 100-Lead LQFP Pin Configuration

Table 28. BGA Package Pinout(Continued)

Table 28. BGA Package Pinout

		(
Ball No.	Pin Name	Ball No.	Pin Name
A01	A2/ IAD1	E02	V _{DDEXT}
A02	A1/ IAD0	E03	A8/ IAD7
A03	GND	E04	FL0
A04	AO	E05	PF0 [MODE A]
A05	NC	E06	FL2
A06	GND	E07	PF3 [MODE D]
A07	NC	E08	GND
A08	NC	E09	GND
A09	NC	E10	V _{DDEXT}
A10	D22	E11	GND
A11	GND	E12	D10
A12	GND	F01	A13/ IAD12
B01	A4/ IAD3	F02	NC
B02	A3/ IAD2	F03	A12/ IAD11
B03	GND	F04	A11/ IAD10
B04	NC	F05	FL1
B05	NC	F06	NC
B06	GND	F07	NC
B07	V _{DDEXT}	F08	D7/IWR
B08	D23	F09	D11
B09	D20	F10	D8
B10	D18	F11	NC
B11	D17	F12	D9
B12	D16	G01	XTAL
C01	PWDACK	G02	NC
C02	A6/ IAD5	G03	GND
C03	RD	G04	A10/IAD9
C04	A5/ IAD4	G05	NC
C05	A7/ IAD6	G06	NC
C06	PWD	G07	NC
C07	V _{DDEXT}	G08	D6/IRD
C08	D21	G09	D5/IAL
C09	D19	G10	NC
C10	D15	G10 G11	NC
C11	NC	G12	D4/ IS
C12	D14	H01	CLKIN
D01	NC	H02	GND
D02	WR	H03	GND
D02	NC	H04	GND
D04	BGH	H05	
D05	A9/ IAD8	H06	DT0
D05	PF1 [MODE B]	H00 H07	TFS0
D07			
	PF2 [MODE C]	H08	D2/ IAD15
D08	NC D12	H09	D3/IACK
D09	D13	H10	GND
D10	D12	H11	NC
D11	NC	H12	GND
D12	GND	J01	CLKOUT
E01	V _{DDEXT}	J02	V _{DDINT}

SURFACE MOUNT DESIGN

Table 29 is provided as an aid to PCB design. For industry-standard design recommendations, refer to IPC-7351, *Generic Requirements for Surface Mount Design and Land Pattern Standard.*

Table 29. BGA Data for Use with Surface Mount Design

Package	Ball Attach Type	Solder Mask Opening	Ball Pad Size
144-Ball BGA	Solder Mask	0.40 mm	0.50 mm
(BC-144-6)	Defined	diameter	diameter

www.analog.com

© 2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C02666-0-8/06(A)