

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Fixed Point
Interface	Host Interface, Serial Port
Clock Rate	80MHz
Non-Volatile Memory	External
On-Chip RAM	192kB
Voltage - I/O	1.8V, 2.5V, 3.3V
Voltage - Core	1.90V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA, CSPBGA
Supplier Device Package	144-CSPBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-2189nbcaz-320

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The two address buses (PMA and DMA) share a single external address bus, allowing memory to be expanded off-chip, and the two data buses (PMD and DMD) share a single external data bus. Byte memory space and I/O memory space also share the external buses.

Program memory can store both instructions and data, permitting ADSP-218xN series members to fetch two operands in a single cycle, one from program memory and one from data memory. ADSP-218xN series members can fetch an operand from program memory and the next instruction in the same cycle.

In lieu of the address and data bus for external memory connection, ADSP-218xN series members may be configured for 16-bit Internal DMA port (IDMA port) connection to external systems. The IDMA port is made up of 16 data/address pins and five control pins. The IDMA port provides transparent, direct access to the DSP's on-chip program and data RAM.

An interface to low-cost byte-wide memory is provided by the Byte DMA port (BDMA port). The BDMA port is bidirectional and can directly address up to four megabytes of external RAM or ROM for off-chip storage of program overlays or data tables.

The byte memory and I/O memory space interface supports slow memories and I/O memory-mapped peripherals with programmable wait state generation. External devices can gain control of external buses with bus request/grant signals (BR, BGH, and BG). One execution mode (Go Mode) allows the ADSP-218xN to continue running from on-chip memory. Normal execution mode requires the processor to halt while buses are granted.

ADSP-218xN series members can respond to eleven interrupts. There can be up to six external interrupts (one edge-sensitive, two level-sensitive, and three configurable) and seven internal interrupts generated by the timer, the serial ports (SPORT), the BDMA port, and the power-down circuitry. There is also a master RESET signal. The two serial ports provide a complete synchronous serial interface with optional companding in hardware and a wide variety of framed or frameless data transmit and receive modes of operation.

Each port can generate an internal programmable serial clock or accept an external serial clock.

ADSP-218xN series members provide up to 13 general-purpose flag pins. The data input and output pins on SPORT1 can be alternatively configured as an input flag and an output flag. In addition, eight flags are programmable as inputs or outputs, and three flags are always outputs.

A programmable interval timer generates periodic interrupts. A 16-bit count register (TCOUNT) decrements every n processor cycle, where n is a scaling value stored in an 8-bit register (TSCALE). When the value of the count register reaches zero, an interrupt is generated and the count register is reloaded from a 16-bit period register (TPERIOD).

Serial Ports

ADSP-218xN series members incorporate two complete synchronous serial ports (SPORT0 and SPORT1) for serial communications and multiprocessor communication.

Following is a brief list of the capabilities of the ADSP-218xN SPORTs. For additional information on Serial Ports, refer to the *ADSP-218x DSP Hardware Reference*.

- SPORTs are bidirectional and have a separate, doublebuffered transmit and receive section.
- SPORTs can use an external serial clock or generate their own serial clock internally.
- SPORTs have independent framing for the receive and transmit sections. Sections run in a frameless mode or with frame synchronization signals internally or externally generated. Frame sync signals are active high or inverted, with either of two pulsewidths and timings.
- SPORTs support serial data word lengths from 3 bits to 16 bits and provide optional A-law and µ-law companding, according to CCITT recommendation G.711.
- SPORT receive and transmit sections can generate unique interrupts on completing a data word transfer.
- SPORTs can receive and transmit an entire circular buffer of data with only one overhead cycle per data word. An interrupt is generated after a data buffer transfer.
- SPORT0 has a multichannel interface to selectively receive and transmit a 24 word or 32-word, time-division multiplexed, serial bitstream.
- SPORT1 can be configured to have two external interrupts (IRQ0 and IRQ1) and the FI and FO signals. The internally generated serial clock may still be used in this configuration.

MODES OF OPERATION

The ADSP-218xN series modes of operation appear in Table 2.

Table 2. Modes of Operation

Mode D	Mode C	Mode B	Mode A	Booting Method
Х	0	0	0	BDMA feature is used to load the first 32 program memory words from the byte memory space. Program execution is held off until all 32 words have been loaded. Chip is configured in Full Memory Mode. ¹
Х	0	1	0	No automatic boot operations occur. Program execution starts at external memory location 0. Chip is configured in Full Memory Mode. BDMA can still be used, but the processor does not automatically use or wait for these operations.
0	1	0	0	BDMA feature is used to load the first 32 program memory words from the byte memory space. Program execution is held off until all 32 words have been loaded. Chip is configured in Host Mode. IACK has active pull-down. (Requires additonal hardware.)
0	1	0	1	IDMA feature is used to load any internal memory as desired. Program execution is held off until the host writes to internal program memory location 0. Chip is configured in Host Mode. IACK has active pull-down. ¹
1	1	0	0	BDMA feature is used to load the first 32 program memory words from the byte memory space. Program execution is held off until all 32 words have been loaded. Chip is configured in Host Mode; IACK requires external pull-down. (Requires additonal hardware.)
1	1	0	1	IDMA feature is used to load any internal memory as desired. Program execution is held off until the host writes to internal program memory location 0. Chip is configured in Host Mode. IACK requires external pull-down. ¹

¹Considered as standard operating settings. Using these configurations allows for easier design and better memory management.

Setting Memory Mode

Memory Mode selection for the ADSP-218xN series is made during chip reset through the use of the Mode C pin. This pin is multiplexed with the DSP's PF2 pin, so care must be taken in how the mode selection is made. The two methods for selecting the value of Mode C are active and passive.

Passive Configuration

Passive Configuration involves the use of a pull-up or pulldown resistor connected to the Mode C pin. To minimize power consumption, or if the PF2 pin is to be used as an output in the DSP application, a weak pull-up or pull-down resistance, on the order of 10 k Ω , can be used. This value should be sufficient to pull the pin to the desired level and still allow the pin to operate as a programmable flag output without undue strain on the processor's output driver. For minimum power consumption during power-down, reconfigure PF2 to be an input, as the pullup or pull-down resistance will hold the pin in a known state, and will not switch.

Active Configuration

Active Configuration involves the use of a three-statable external driver connected to the Mode C pin. A driver's output enable should be connected to the DSP's RESET signal such that it only drives the PF2 pin when RESET is active (low). When RESET is deasserted, the driver should be three-state, thus allowing full use of the PF2 pin as either an input or output. To minimize power consumption during power-down, configure the programmable flag as an output when connected to a threestated buffer. This ensures that the pin will be held at a constant level, and will not oscillate should the three-state driver's level hover around the logic switching point.

IDMA ACK Configuration

Mode D = 0 and in host mode: \overline{IACK} is an active, driven signal and cannot be "wire-OR'ed." Mode D = 1 and in host mode: \overline{IACK} is an open drain and requires an external pull-down, but multiple \overline{IACK} pins can be "wire-OR'ed" together.

INTERRUPTS

The interrupt controller allows the processor to respond to the eleven possible interrupts and reset with minimum overhead. ADSP-218xN series members provide four dedicated external interrupt input pins: IRQ2, IRQL0, IRQL1, and IRQE (shared with the PF7-4 pins). In addition, SPORT1 may be reconfigured for IRQ0, IRQ1, FI, and FO, for a total of six external interrupts. The ADSP-218xN also supports internal interrupts from the timer, the byte DMA port, the two serial ports, software, and the power-down control circuit. The interrupt levels are internally prioritized and individually maskable (except power-down and reset). The IRQ2, IRQ0, and IRQ1 input pins can be programmed to be either level- or edge-sensitive. IRQL0 and IRQL1 are level-sensitive and IRQE is edge-sensitive. The priorities and vector addresses of all interrupts are shown in Table 3.

Table 3.	Interrupt	Priority and	Interrupt	Vector Addresses
----------	-----------	---------------------	-----------	------------------

Source Of Interrupt	Interrupt Vector Address (Hex)
Reset (or Power-Up with PUCR = 1)	0x0000 (Highest Priority)
Power-Down (Nonmaskable)	0x002C
IRQ2	0x0004
IRQL1	0x0008
IRQLO	0x000C
SPORT0 Transmit	0x0010
SPORT0 Receive	0x0014
IRQE	0x0018
BDMA Interrupt	0x001C
SPORT1 Transmit or IRQ1	0x0020
SPORT1 Receive or IRQ0	0x0024
Timer	0x0028 (Lowest Priority)

Interrupt routines can either be nested with higher priority interrupts taking precedence or processed sequentially. Interrupts can be masked or unmasked with the IMASK register. Individual interrupt requests are logically ANDed with the bits in IMASK; the highest priority unmasked interrupt is then selected. The power-down interrupt is nonmaskable.

ADSP-218xN series members mask all interrupts for one instruction cycle following the execution of an instruction that modifies the IMASK register. This does not affect serial port autobuffering or DMA transfers.

The interrupt control register, ICNTL, controls interrupt nesting and defines the IRQ0, IRQ1, and IRQ2 external interrupts to be either edge- or level-sensitive. The IRQE pin is an external edge-sensitive interrupt and can be forced and cleared. The IRQL0 and IRQL1 pins are external level sensitive interrupts.

The IFC register is a write-only register used to force and clear interrupts. On-chip stacks preserve the processor status and are automatically maintained during interrupt handling. The stacks are 12 levels deep to allow interrupt, loop, and subroutine nesting. The following instructions allow global enable or disable servicing of the interrupts (including power-down), regardless of the state of IMASK:

ENA INTS;

DIS INTS;

Disabling the interrupts does not affect serial port autobuffering or DMA. When the processor is reset, interrupt servicing is enabled.

LOW-POWER OPERATION

ADSP-218xN series members have three low-power modes that significantly reduce the power dissipation when the device operates under standby conditions. These modes are:

- Power-Down
- Idle
- Slow Idle

The CLKOUT pin may also be disabled to reduce external power dissipation.

Power-Down

ADSP-218xN series members have a low-power feature that lets the processor enter a very low-power dormant state through hardware or software control. Following is a brief list of powerdown features. Refer to the *ADSP-218x DSP Hardware Reference*, "System Interface" chapter, for detailed information about the power-down feature.

- Quick recovery from power-down. The processor begins executing instructions in as few as 200 CLKIN cycles.
- Support for an externally generated TTL or CMOS processor clock. The external clock can continue running during power-down without affecting the lowest power rating and 200 CLKIN cycle recovery.
- Support for crystal operation includes disabling the oscillator to save power (the processor automatically waits approximately 4096 CLKIN cycles for the crystal oscillator to start or stabilize), and letting the oscillator run to allow 200 CLKIN cycle start-up.
- Power-down is initiated by either the power-down pin (PWD) or the software power-down force bit. Interrupt support allows an unlimited number of instructions to be executed before optionally powering down. The power-down interrupt also can be used as a nonmaskable, edge-sensitive interrupt.
- Context clear/save control allows the processor to continue where it left off or start with a clean context when leaving the power-down state.
- The RESET pin also can be used to terminate power-down.
- Power-down acknowledge pin (PWDACK) indicates when the processor has entered power-down.

Idle

When the ADSP-218xN is in the Idle Mode, the processor waits indefinitely in a low-power state until an interrupt occurs. When an unmasked interrupt occurs, it is serviced; execution then continues with the instruction following the IDLE instruction. In Idle mode IDMA, BDMA, and autobuffer cycle steals still occur.

Slow Idle

The IDLE instruction is enhanced on ADSP-218xN series members to let the processor's internal clock signal be slowed, further reducing power consumption. The reduced clock frequency, a programmable fraction of the normal clock rate, is specified by a selectable divisor given in the IDLE instruction.

The format of the instruction is:

IDLE (n);

where n = 16, 32, 64, or 128. This instruction keeps the processor fully functional, but operating at the slower clock rate. While it is in this state, the processor's other internal clock signals,

such as SCLK, CLKOUT, and timer clock, are reduced by the same ratio. The default form of the instruction, when no clock divisor is given, is the standard IDLE instruction.

When the IDLE (n) instruction is used, it effectively slows down the processor's internal clock and thus its response time to incoming interrupts. The one-cycle response time of the standard idle state is increased by n, the clock divisor. When an enabled interrupt is received, ADSP-218xN series members remain in the idle state for up to a maximum of n processor cycles (n = 16, 32, 64, or 128) before resuming normal operation.

When the IDLE (n) instruction is used in systems that have an externally generated serial clock (SCLK), the serial clock rate may be faster than the processor's reduced internal clock rate. Under these conditions, interrupts must not be generated at a

faster rate than can be serviced, due to the additional time the processor takes to come out of the idle state (a maximum of n processor cycles).

SYSTEM INTERFACE

Figure 2 shows typical basic system configurations with the ADSP-218xN series, two serial devices, a byte-wide EPROM, and optional external program and data overlay memories (mode-selectable). Programmable wait state generation allows the processor to connect easily to slow peripheral devices. ADSP-218xN series members also provide four external interrupts and two serial ports or six external interrupts and one serial port. Host Memory Mode allows access to the full external data bus, but limits addressing to a single address bit (A0). Through the use of external hardware, additional system peripherals can be added in this mode to generate and latch address signals.

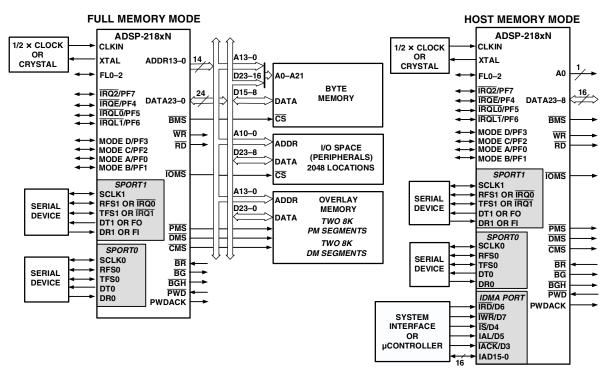


Figure 2. Basic System Interface

SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

	K Grade (Commercial)		B Grade (Indu		
Parameter ¹	Min	Мах	Min	Max	Unit
V _{DDINT}	1.71	1.89	1.8	2.0	V
V _{DDEXT}	1.71	3.6	1.8	3.6	V
V _{INPUT} ²	$V_{IL} = -0.3$	V _{IH} = + 3.6	$V_{IL} = -0.3$	$V_{IH} = +3.6$	V
T _{AMB}	0	70	-40	+85	°C

¹ Specifications subject to change without notice.
 ² The ADSP-218xN is 3.3 V tolerant (always accepts up to 3.6 V max V_{IH}), but voltage compliance (on outputs, V_{OH}) depends on the input V_{DDEXT}, because V_{OH} (max) approximately equals V_{DDEXT} (max). This 3.3 V tolerance applies to bidirectional pins (D23–D0, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, A13–A1, PF7–PF0) and input-only pins (CLKIN, <u>RESET</u>, <u>BR</u>, DR0, DR1, <u>PWD</u>).

ELECTRICAL CHARACTERISTICS

Parameter ¹	Description	Test Conditions	Min	Тур	Max	Unit
V _{IH}	Hi-Level Input Voltage ^{2, 3}	@ $V_{DDEXT} = 1.71$ V to 2.0 V, V_{DDINT} = max	1.25			V
		$@V_{DDEXT} = 2.1 V \text{ to } 3.6 V,$ $V_{DDINT} = \text{max}$	1.7			V
V _{IL}	Lo-Level Input Voltage ^{2, 3}	$@V_{DDEXT} \le 2.0 V,$ $V_{DDINT} = min$			0.6	v
		$V_{DDINT} = min$ $@ V_{DDEXT} \ge 2.0 V,$ $V_{DDINT} = min$			0.7	v
V _{OH}	Hi-Level Output Voltage ^{2, 4, 5}	@ $V_{DDEXT} = 1.71$ V to 2.0 V, $I_{OH} = -0.5$ mA	1.35			v
		@ $V_{DDEXT} = 2.1 V \text{ to } 2.9 V$, $I_{OH} = -0.5 \text{ mA}$	2.0			V
		@ $V_{DDEXT} = 3.0 V$ to 3.6 V, $I_{OH} = -0.5 mA$	2.4			V
		@ $V_{DDEXT} = 1.71$ V to 3.6 V, $I_{OH} = -100 \ \mu A^{6}$	V _{DDEXT} - 0.3			V
V _{OL}	Lo-Level Output Voltage ^{2, 4, 5}	@ $V_{DDEXT} = 1.71$ V to 3.6 V, $I_{OL} = 2.0$ mA			0.4	V
I _{IH}	Hi-Level Input Current ³	$@V_{DDINT} = max,$ $V_{IN} = 3.6 V$			10	μΑ
I _{IL}	Lo-Level Input Current ³				10	μA
I _{ozh}	Three-State Leakage Current ⁷	@ $V_{DDEXT} = max$, $V_{IN} = 3.6 V^8$			10	μΑ
I _{OZL}	Three-State Leakage Current ⁷	$@V_{DDEXT} = max,$ $V_{IN} = 0 V^8$			10	μΑ
I _{DD}	Supply Current (Idle) ⁹	@ $V_{DDINT} = 1.8 V$, $t_{CK} = 12.5 ns$, $T_{AMB} = 25^{\circ}C$		6		mA
I _{DD}	Supply Current (Dynamic) ¹⁰	@ $V_{DDINT} = 1.8 V$, $t_{CK} = 12.5 ns^{11}$, $T_{AMB} = 25^{\circ}C$		25		mA

Parameter ¹	Description	Test Conditions	Min	Тур Мах	Unit
I _{DD}	Supply Current (Idle) ⁹	@ $V_{DDINT} = 1.9 V$, $t_{CK} = 12.5 ns$, $T_{AMB} = 25^{\circ}C$		6.5	mA
I _{DD}	Supply Current (Dynamic) ¹⁰	@ $V_{DDINT} = 1.9 V$, $t_{CK} = 12.5 ns^{11}$, $T_{AMB} = 25^{\circ}C$		26	mA
I _{DD}	Supply Current (Power-Down) ¹²	@ $V_{DDINT} = 1.8 V$, $T_{AMB} = 25^{\circ}C$ in Lowest Power Mode		100	μΑ
Cı	Input Pin Capacitance ^{3, 6}	@ $V_{IN} = 1.8 V$, $f_{IN} = 1.0 MHz$, $T_{AMB} = 25^{\circ}C$		8	pF
Co	Output Pin Capacitance ^{6, 7, 12, 13}	@ $V_{IN} = 1.8 V$, $f_{IN} = 1.0 MHz$, $T_{AMB} = 25^{\circ}C$		8	pF

¹Specifications subject to change without notice.

² Bidirectional pins: D23-0, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, A13-1, PF7-0.

³Input only pins: CLKIN, RESET, BR, DR0, DR1, PWD.

⁴Output pins: BG, PMS, DMS, BMS, IOMS, CMS, RD, WR, PWDACK, A0, DT0, DT1, CLKOUT, FL2-FL0, BGH.

⁵ Although specified for TTL outputs, all ADSP-218xN outputs are CMOS-compatible and will drive to V_{DDEXT} and GND, assuming no dc loads.

⁶Guaranteed but not tested.

⁷ Three-statable pins: A13 – A1, D23 – D0, PMS, DMS, BMS, IOMS, CMS, RD, WR, DT0, DT1, SCLK0, SCLK1, TFS0, TFS1, RFS0, RFS1, PF7 – PF0.

 8 0 V on BR.

⁹Idle refers to ADSP-218xN state of operation during execution of IDLE instruction. Deasserted pins are driven to either V_{DD} or GND.

¹⁰I_{DD} measurement taken with all instructions executing from internal memory. 50% of the instructions are multifunction (Types 1, 4, 5, 12, 13, 14), 30% are Type 2 and Type 6, and 20% are idle instructions.

 $^{11}\mathrm{V_{IN}}$ = 0 V and 3 V. For typical values for supply currents, refer to Power Dissipation section.

¹²See ADSP-218x DSP Hardware Reference for details.

¹³Output pin capacitance is the capacitive load for any three-stated output pin.

ABSOLUTE MAXIMUM RATINGS

-	
Parameter	Rating
Internal Supply Voltage (V _{DDINT}) ¹	-0.3 V to +2.2 V
External Supply Voltage (V _{DDEXT})	–0.3 V to +4.0 V
Input Voltage ²	–0.5 V to +4.0 V
Output Voltage Swing ³	-0.5 V to V _{DDEXT} $+0.5$ V
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C

¹ Stresses greater than those listed above may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

² Applies to Bidirectional pins (D23-0, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, A13-1, PF7-0) and Input only pins (CLKIN, RESET, BR, DR0, DR1, PWD).

³ Applies to Output pins (BG, PMS, DMS, BMS, IOMS, CMS, RD, WR, PWDACK, A0, DT0, DT1, CLKOUT, FL2-0, BGH).

ESD SENSITIVITY

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADSP-218xN features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TIMING SPECIFICATIONS

This section contains timing information for the DSP's external signals.

General Notes

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, parameters cannot be added up meaningfully to derive longer times.

Timing Notes

Switching characteristics specify how the processor changes its signals. Designers have no control over this timing—circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell what the processor will do in a given circumstance. Switching characteristics can also be used to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

Frequency Dependency For Timing Specifications

 $t_{\rm CK}$ is defined as 0.5 $t_{\rm CKI}.$ The ADSP-218xN uses an input clock with a frequency equal to half the instruction rate. For example, a 40 MHz input clock (which is equivalent to 25 ns) yields a 12.5 ns processor cycle (equivalent to 80 MHz). $t_{\rm CK}$ values within the range of 0.5 $t_{\rm CKI}$ period should be substituted for all relevant timing parameters to obtain the specification value.

Example: $t_{CKH} = 0.5 t_{CK} - 2 ns = 0.5 (12.5 ns) - 2 ns = 4.25 ns$

Output Drive Currents

Figure 21 shows typical I-V characteristics for the output drivers on the ADSP-218xN series. The curves represent the current drive capability of the output drivers as a function of output voltage.

Figure 23 shows the typical power-down supply current.

Capacitive Loading

Figure 24 and Figure 25 show the capacitive loading characteristics of the ADSP-218xN.

Figure 21. Typical Output Driver Characteristics for V_{DDEXT} at 3.6 V, 3.3 V, 2.5 V, and 1.8 V

Interrupts and Flags

Table 16. Interrupts and Flags

Paramet	er	Min Max	Unit
Timing Re	equirements:		
t _{IFS}	IRQx, FI, or PFx Setup before CLKOUT Low ^{1, 2, 3, 4}	0.25t _{CK} + 10	ns
t _{IFH}	IRQx, FI, or PFx Hold after CLKOUT High ^{1, 2, 3, 4}	0.25t _{CK}	ns
Switching	Characteristics:		
t _{FOH}	Flag Output Hold after CLKOUT Low⁵	0.5t _{CK} – 5	ns
t _{FOD}	Flag Output Delay from CLKOUT Low ⁵	0.5t _{CK}	+4 ns

¹ If IRQx and FI inputs meet t_{IFS} and t_{IFH} setup/hold requirements, they will be recognized during the current clock cycle; otherwise the signals will be recognized on the following cycle. (Refer to "Interrupt Controller Operation" in the *Program Control* chapter of the *ADSP-218x DSP Hardware Reference* for further information on interrupt servicing.)

²Edge-sensitive interrupts require pulse widths greater than 10 ns; level-sensitive interrupts must be held low until serviced.

 ${}^{3}\overline{\text{IRQx}} = \overline{\text{IRQ0}}, \overline{\text{IRQ1}}, \overline{\text{IRQ2}}, \overline{\text{IRQL0}}, \overline{\text{IRQL1}}, \overline{\text{IRQLE}}.$

⁴ PFx = PF0, PF1, PF2, PF3, PF4, PF5, PF6, PF7.

⁵ Flag Outputs = PFx, FL0, FL1, FL2, FO.

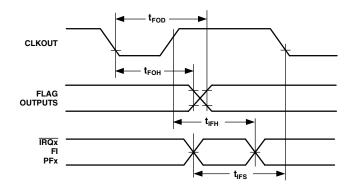


Figure 27. Interrupts and Flags

Bus Request–Bus Grant

Table 17. Bus Request-Bus Grant

Paramet	er	Min	Max	Unit
Timing Re	equirements:			
t _{BH}	BR Hold after CLKOUT High ¹	0.25t _{CK} + 2		ns
t _{BS}	BR Setup before CLKOUT Low ¹	0.25t _{CK} + 8		ns
Switching	g Characteristics:			
t _{SD}	CLKOUT High to \overline{xMS} , \overline{RD} , \overline{WR} Disable ²		0.25t _{CK} + 8	ns
t _{SDB}	xMS, RD, WR Disable to BG Low	0		ns
t _{SE}	\overline{BG} High to \overline{xMS} , \overline{RD} , \overline{WR} Enable	0		ns
t _{SEC}	xMS, RD, WR Enable to CLKOUT High	0.25t _{CK} – 3		ns
t _{sdbh}	$\overline{\text{xMS}}$, $\overline{\text{RD}}$, $\overline{\text{WR}}$ Disable to $\overline{\text{BGH}}$ Low ³	0		ns
t _{SEH}	$\overline{\text{BGH}}$ High to $\overline{\text{xMS}}$, $\overline{\text{RD}}$, $\overline{\text{WR}}$ Enable ³	0		ns

¹ BR is an asynchronous signal. If BR meets the setup/hold requirements, it will be recognized during the current clock cycle; otherwise the signal will be recognized on the following cycle. Refer to the *ADSP-2100 Family User's Manual* for BR/BG cycle relationships.

 $^{2}\overline{\text{xMS}} = \overline{\text{PMS}}, \overline{\overline{\text{DMS}}}, \overline{\text{CMS}}, \overline{\text{IOMS}}, \overline{\text{BMS}}.$

 ${}^{3}\overline{\text{BGH}}$ is asserted when the bus is granted and the processor or BDMA requires control of the bus to continue.

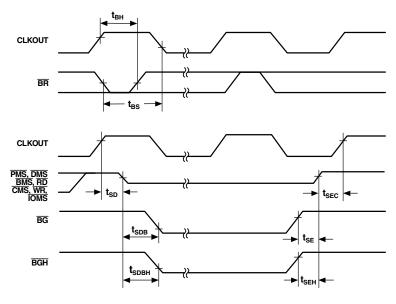


Figure 28. Bus Request-Bus Grant

Memory Read

Table 18. Memory Read

Paramet	er	Min	Max	Unit
Timing Re	equirements:			
t _{RDD}	RD Low to Data Valid ¹		$0.5t_{CK} - 5 + w$	ns
t _{AA}	A13–0, \overline{xMS} to Data Valid ²		$0.75t_{CK} - 6 + w$	ns
t _{RDH}	Data Hold from RD High	0		ns
Switching	Characteristics:			
t _{RP}	RD Pulse Width	0.5t _{CK} – 3 + w		ns
t _{CRD}	CLKOUT High to RD Low	0.25t _{CK} – 2	0.25t _{CK} + 4	ns
t _{ASR}	A13–0, xMS Setup before RD Low	0.25t _{CK} – 3		ns
t _{RDA}	A13–0, xMS Hold after RD Deasserted	0.25t _{CK} – 3		ns
t _{RWR}	RD High to RD or WR Low	0.5t _{CK} – 3		ns

 ${}^{1}w$ = wait states 3 t_{CK}. ${}^{2}\overline{\text{xMS}}$ = $\overline{\text{PMS}}$, $\overline{\text{DMS}}$, $\overline{\text{CMS}}$, $\overline{\text{IOMS}}$, $\overline{\text{BMS}}$.

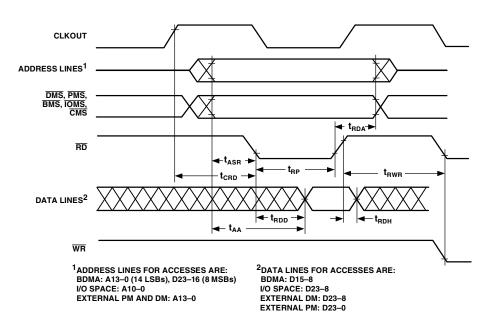


Figure 29. Memory Read

Memory Write

Table 19. Memory Write

Parameter		Min Max	Unit
Switching	Characteristics:		
t _{DW}	Data Setup before WR High ¹	$0.5t_{CK} - 4 + w$	ns
t _{DH}	Data Hold after WR High	0.25t _{CK} – 1	ns
t _{WP}	WR Pulse Width	$0.5t_{CK} - 3 + w$	ns
t _{WDE}	WR Low to Data Enabled	0	ns
t _{ASW}	A13–0, xMS Setup before WR Low ²	0.25t _{CK} – 3	ns
t _{DDR}	Data Disable before WR or RD Low	0.25t _{CK} – 3	ns
t _{CWR}	CLKOUT High to WR Low	$0.25t_{CK} - 2$ $0.25t_{CK} + 4$	ns
t _{AW}	A13-0, xMS Setup before WR Deasserted	$0.75t_{CK} - 5 + w$	ns
t _{WRA}	A13–0, xMS Hold after WR Deasserted	0.25t _{CK} – 1	ns
t _{WWR}	WR High to RD or WR Low	0.5t _{CK} – 3	ns

 1 w = wait states 3 t_{CK}.

 $^{2}\overline{\text{xMS}} = \overline{\text{PMS}}, \overline{\text{DMS}}, \overline{\text{CMS}}, \overline{\text{IOMS}}, \overline{\text{BMS}}.$

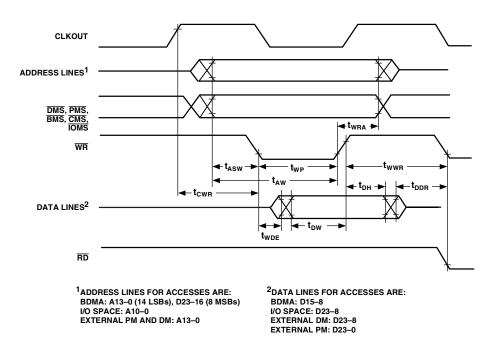


Figure 30. Memory Write

Serial Ports

Table 20. Serial Ports

Paramet	er	Min	Мах	Unit
Timing Re	equirements:			
t _{SCK}	SCLK Period	30		ns
t _{SCS}	DR/TFS/RFS Setup Before SCLK Low	4		ns
t _{SCH}	DR/TFS/RFS Hold After SCLK Low	7		ns
t _{SCP}	SCLKIN Width	12		ns
Switching	Characteristics:			
t _{cc}	CLKOUT High to SCLKOUT	0.25t _{CK}	0.25t _{CK} + 6	ns
t _{SCDE}	SCLK High to DT Enable	0		ns
t _{SCDV}	SCLK High to DT Valid		7	ns
t _{RH}	TFS/RFS _{OUT} Hold after SCLK High	0		ns
t _{RD}	TFS/RFS _{OUT} Delay from SCLK High		7	ns
t _{SCDH}	DT Hold after SCLK High	0		ns
t _{TDE}	TFS (Alt) to DT Enable	0		ns
t _{TDV}	TFS (Alt) to DT Valid		7	ns
t _{SCDD}	SCLK High to DT Disable		7	ns
t _{RDV}	RFS (Multichannel, Frame Delay Zero) to DT Valid		7	ns

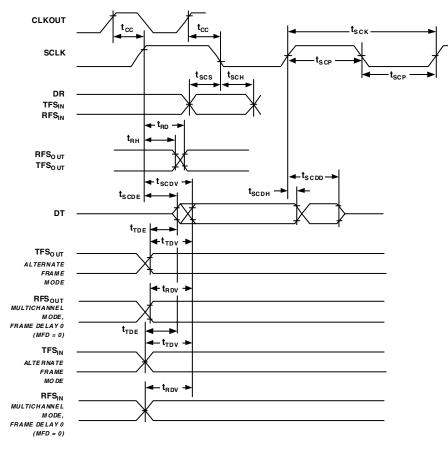


Figure 31. Serial Ports

IDMA Address Latch

Table 21. IDMA Address Latch

Parameter		Min	Max	Unit
Timing Re	quirements:			
t _{IALP}	Duration of Address Latch ^{1, 2}	10		ns
t _{IASU}	IAD15–0 Address Setup Before Address Latch End ²	5		ns
t _{IAH}	IAD15–0 Address Hold After Address Latch End ²	3		ns
t _{IKA}	IACK Low before Start of Address Latch ^{2, 3}	0		ns
t _{IALS}	Start of Write or Read After Address Latch End ^{2, 3}	3		ns
t _{IALD}	Address Latch Start After Address Latch End ^{1, 2}	2		ns

¹ Start of Address Latch = \overline{IS} Low and IAL High.

² End of Address Latch = \overline{IS} High or IAL Low. ³ Start of Write or Read = \overline{IS} Low and \overline{IWR} Low or \overline{IRD} Low.

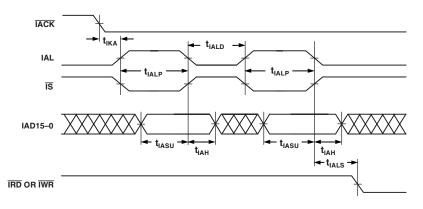


Figure 32. IDMA Address Latch

LQFP PACKAGE PINOUT

The LQFP package pinout is shown Figure 38 and in Table 27. Pin names in bold text in the table replace the plain-text-named functions when Mode C = 1. A + sign separates two functions when either function can be active for either major I/O mode. Signals enclosed in brackets [] are state bits latched from the

value of the pin at the deassertion of $\overline{\text{RESET}}$. The multiplexed pins DT1/FO, TFS1/ $\overline{\text{IRQ1}}$, RFS1/ $\overline{\text{IRQ0}}$, and DR1/FI, are mode selectable by setting Bit 10 (SPORT1 configure) of the System Control Register. If Bit 10 = 1, these pins have serial port functionality. If Bit 10 = 0, these pins are the external interrupt and flag pins. This bit is set to 1 by default, upon reset.

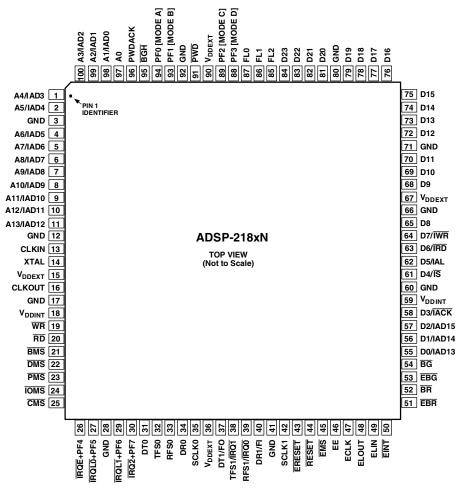


Figure 38. 100-Lead LQFP Pin Configuration

Table 27. LQFP Package Pinout

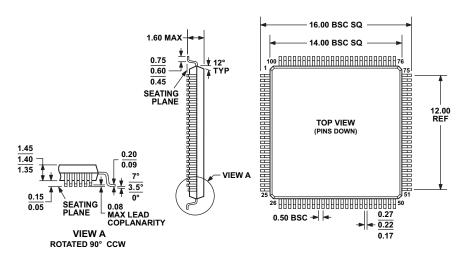
 Table 27. LQFP Package Pinout (Continued)

Pin Name	Pin No.	Pin Name
A4/IAD3	51	EBR
A5/ IAD4	52	BR
GND	53	EBG
A6/ IAD5	54	BG
A7/ IAD6	55	D0/ IAD13
A8/ IAD7	56	D1/ IAD14
		D2/ IAD15
A10/ IAD9	58	D3/IACK
A11/ IAD10		V _{DDINT}
		GND
		D4/ IS
		D5/ IAL
		D6/ IRD
		D7/ IWR
		D8
		GND
		V _{DDEXT}
		D9
		D10
		D10
		GND
		D12
		D13
		D14
		D15
		D16
		D17
		D18
		D19
		GND
		D20
		D21
		D22
		D23
	85	FL2
	86	FL1
DT1/FO	87	FLO
TFS1/IRQ1	88	PF3 [Mode D]
RFS1/IRQ0	89	PF2 [Mode C]
DR1/FI	90	V _{DDEXT}
GND	91	PWD
SCLK1	92	GND
ERESET	93	PF1 [Mode B]
RESET	94	PF0 [Mode A]
		BGH
		PWDACK
		AO
		A1/ IAD0
		A2/IAD1
EINT	100	A3/ IAD2
	A4/IAD3 A5/IAD4 GND A6/IAD5 A7/IAD6 A8/IAD7 A9/IAD8 A10/IAD9 A11/IAD10 A12/IAD11 A13/IAD12 GND CLKIN XTAL V _{DDEXT} CLKOUT GND V _{DDINT} WR RD BMS DMS PMS IOMS CMS IRQE + PF4 IRQL + PF5 GND IRQ2 + PF7 DT0 TFS0 RFS0 DR0 SCLK0 V _{DDEXT} DT1/FO TFS1/IRQ0 DR1/FI GND SCLK1 ERSET RESET EMS EU EU EU EU EU EU GND GND<	A4/IAD3 51 A5/IAD4 52 GND 53 A6/IAD5 54 A7/IAD6 55 A8/IAD7 56 A9/IAD8 57 A10/IAD9 58 A11/IAD10 59 A12/IAD11 60 A13/IAD12 61 GND 62 CLKIN 63 XTAL 64 Vocext 65 CLKOUT 66 GND 67 Vocext 68 WR 69 RD 70 BMS 71 DMS 72 PMS 73 GOMS 74 CMS 75 IRQE + PF4 76 IRQLT + PF5 77 GND 78 IRQLT + PF6 79 IRQE + PF7 80 DT0 81 TFS0 82 RFS1/IRQ1 88 RFS1/IRQ0 89 DR1/FI

Table 28. BGA Package Pinout(Continued)

Table 28. BGA Package Pinout

			()		
Ball No.	Pin Name	Ball No.	Pin Name		
A01	A2/ IAD1	E02	V _{DDEXT}		
A02	A1/ IAD0	E03	A8/ IAD7		
A03	GND	E04	FL0		
A04	AO	E05	PF0 [MODE A]		
A05	NC	E06	FL2		
A06	GND	E07	PF3 [MODE D]		
A07	NC	E08	GND		
A08	NC	E09	GND		
A09	NC	E10	V _{DDEXT}		
A10	D22	E11	GND		
A11	GND	E12	D10		
A12	GND	F01	A13/ IAD12		
B01	A4/ IAD3	F02	NC		
B02	A3/ IAD2	F03	A12/ IAD11		
B03	GND	F04	A11/ IAD10		
B04	NC	F05	FL1		
B05	NC	F06	NC		
B06	GND	F07	NC		
B07	V _{DDEXT}	F08	D7/IWR		
B08	D23	F09	D11		
B09	D20	F10	D8		
B10	D18	F11	NC		
B11	D17	F12	D9		
B12	D16	G01	XTAL		
C01	PWDACK	G02	NC		
C02	A6/ IAD5	G03	GND		
C03	RD	G04	A10/IAD9		
C04	A5/ IAD4	G05	NC		
C05	A7/ IAD6	G06	NC		
C06	PWD	G07	NC		
C07	V _{DDEXT}	G08	D6/IRD		
C08	D21	G09	D5/IAL		
C09	D19	G10	NC		
C10	D15	G10 G11	NC		
C11	NC	G12	D4/ IS		
C12	D14	H01	CLKIN		
D01	NC	H02	GND		
D02	WR	H03	GND		
D02	NC	H04	GND		
D04	BGH	H05			
D04	A9/ IAD8	H06	DT0		
D05	PF1 [MODE B]	H00 H07	TFS0		
D07					
	PF2 [MODE C]	H08	D2/ IAD15		
D08	NC D12	H09	D3/IACK		
D09	D13	H10	GND		
D10	D12	H11	NC		
D11	NC	H12	GND		
D12	GND	J01	CLKOUT		
E01	V _{DDEXT}	J02	V _{DDINT}		


Table 28. BGA Package Pinout(Continued)

Ball No.	Pin Name	
J03	NC	
J04	V _{DDEXT}	
J05	V _{DDEXT}	
J06	SCLKO	
J07	D0/IAD13	
80L	RFS1/IRQ0	
90	BG	
J10	D1/ IAD14	
J11	V _{DDINT}	
J12	V _{DDINT}	
K01	NC	
K02	NC	
K03	NC	
K04	BMS	
K05	DMS	
K06	RFS0	
K07	TFS1/IRQ1	
K08	SCLK1 ERESET	
K09 K10	EBR	
K11	BR	
K12	EBG	
L01	IRQE + PF4	
L01	NC	
L02	IRQL1 + PF6	
L04	IOMS	
L05	GND	
L06	PMS	
L07	DRO	
L08	GND	
L09	RESET	
L10	ELIN	
L11	ELOUT	
L12	EINT	
M01	IRQL0 + PF5	
M02	IRQL2 + PF7	
M03	NC	
M04	CMS	
M05	GND	
M06	DT1/FO	
M07	DR1/FI	
M08	GND	
M09	NC	
M10	EMS	
M11	EE	
M12	ECLK	

OUTLINE DIMENSIONS

Figure 40. 144-Ball BGA [CSP_BGA] (BC-144-6)

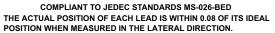


Figure 41. 100-Lead Low Profile Quad Flat Package [LQFP] (ST-100-1)

SURFACE MOUNT DESIGN

Table 29 is provided as an aid to PCB design. For industry-standard design recommendations, refer to IPC-7351, *Generic Requirements for Surface Mount Design and Land Pattern Standard.*

Table 29. BGA Data for Use with Surface Mount Design

Package	Ball Attach Type	Solder Mask Opening	Ball Pad Size
144-Ball BGA	Solder Mask	0.40 mm	0.50 mm
(BC-144-6)	Defined	diameter	diameter

ORDERING GUIDE

	Temperature	Instruction	Package	Package
Model	Range ¹	Rate (MHz)	Description	Option
ADSP-2184NBCA-320	-40°C to +85°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2184NBST-320	-40°C to +85°C	80	100-Lead LQFP	ST-100-1
ADSP-2184NKCA-320	0°C to 70°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2184NKST-320	0°C to 70°C	80	100-Lead LQFP	ST-100-1
ADSP-2184NKSTZ-320 ²	0°C to 70°C	80	100-Lead LQFP	ST-100-1
ADSP-2185NBCA-320	-40°C to +85°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2185NBST-320	-40°C to +85°C	80	100-Lead LQFP	ST-100-1
ADSP-2185NBSTZ-320 ²	-40°C to +85°C	80	100-Lead LQFP	ST-100-1
ADSP-2185NKCA-320	0°C to 70°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2185NKST-320	0°C to 70°C	80	100-Lead LQFP	ST-100-1
ADSP-2185NKSTZ-320 ²	0°C to 70°C	80	100-Lead LQFP	ST-100-1
ADSP-2186NBCA-320	-40°C to +85°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2186NBST-320	-40°C to +85°C	80	100-Lead LQFP	ST-100-1
ADSP-2186NBSTZ-320 ²	-40°C to +85°C	80	100-Lead LQFP	ST-100-1
ADSP-2186NKCA-320	0°C to 70°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2186NKST-320	0°C to 70°C	80	100-Lead LQFP	ST-100-1
ADSP-2186NKSTZ-320 ²	0°C to 70°C	80	100-Lead LQFP	ST-100-1
ADSP-2187NBCA-320	-40°C to +85°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2187NBST-320	-40°C to +85°C	80	100-Lead LQFP	ST-100-1
ADSP-2187NBSTZ-320 ²	-40°C to +85°C	80	100-Lead LQFP	ST-100-1
ADSP-2187NKCA-320	0°C to 70°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2187NKST-320	0°C to 70°C	80	100-Lead LQFP	ST-100-1
ADSP-2187NKSTZ-320 ²	0°C to 70°C	80	100-Lead LQFP	ST-100-1
ADSP-2188NBCA-320	-40°C to +85°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2188NBST-320	-40°C to +85°C	80	100-Lead LQFP	ST-100-1
ADSP-2188NBSTZ-320 ²	-40°C to +85°C	80	100-Lead LQFP	ST-100-1
ADSP-2188NKCA-320	0°C to 70°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2188NKCAZ-320 ²	0°C to 70°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2188NKST-320	0°C to 70°C	80	100-Lead LQFP	ST-100-1
ADSP-2188NKSTZ-320 ²	0°C to 70°C	80	100-Lead LQFP	ST-100-1
ADSP-2189NBCA-320	-40°C to +85°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2189NBCAZ-320 ²	-40°C to +85°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2189NBST-320	-40°C to +85°C	80	100-Lead LQFP	ST-100-1
ADSP-2189NBSTZ-320 ²	-40°C to +85°C	80	100-Lead LQFP	ST-100-1
ADSP-2189NKCA-320	0°C to 70°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2189NKCAZ-320 ²	0°C to 70°C	80	144-Ball CSP_BGA	BC-144-6
ADSP-2189NKST-320	0°C to 70°C	80	100-Lead LQFP	ST-100-1
ADSP-2189NKSTZ-320 ²	0°C to 70°C	80	100-Lead LQFP	ST-100-1

 1 Ranges shown represent ambient temperature. 2 Z = Pb-free part.