



Welcome to E-XFL.COM

# What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

# Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

# Details

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 4MHz                                                                        |
| Connectivity               | -                                                                           |
| Peripherals                | POR, WDT                                                                    |
| Number of I/O              | 5                                                                           |
| Program Memory Size        | 768B (512 x 12)                                                             |
| Program Memory Type        | OTP                                                                         |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 25 x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                   |
| Data Converters            | -                                                                           |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 8-SOIC (0.154", 3.90mm Width)                                               |
| Supplier Device Package    | 8-SOIC                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic12c508a-04e-sn |
|                            |                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### TABLE OF CONTENTS

| 1.0   | General Description                                                                   | 4   |
|-------|---------------------------------------------------------------------------------------|-----|
| 2.0   | PIC12C5XX Device Varieties                                                            |     |
| 3.0   | Architectural Overview                                                                |     |
| 4.0   | Memory Organization                                                                   | 13  |
| 5.0   | I/O Port                                                                              |     |
| 6.0   | Timer0 Module and TMR0 Register                                                       | 25  |
| 7.0   | EEPROM Peripheral Operation                                                           | 29  |
| 8.0   | Special Features of the CPU                                                           | 35  |
| 9.0   | Instruction Set Summary                                                               | 47  |
| 10.0  | Development Support                                                                   |     |
| 11.0  | Electrical Characteristics - PIC12C508/PIC12C509                                      | 65  |
| 12.0  | DC and AC Characteristics - PIC12C508/PIC12C509                                       | 75  |
| 13.0  | Electrical Characteristics PIC12C508A/PIC12C509A/PIC12LC508A/PIC12LC509A/PIC12CR509A/ |     |
|       | PIC12CE518/PIC12CE519/                                                                |     |
|       | PIC12LCE518/PIC12LCE519/PIC12LCR509A                                                  | 79  |
| 14.0  | DC and AC Characteristics                                                             |     |
|       | PIC12C508A/PIC12C509A/PIC12LC508A/PIC12LC509A/PIC12CE518/PIC12CE519/PIC12CR509A/      |     |
|       | PIC12LCE518/PIC12LCE519/ PIC12LCR509A                                                 | 93  |
| 15.0  | Packaging Information                                                                 | 99  |
| Index | ۲                                                                                     | 105 |
|       | 2C5XX Product Identification System                                                   |     |
| Sales | and Support:                                                                          | 109 |

### To Our Valued Customers

#### Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

#### Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Corrections to this Data Sheet**

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

# 1.0 GENERAL DESCRIPTION

The PIC12C5XX from Microchip Technology is a family of low-cost, high performance, 8-bit, fully static, EEPROM/EPROM/ROM-based CMOS microcontrollers. It employs a RISC architecture with only 33 single word/single cycle instructions. All instructions are single cycle (1  $\mu$ s) except for program branches which take two cycles. The PIC12C5XX delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC12C5XX products are equipped with special features that reduce system cost and power requirements. The Power-On Reset (POR) and Device Reset Timer (DRT) eliminate the need for external reset circuitry. There are four oscillator configurations to choose from, including INTRC internal oscillator mode and the power-saving LP (Low Power) oscillator mode. Power saving SLEEP mode, Watchdog Timer and code protection features also improve system cost, power and reliability.

The PIC12C5XX are available in the cost-effective One-Time-Programmable (OTP) versions which are suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers while benefiting from the OTP's flexibility.

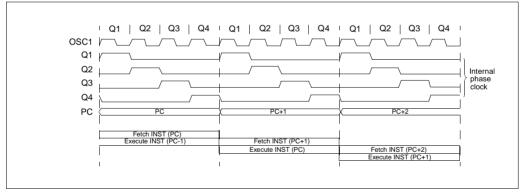
The PIC12C5XX products are supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a 'C' compiler, fuzzy logic support tools, a low-cost development programmer, and a full featured programmer. All the tools are supported on IBM<sup>®</sup> PC and compatible machines.

# 1.1 Applications

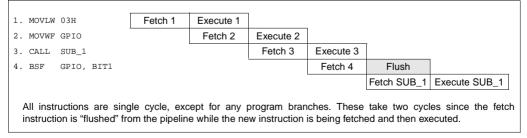
The PIC12C5XX series fits perfectly in applications ranging from personal care appliances and security systems to low-power remote transmitters/receivers. The EPROM technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies. etc.) extremely fast and convenient, while the EEPROM data memory technology allows for the changing of calibration factors and security codes. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low-cost, low-power, high performance, ease of use and I/O flexibility make the PIC12C5XX series very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic and PLD's in larger systems, coprocessor applications).

#### 3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1, and the instruction is fetched from program memory and latched into instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.


#### 3.2 Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

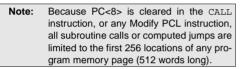
In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

# FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

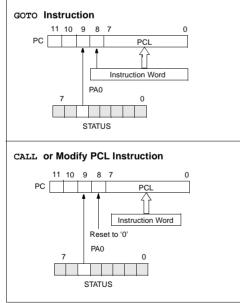


#### EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW




### 4.6 Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one every instruction cycle, unless an instruction changes the PC.


For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to PC<7:0>. Bit 5 of the STATUS register provides page information to bit 9 of the PC (Figure 4-8).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 4-8).

Instructions where the PCL is the destination, or Modify PCL instructions, include <code>MOVWF PC</code>, <code>ADDWF PC</code>, and <code>BSF PC</code>, <code>5</code>.



# FIGURE 4-8: LOADING OF PC BRANCH INSTRUCTIONS -PIC12C5XX



#### 4.6.1 EFFECTS OF RESET

The Program Counter is set upon a RESET, which means that the PC addresses the last location in the last page i.e., the oscillator calibration instruction. After executing MOVLW XX, the PC will roll over to location 00h, and begin executing user code.

The STATUS register page preselect bits are cleared upon a RESET, which means that page 0 is pre-selected.

Therefore, upon a RESET, a GOTO instruction will automatically cause the program to jump to page 0 until the value of the page bits is altered.

# 4.7 Stack

PIC12C5XX devices have a 12-bit wide L.I.F.O. hardware push/pop stack.

A CALL instruction will *push* the current value of stack 1 into stack 2 and then push the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will *pop* the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2. Note that the W register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

Upon any reset, the contents of the stack remain unchanged, however the program counter (PCL) will also be reset to 0.

- Note 1: There are no STATUS bits to indicate stack overflows or stack underflow conditions.
- Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL and RETLW instructions.

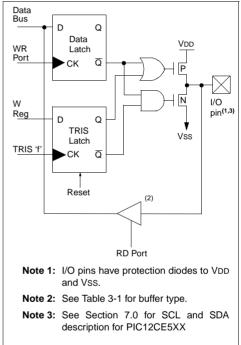
# 5.0 I/O PORT

As with any other register, the I/O register can be written and read under program control. However, read instructions (e.g., MOVF GPIO, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers are all set. See Section 7.0 for SCL and SDA description for PIC12CE5XX.

# 5.1 <u>GPIO</u>

GPIO is an 8-bit I/O register. Only the low order 6 bits are used (GP5:GP0). Bits 7 and 6 are unimplemented and read as '0's. Please note that GP3 is an input only pin. The configuration word can set several I/O's to alternate functions. When acting as alternate functions the pins will read as '0' during port read. Pins GP0, GP1, and GP3 can be configured with weak pull-ups and also with wake-up on change. The wake-up on change and weak pull-up functions are not pin selectable. If pin 4 is configured as MCLR, weak pullup is always on and wake-up on change for this pin is not enabled.

### 5.2 TRIS Register


The output driver control register is loaded with the contents of the W register by executing the TRIS f instruction. A '1' from a TRIS register bit puts the corresponding output driver in a hi-impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are GP3 which is input only and GP2 which may be controlled by the option register, see Figure 4-5.

| Note: | A read of the ports reads the pins, not the output data latches. That is, if an output      |  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|       | driver on a pin is enabled and driven high,                                                 |  |  |  |  |  |  |
|       | but the external system is holding it low, a read of the port will indicate that the pin is |  |  |  |  |  |  |
|       | low.                                                                                        |  |  |  |  |  |  |

The TRIS registers are "write-only" and are set (output drivers disabled) upon RESET.

# 5.3 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 5-1. All port pins, except GP3 which is input only, may be used for both input and output operations. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF GPIO, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.



# FIGURE 5-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

#### 6.2 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer (WDT), respectively (Section 8.6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

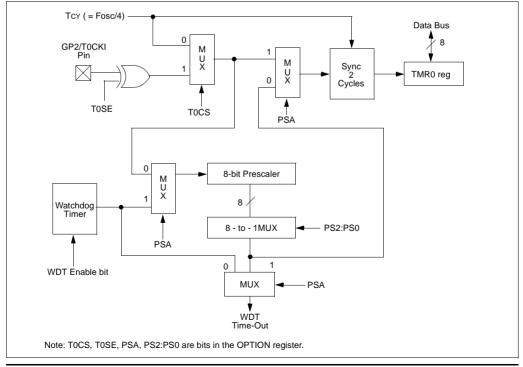
The PSA and PS2:PS0 bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a RESET, the prescaler contains all '0's.

### 6.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

#### EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)


| 1.CLRWDT            | ;Clear WDT               |
|---------------------|--------------------------|
| 2.CLRF TMR0         | ;Clear TMR0 & Prescaler  |
| 3.MOVLW '00xx1111'b | ;These 3 lines (5, 6, 7) |
| 4.OPTION            | ; are required only if   |
|                     | ; desired                |
| 5.CLRWDT            | ;PS<2:0> are 000 or 001  |
| 6.MOVLW '00xx1xxx'b | ;Set Postscaler to       |
| 7.OPTION            | ; desired WDT rate       |

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

#### EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

| CLRWDT | •          | Clear WDT and       |
|--------|------------|---------------------|
|        |            | ;prescaler          |
| MOVLW  | 'xxxx0xxx' | ;Select TMR0, new   |
|        |            | ;prescale value and |
|        |            | ;clock source       |
| OPTION |            |                     |

# FIGURE 6-5: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER



#### 8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 8-4 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k $\Omega$  resistor provides the negative feedback for stability. The 10 k $\Omega$  potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

#### FIGURE 8-4: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

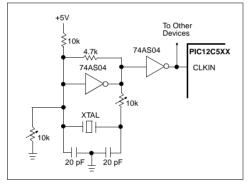
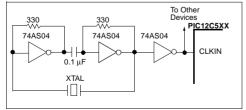



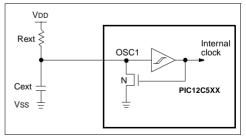

Figure 8-5 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330  $\Omega$  resistors provide the negative feedback to bias the inverters in their linear region.

#### FIGURE 8-5: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT



### 8.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used.


Figure 8-6 shows how the R/C combination is connected to the PIC12C5XX. For Rext values below 2.2 k $\Omega$ , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g., 1 M $\Omega$ ) the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k $\Omega$  and 100 k $\Omega$ .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The Electrical Specifications sections show RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

Also, see the Electrical Specifications sections for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

# FIGURE 8-6: EXTERNAL RC OSCILLATOR MODE



# PIC12C5XX

| CALL                                      | Subroutine Call                                                                                                                                                                                                                                                   |  |  |  |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:                                   | [ <i>label</i> ] CALL k                                                                                                                                                                                                                                           |  |  |  |  |  |
| Operands:                                 | $0 \le k \le 255$                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Operation:                                | $\begin{array}{l} (PC) + 1 \rightarrow \text{Top of Stack;} \\ k \rightarrow PC < 7:0>; \\ (STATUS < 6:5>) \rightarrow PC < 10:9>; \\ 0 \rightarrow PC < 8> \end{array}$                                                                                          |  |  |  |  |  |
| Status Affected:                          | None                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Encoding:                                 | 1001 kkkk kkkk                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Description:                              | Subroutine call. First, return address<br>(PC+1) is pushed onto the stack. The<br>eight bit immediate address is loaded<br>into PC bits <7:0>. The upper bits<br>PC<10:9> are loaded from STA-<br>TUS<6:5>, PC<8> is cleared. CALL is<br>a two cycle instruction. |  |  |  |  |  |
| Words:                                    | 1                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Cycles:                                   | 2                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Example:                                  | HERE CALL THERE                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Before Instruction<br>PC = address (HERE) |                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                           | tion<br>address (THERE)<br>address (HERE + 1)                                                                                                                                                                                                                     |  |  |  |  |  |

# CLRF

| Syntax: [label] CLRF f         |                                                                        |           |  |  |  |  |  |  |
|--------------------------------|------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Operands: $0 \le f \le 31$     |                                                                        |           |  |  |  |  |  |  |
| Operation:                     | $\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$ |           |  |  |  |  |  |  |
| Status Affected:               | Z                                                                      |           |  |  |  |  |  |  |
| Encoding:                      | 0000 011f ffff                                                         |           |  |  |  |  |  |  |
| Description:                   | The contents of register 'f' are cleared and the Z bit is set.         |           |  |  |  |  |  |  |
| Words:                         | 1                                                                      |           |  |  |  |  |  |  |
| Cycles:                        | 1                                                                      |           |  |  |  |  |  |  |
| Example:                       | CLRF FLAG_REG                                                          |           |  |  |  |  |  |  |
| Before Instru<br>FLAG_RE       |                                                                        | 0x5A      |  |  |  |  |  |  |
| After Instruct<br>FLAG_RE<br>Z |                                                                        | 0x00<br>1 |  |  |  |  |  |  |

Clear f

| CLRW                                                                                                     | Clear W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:                                                                                                  | [label] CLRW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Operands:                                                                                                | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Operation:                                                                                               | $\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Status Affected:                                                                                         | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Encoding:                                                                                                | 0000 0100 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Description:                                                                                             | The W register is cleared. Zero bit (Z) is set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Words:                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Cycles:                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Example:                                                                                                 | CLRW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Before Instru<br>W =                                                                                     | uction<br>0x5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| After Instruct<br>W =<br>Z =                                                                             | tion<br>0x00<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| CLRWDT                                                                                                   | Clear Watchdog Timer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| CLRWDT<br>Syntax:                                                                                        | Clear Watchdog Timer<br>[label] CLRWDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| -                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Syntax:                                                                                                  | [label] CLRWDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Syntax:<br>Operands:                                                                                     | [ <i>label</i> ] CLRWDT<br>None<br>$00h \rightarrow WDT;$<br>$0 \rightarrow WDT$ prescaler (if assigned);<br>$1 \rightarrow \overline{TO};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Syntax:<br>Operands:<br>Operation:                                                                       | [ <i>label</i> ] CLRWDT<br>None<br>$00h \rightarrow WDT;$<br>$0 \rightarrow WDT$ prescaler (if assigned);<br>$1 \rightarrow \overline{TO};$<br>$1 \rightarrow \overline{PD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:                                                   | [ <i>label</i> ] CLRWDT<br>None<br>$00h \rightarrow WDT;$<br>$0 \rightarrow WDT$ prescaler (if assigned);<br>$1 \rightarrow \overline{TO};$<br>$1 \rightarrow \overline{PD}$<br>$\overline{TO}, \overline{PD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:                                      | $ \begin{array}{l lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:                      | $ \begin{array}{l lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:            | $ \begin{array}{l lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles: | [ <i>label</i> ] CLRWDT<br>None<br>$O0h \rightarrow WDT;$<br>$0 \rightarrow WDT prescaler (if assigned);$<br>$1 \rightarrow \overline{TO};$<br>$1 \rightarrow \overline{PD}$<br>$\overline{TO}, \overline{PD}$<br>0000  0000  0100<br>The CLRWDT instruction resets the<br>WDT. It also resets the prescaler, if the<br>prescaler is assigned to the WDT and<br>not Timer0. Status bits $\overline{TO}$ and $\overline{PD}$ are<br>set.<br>1<br>1<br>CLRWDT<br>Intercomplete the state of the |  |  |  |  |  |

# **10.0 DEVELOPMENT SUPPORT**

# 10.1 <u>Development Tools</u>

The PICmicro<sup>®</sup> microcontrollers are supported with a full range of hardware and software development tools:

- MPLAB<sup>™</sup>-ICE Real-Time In-Circuit Emulator
- ICEPIC<sup>™</sup> Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE<sup>®</sup> II Universal Programmer
- PICSTART<sup>®</sup> Plus Entry-Level Prototype Programmer
- SIMICE
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB<sup>™</sup> SIM Software Simulator
- MPLAB-C17 (C Compiler)
- Fuzzy Logic Development System (*fuzzy*TECH<sup>®</sup>–MP)
- KEELOQ<sup>®</sup> Evaluation Kits and Programmer

# 10.2 MPLAB-ICE: High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB-ICE Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro<sup>®</sup> microcontrollers (MCUs). MPLAB-ICE is supplied with the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB-ICE allows expansion to support all new Microchip microcontrollers.

The MPLAB-ICE Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows<sup>®</sup> 3.x or Windows 95 environment were chosen to best make these features available to you, the end user.

MPLAB-ICE is available in two versions. MPLAB-ICE 1000 is a basic, low-cost emulator system with simple trace capabilities. It shares processor modules with the MPLAB-ICE 2000. This is a full-featured emulator system with enhanced trace, trigger, and data monitoring features. Both systems will operate across the entire operating speed range of the PICmicro<sup>®</sup> MCU.

### 10.3 ICEPIC: Low-Cost PICmicro<sup>®</sup> In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC12CXXX, PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 386 through Pentium<sup>™</sup> based machines under Windows 3.x, Windows 95, or Windows NT environment. ICEPIC features real time, non-intrusive emulation.

# 10.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode. PRO MATE II is CE compliant.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.

### 10.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923, PIC16C924 and PIC17C756 may be supported with an adapter socket. PICSTART Plus is CE compliant.

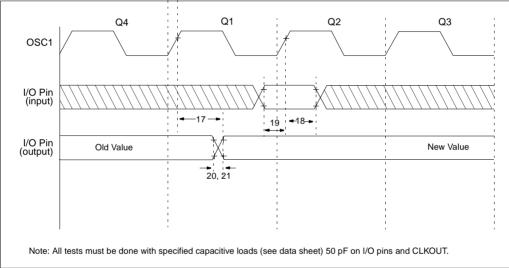
### 11.1 DC CHARACTERISTICS:

#### PIC12C508/509 (Commercial, Industrial, Extended)

|             | DC Characteristics<br>Power Supply Pins       |       | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |                    |     |          |                                                                                            |  |  |
|-------------|-----------------------------------------------|-------|------------------------------------------------------|--------------------|-----|----------|--------------------------------------------------------------------------------------------|--|--|
| Parm<br>No. | Characteristic                                | Sym   | Min                                                  | Typ <sup>(1)</sup> | Max | Units    | Conditions                                                                                 |  |  |
| D001        | Supply Voltage                                | Vdd   | 2.5                                                  |                    | 5.5 | V        | Fosc = DC to 4 MHz (Commercial/<br>Industrial)                                             |  |  |
|             |                                               |       | 3.0                                                  |                    | 5.5 | V        | FOSC = DC to 4 MHz (Extended)                                                              |  |  |
| D002        | RAM Data Retention<br>Voltage <sup>(2)</sup>  | Vdr   |                                                      | 1.5*               |     | V        | Device in SLEEP mode                                                                       |  |  |
| D003        | VDD Start Voltage to<br>ensure Power-on Reset | VPOR  |                                                      | Vss                |     | V        | See section on Power-on Reset for details                                                  |  |  |
| D004        | VDD Rise Rate to ensure<br>Power-on Reset     | SVDD  | 0.05<br>*                                            |                    |     | V/ms     | See section on Power-on Reset for details                                                  |  |  |
| D010        | Supply Current <sup>(3)</sup>                 | Idd   | _                                                    | .78                | 2.4 | mA       | XT and EXTRC options <sup>(4)</sup><br>Fosc = 4 MHz, VDD = $5.5V$                          |  |  |
| D010C       |                                               |       | —                                                    | 1.1                | 2.4 | mA       | INTRC Option<br>Fosc = 4 MHz, VDD = 5.5V                                                   |  |  |
| D010A       |                                               |       | —                                                    | 10                 | 27  | μA       | LP OPTION, Commercial Temperature<br>Fosc = $32 \text{ kHz}$ , VDD = $3.0V$ , WDT disabled |  |  |
|             |                                               |       | —                                                    | 14                 | 35  | μA       | LP OPTION, Industrial Temperature<br>FOSC = 32 kHz, VDD = 3.0V, WDT disabled               |  |  |
|             |                                               |       | -                                                    | 14                 | 35  | μA       | LP OPTION, Extended Temperature<br>FOSC = 32 kHz, VDD = 3.0V, WDT disabled                 |  |  |
|             | Power-Down Current (5)                        |       | l                                                    |                    |     |          |                                                                                            |  |  |
| D020        |                                               | IPD   |                                                      | 0.25               | 4   | μA       | VDD = 3.0V, Commercial WDT disabled                                                        |  |  |
| D021        |                                               |       |                                                      | 0.25               | 5   | μA       | VDD = 3.0V, Industrial WDT disabled                                                        |  |  |
| D021B       |                                               |       |                                                      | 2                  | 18  | μA       | VDD = 3.0V, Extended WDT disabled                                                          |  |  |
| D022        |                                               | ΔIWDT |                                                      | 3.75               | 8   | μΑ       | VDD = 3.0V, Commercial                                                                     |  |  |
| 2022        |                                               |       |                                                      | 3.75               | 9   | μA<br>μA | VDD = 3.0V, Industrial                                                                     |  |  |
|             |                                               |       |                                                      | 3.75               | 14  | μΑ       | VDD = 3.0V, Extended                                                                       |  |  |

\* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

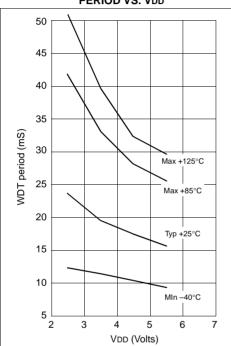

- 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
- 3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
  - a) The test conditions for all IDD measurements in active operation mode are:
  - OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  $V_{ss}$ , T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
  - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

# TABLE 11-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC12C508/C509

| AC Chara             | cteristics | $\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^\circ C \leq Ta \leq +70^\circ C \mbox{ (commercial)}, \\ & -40^\circ C \leq Ta \leq +85^\circ C \mbox{ (industrial)}, \\ & -40^\circ C \leq Ta \leq +125^\circ C \mbox{ (extended)} \\ \mbox{Operating Voltage VDD range is described in Section 10.1} \end{array}$ |      |                    |      |       |            |  |
|----------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|------|-------|------------|--|
| Parameter<br>No. Sym |            | Characteristic                                                                                                                                                                                                                                                                                                                                                                                | Min* | Typ <sup>(1)</sup> | Max* | Units | Conditions |  |
|                      |            | Internal Calibrated RC Frequency                                                                                                                                                                                                                                                                                                                                                              | 3.58 | 4.00               | 4.32 | MHz   | VDD = 5.0V |  |
|                      |            | Internal Calibrated RC Frequency                                                                                                                                                                                                                                                                                                                                                              | 3.50 | —                  | 4.26 | MHz   | VDD = 2.5V |  |

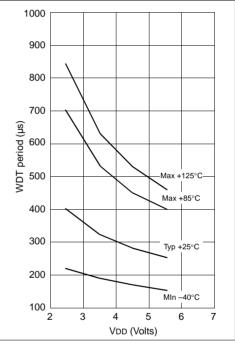
\* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.




# FIGURE 11-3: I/O TIMING - PIC12C508/C509

| Oscillator  | Frequency | VDD = 2.5V | VDD = 5.5V |  |  |
|-------------|-----------|------------|------------|--|--|
| External RC | 4 MHz     | 250 µA*    | 780 µA*    |  |  |
| Internal RC | 4 MHz     | 420 µA     | 1.1 mA     |  |  |
| XT          | 4 MHz     | 251 µA     | 780 µA     |  |  |
| LP          | 32 KHz    | 15 µA      | 37 µA      |  |  |


# TABLE 12-1: DYNAMIC IDD (TYPICAL) - WDT ENABLED, 25°C

\*Does not include current through external R&C.



#### FIGURE 12-3: WDT TIMER TIME-OUT PERIOD VS. VDD

# FIGURE 12-4: SHORT DRT PERIOD VS. VDD



# PIC12C5XX

NOTES:

# 13.4 DC CHARACTERISTICS:

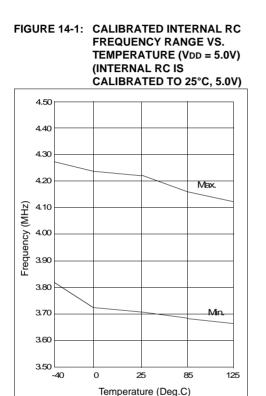
#### PIC12LC508A/509A (Commercial, Industrial) PIC12LC518/519 (Commercial, Industrial) PIC12LCR509A (Commercial, Industrial)

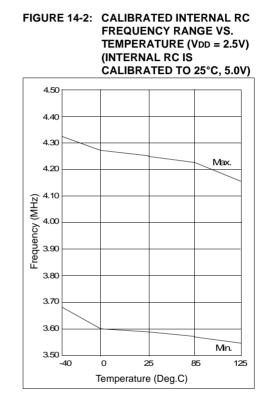
| DC CHARACTERISTICS |                                            | Standard Operating Conditions (unless otherwise specified)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial) $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) |           |      |            |       |                                                                    |  |  |
|--------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|------------|-------|--------------------------------------------------------------------|--|--|
|                    |                                            | Operating voltage VDD range as described in DC spec Section 13.1 and Section 13.2.                                                                                                    |           |      |            |       |                                                                    |  |  |
| Param<br>No.       | Characteristic                             | Sym                                                                                                                                                                                   | Min       | Тур† | Max        | Units | Conditions                                                         |  |  |
|                    | Input Low Voltage                          |                                                                                                                                                                                       |           |      |            |       |                                                                    |  |  |
|                    | I/O ports                                  | VIL                                                                                                                                                                                   |           |      |            |       |                                                                    |  |  |
| D030               | with TTL buffer                            |                                                                                                                                                                                       | Vss       | -    | 0.8V       | V     | For $4.5V \le VDD \le 5.5V$                                        |  |  |
|                    |                                            |                                                                                                                                                                                       | Vss       | -    | 0.15Vdd    | V     | otherwise                                                          |  |  |
| D031               | with Schmitt Trigger buffer                |                                                                                                                                                                                       | Vss       | -    | 0.2Vdd     | V     |                                                                    |  |  |
| D032               | MCLR, GP2/T0CKI (in EXTRC mode)            |                                                                                                                                                                                       | Vss       | -    | 0.2Vdd     | V     |                                                                    |  |  |
| D033               | OSC1 (in EXTRC mode)                       |                                                                                                                                                                                       | Vss       | -    | 0.2Vdd     | V     | Note 1                                                             |  |  |
| D033               | OSC1 (in XT and LP)                        |                                                                                                                                                                                       | Vss       | -    | 0.3Vdd     | V     | Note 1                                                             |  |  |
|                    | Input High Voltage                         | 1                                                                                                                                                                                     |           |      |            |       |                                                                    |  |  |
|                    | I/O ports                                  | VIH                                                                                                                                                                                   |           | -    |            |       |                                                                    |  |  |
| D040               | with TTL buffer                            |                                                                                                                                                                                       | 0.25Vdd + | -    | Vdd        | V     | $4.5V \le VDD \le 5.5V$                                            |  |  |
|                    |                                            |                                                                                                                                                                                       | 0.8V      |      |            |       |                                                                    |  |  |
| D040A              |                                            |                                                                                                                                                                                       | 2.0V      | -    | Vdd        | V     | otherwise                                                          |  |  |
| D041               | with Schmitt Trigger buffer                |                                                                                                                                                                                       | 0.8Vdd    | -    | Vdd        | V     | For entire VDD range                                               |  |  |
| D042               | MCLR, GP2/T0CKI                            |                                                                                                                                                                                       | 0.8Vdd    | -    | Vdd        | V     |                                                                    |  |  |
| D042A              | OSC1 (XT and LP)                           |                                                                                                                                                                                       | 0.7Vdd    | -    | Vdd        | V     | Note 1                                                             |  |  |
| D043               | OSC1 (in EXTRC mode)                       |                                                                                                                                                                                       | 0.9Vdd    | -    | Vdd        | V     |                                                                    |  |  |
| D070               | GPIO weak pull-up current (Note 4)         | IPUR                                                                                                                                                                                  | 30        | 250  | 400        | μA    | VDD = 5V, VPIN = VSS                                               |  |  |
|                    | MCLR pull-up current                       | -                                                                                                                                                                                     | -         | -    | 30         | μA    | VDD = 5V, VPIN = VSS                                               |  |  |
|                    | Input Leakage Current (Notes 2, 3)         |                                                                                                                                                                                       |           |      |            | -     |                                                                    |  |  |
| D060               | I/O ports                                  | lι∟                                                                                                                                                                                   | -         | -    | <u>+</u> 1 | μΑ    | Vss $\leq$ VPIN $\leq$ VDD, Pin at hi-imped ance                   |  |  |
| D061               | тоскі                                      |                                                                                                                                                                                       | -         | -    | <u>+</u> 5 | μA    | $Vss \leq VPIN \leq VDD$                                           |  |  |
| D063               | OSC1                                       |                                                                                                                                                                                       | -         | -    | <u>+</u> 5 | μA    | Vss $\leq$ VPIN $\leq$ VDD, XT and LP osc configuration            |  |  |
|                    | Output Low Voltage                         |                                                                                                                                                                                       |           |      |            |       |                                                                    |  |  |
| D080               | I/O ports                                  | Vol                                                                                                                                                                                   | -         | -    | 0.6        | V     | IOL = 8.5 mA, VDD = 4.5V,<br>−40°C to +85°C                        |  |  |
| D080A              |                                            |                                                                                                                                                                                       | -         | -    | 0.6        | V     | IOL = 7.0 mA, VDD = 4.5V,<br>−40°C to +125°C                       |  |  |
|                    | Output High Voltage                        |                                                                                                                                                                                       |           |      |            |       |                                                                    |  |  |
| D090               | I/O ports (Note 3)                         | Vон                                                                                                                                                                                   | Vdd - 0.7 | -    | -          | V     | IOH = -3.0 mA, VDD = 4.5V,<br>−40°C to +85°C                       |  |  |
| D090A              |                                            |                                                                                                                                                                                       | Vdd - 0.7 | -    | -          | V     | IOH = -2.5 mA, VDD = 4.5V,<br>-40°C to +125°C                      |  |  |
|                    | Capacitive Loading Specs on<br>Output Pins |                                                                                                                                                                                       |           |      |            |       |                                                                    |  |  |
| D100               | OSC2 pin                                   | COSC<br>2                                                                                                                                                                             | -         | -    | 15         | pF    | In XT and LP modes when exter-<br>nal clock is used to drive OSC1. |  |  |
| D101               | All I/O pins                               | Сю                                                                                                                                                                                    | -         | -    | 50         | pF    |                                                                    |  |  |
| †                  | Data in "Typ" column is at 51/ 25°C unles  | These parameters are for design guidance only and are not                                                                                                                             |           |      |            |       |                                                                    |  |  |

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as coming out of the pin.


4: This spec. applies when GP3/MCLR is configured as MCLR. The leakage current of the MCLR circuit is higher than the standard I/O logic.

# 14.0 DC AND AC CHARACTERISTICS - PIC12C508A/PIC12C509A/ PIC12LC508A/PIC12LC509A, PIC12CE518/PIC12CE519/PIC12CR509A/ PIC12LCE518/PIC12LCE519/ PIC12LCR509A

The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables the data presented are outside specified operating range (e.g., outside specified VDD range). This is for information only and devices will operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean +  $3\sigma$ ) and (mean -  $3\sigma$ ) respectively, where  $\sigma$  is standard deviation.





# **15.0 PACKAGING INFORMATION**

# 15.1 Package Marking Information

# 8-Lead PDIP (300 mil)



# 8-Lead SOIC (150 mil)



#### 8-Lead SOIC (208 mil)

| XXXXXXX<br>XXXXXXX<br>AABBCDE |  |
|-------------------------------|--|
|                               |  |
|                               |  |

# Example 12C508A 04I/PSAZ \$\$ 9825

# Example



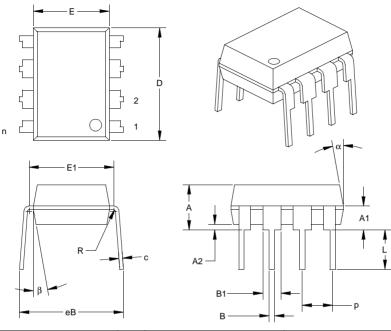
# Example



# 8-Lead Windowed Ceramic Side Brazed (300 mil)



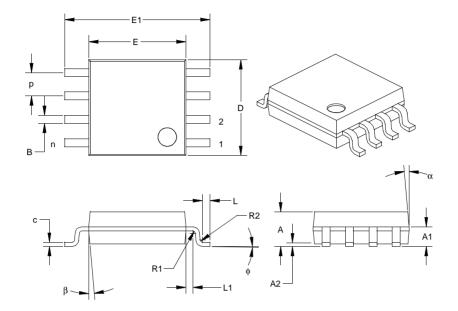
### Example




| Legen | d: MMM                                                                            | Microchip part number information                                       |  |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|
|       | XXX                                                                               | Customer specific information*                                          |  |  |  |  |  |  |
|       | AA                                                                                | Year code (last 2 digits of calendar year)                              |  |  |  |  |  |  |
|       | BB                                                                                | Week code (week of January 1 is week '01')                              |  |  |  |  |  |  |
|       | С                                                                                 | Facility code of the plant at which wafer is manufactured               |  |  |  |  |  |  |
|       |                                                                                   | O = Outside Vendor                                                      |  |  |  |  |  |  |
|       |                                                                                   | C = 5" Line                                                             |  |  |  |  |  |  |
|       |                                                                                   | S = 6" Line                                                             |  |  |  |  |  |  |
|       |                                                                                   | H = 8" Line                                                             |  |  |  |  |  |  |
|       | D                                                                                 | Mask revision number                                                    |  |  |  |  |  |  |
|       | E                                                                                 | Assembly code of the plant or country of origin in which                |  |  |  |  |  |  |
|       |                                                                                   | part was assembled                                                      |  |  |  |  |  |  |
| Note: | In the eve                                                                        | nt the full Microchip part number cannot be marked on one line, it will |  |  |  |  |  |  |
|       | be carried over to the next line thus limiting the number of available characters |                                                                         |  |  |  |  |  |  |
|       | for customer specific information.                                                |                                                                         |  |  |  |  |  |  |
|       |                                                                                   |                                                                         |  |  |  |  |  |  |

\* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

# PIC12C5XX


# Package Type: K04-018 8-Lead Plastic Dual In-line (P) - 300 mil



| Units                        |                 | INCHES* |       |       | MILLIMETERS |      |      |
|------------------------------|-----------------|---------|-------|-------|-------------|------|------|
| Dimension Limits             |                 | MIN     | NOM   | MAX   | MIN         | NOM  | MAX  |
| PCB Row Spacing              |                 |         | 0.300 |       |             | 7.62 |      |
| Number of Pins               | n               |         | 8     |       |             | 8    |      |
| Pitch                        | р               |         | 0.100 |       |             | 2.54 |      |
| Lower Lead Width             | В               | 0.014   | 0.018 | 0.022 | 0.36        | 0.46 | 0.56 |
| Upper Lead Width             | B1 <sup>†</sup> | 0.055   | 0.060 | 0.065 | 1.40        | 1.52 | 1.65 |
| Shoulder Radius              | R               | 0.000   | 0.005 | 0.010 | 0.00        | 0.13 | 0.25 |
| Lead Thickness               | с               | 0.006   | 0.012 | 0.015 | 0.20        | 0.29 | 0.38 |
| Top to Seating Plane         | A               | 0.140   | 0.150 | 0.160 | 3.56        | 3.81 | 4.06 |
| Top of Lead to Seating Plane | A1              | 0.060   | 0.080 | 0.100 | 1.52        | 2.03 | 2.54 |
| Base to Seating Plane        | A2              | 0.005   | 0.020 | 0.035 | 0.13        | 0.51 | 0.89 |
| Tip to Seating Plane         | L               | 0.120   | 0.130 | 0.140 | 3.05        | 3.30 | 3.56 |
| Package Length               | D‡              | 0.355   | 0.370 | 0.385 | 9.02        | 9.40 | 9.78 |
| Molded Package Width         | E‡              | 0.245   | 0.250 | 0.260 | 6.22        | 6.35 | 6.60 |
| Radius to Radius Width       | E1              | 0.267   | 0.280 | 0.292 | 6.78        | 7.10 | 7.42 |
| Overall Row Spacing          | eB              | 0.310   | 0.342 | 0.380 | 7.87        | 8.67 | 9.65 |
| Mold Draft Angle Top         | α               | 5       | 10    | 15    | 5           | 10   | 15   |
| Mold Draft Angle Bottom      | β               | 5       | 10    | 15    | 5           | 10   | 15   |

\* Controlling Parameter.

- <sup>†</sup> Dimension "B1" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B1."
- <sup>‡</sup> Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."



Package Type: K04-056 8-Lead Plastic Small Outline (SM) - Medium, 208 mil

| Units                   |    | INCHES* |       |       | MILLIMETERS |      |      |
|-------------------------|----|---------|-------|-------|-------------|------|------|
| Dimension Limits        |    | MIN     | NOM   | MAX   | MIN         | NOM  | MAX  |
| Pitch                   | р  |         | 0.050 |       |             | 1.27 |      |
| Number of Pins          | n  |         | 8     |       |             | 8    |      |
| Overall Pack. Height    | A  | 0.070   | 0.074 | 0.079 | 1.78        | 1.89 | 2.00 |
| Shoulder Height         | A1 | 0.037   | 0.042 | 0.048 | 0.94        | 1.08 | 1.21 |
| Standoff                | A2 | 0.002   | 0.005 | 0.009 | 0.05        | 0.14 | 0.22 |
| Molded Package Length   | D‡ | 0.200   | 0.205 | 0.210 | 5.08        | 5.21 | 5.33 |
| Molded Package Width    | E‡ | 0.203   | 0.208 | 0.213 | 5.16        | 5.28 | 5.41 |
| Outside Dimension       | E1 | 0.300   | 0.313 | 0.325 | 7.62        | 7.94 | 8.26 |
| Shoulder Radius         | R1 | 0.005   | 0.005 | 0.010 | 0.13        | 0.13 | 0.25 |
| Gull Wing Radius        | R2 | 0.005   | 0.005 | 0.010 | 0.13        | 0.13 | 0.25 |
| Foot Length             | L  | 0.011   | 0.016 | 0.021 | 0.28        | 0.41 | 0.53 |
| Foot Angle              | φ  | 0       | 4     | 8     | 0           | 4    | 8    |
| Radius Centerline       | L1 | 0.010   | 0.015 | 0.020 | 0.25        | 0.38 | 0.51 |
| Lead Thickness          | с  | 0.008   | 0.009 | 0.010 | 0.19        | 0.22 | 0.25 |
| Lower Lead Width        | B† | 0.014   | 0.017 | 0.020 | 0.36        | 0.43 | 0.51 |
| Mold Draft Angle Top    | α  | 0       | 12    | 15    | 0           | 12   | 15   |
| Mold Draft Angle Bottom | β  | 0       | 12    | 15    | 0           | 12   | 15   |

\* Controlling Parameter.

<sup>†</sup> Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

<sup>‡</sup> Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."



# WORLDWIDE SALES AND SERVICE

# AMERICAS

**Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

#### **Rocky Mountain**

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

#### Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

#### Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

#### Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

# 2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

# ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

#### China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

### China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

#### China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

# India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

# Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

# EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

#### United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02