

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	768B (512 x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12c508a-04i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram - PIC12C508/509

Pin Diagram - PIC12C508A/509A, PIC12CE518/519

Pin Diagram - PIC12CR509A

Device Differences

Device	Voltage Range	Oscillator	Oscillator Calibration ² (Bits)	Process Technology (Microns)
PIC12C508A	3.0-5.5	See Note 1	6	0.7
PIC12LC508A	2.5-5.5	See Note 1	6	0.7
PIC12C508	2.5-5.5	See Note 1	4	0.9
PIC12C509A	3.0-5.5	See Note 1	6	0.7
PIC12LC509A	2.5-5.5	See Note 1	6	0.7
PIC12C509	2.5-5.5	See Note 1	4	0.9
PIC12CR509A	2.5-5.5	See Note 1	6	0.7
PIC12CE518	3.0-5.5	-	6	0.7
PIC12LCE518	2.5-5.5	-	6	0.7
PIC12CE519	3.0-5.5	-	6	0.7
PIC12LCE519	2.5-5.5	-	6	0.7

Note 1: If you change from the PIC12C50X to the PIC12C50XA or to the PIC12CR50XA, please verify oscillator characteristics in your application.

Note 2: See Section 7.2.5 for OSCCAL implementation differences.

TABLE OF CONTENTS

1.0	General Description	4
2.0	PIC12C5XX Device Varieties	7
3.0	Architectural Overview	9
4.0	Memory Organization	13
5.0	I/O Port	21
6.0	Timer0 Module and TMR0 Register	25
7.0	EEPROM Peripheral Operation	29
8.0	Special Features of the CPU	35
9.0	Instruction Set Summary	47
10.0	Development Support	59
11.0	Electrical Characteristics - PIC12C508/PIC12C509	65
12.0	DC and AC Characteristics - PIC12C508/PIC12C509	75
13.0	Electrical Characteristics PIC12C508A/PIC12C509A/PIC12LC508A/PIC12LC509A/PIC12CR509A/	
	PIC12CE518/PIC12CE519/	
	PIC12LCE518/PIC12LCE519/PIC12LCR509A	79
14.0	DC and AC Characteristics	
	PIC12C508A/PIC12C509A/PIC12LC508A/PIC12LC509A/PIC12CE518/PIC12CE519/PIC12CR509A/	
	PIC12LCE518/PIC12LCE519/ PIC12LCR509A	93
15.0	Packaging Information	99
Index	۲	105
PIC1	2C5XX Product Identification System	109
Sales	and Support:	109

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

1.0 GENERAL DESCRIPTION

The PIC12C5XX from Microchip Technology is a family of low-cost, high performance, 8-bit, fully static, EEPROM/EPROM/ROM-based CMOS microcontrollers. It employs a RISC architecture with only 33 single word/single cycle instructions. All instructions are single cycle (1 μ s) except for program branches which take two cycles. The PIC12C5XX delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC12C5XX products are equipped with special features that reduce system cost and power requirements. The Power-On Reset (POR) and Device Reset Timer (DRT) eliminate the need for external reset circuitry. There are four oscillator configurations to choose from, including INTRC internal oscillator mode and the power-saving LP (Low Power) oscillator mode. Power saving SLEEP mode, Watchdog Timer and code protection features also improve system cost, power and reliability.

The PIC12C5XX are available in the cost-effective One-Time-Programmable (OTP) versions which are suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers while benefiting from the OTP's flexibility.

The PIC12C5XX products are supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a 'C' compiler, fuzzy logic support tools, a low-cost development programmer, and a full featured programmer. All the tools are supported on IBM[®] PC and compatible machines.

1.1 Applications

The PIC12C5XX series fits perfectly in applications ranging from personal care appliances and security systems to low-power remote transmitters/receivers. The EPROM technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies. etc.) extremely fast and convenient, while the EEPROM data memory technology allows for the changing of calibration factors and security codes. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low-cost, low-power, high performance, ease of use and I/O flexibility make the PIC12C5XX series very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic and PLD's in larger systems, coprocessor applications).

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral functions to control the operation of the device (Table 4-1).

The special registers can be classified into two sets. The special function registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

TABLE 4-1: SPECIAL FUNCTION REGISTER (SFR) SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets ⁽²⁾
N/A	TRIS	-	-							11 1111	11 1111
N/A	OPTION	Contains c prescaler,	Contains control bits to configure Timer0, Timer0/WDT rescaler, wake-up on change, and weak pull-ups					1111 1111	1111 1111		
00h	INDF	Uses conte	ents of FSF	R to addres	ss data me	mory (not a	physical rec	gister)		xxxx xxxx	uuuu uuuu
01h	TMR0	8-bit real-ti	pit real-time clock/counter xxxx xxxx uuuu uuu						uuuu uuuu		
02h ⁽¹⁾	PCL	Low order	8 bits of PO	0						1111 1111	1111 1111
03h	STATUS	GPWUF	—	PA0	TO	PD	Z	DC	С	0001 1xxx	q00q quuu (3)
04h	FSR (PIC12C508/ PIC12C508A/ PIC12C518)	Indirect da	ta memory	address p	pointer					111x xxxx	111u uuuu
04h	FSR (PIC12C509/ PIC12C509A/ PIC12CR509A/ PIC12CE519)	Indirect da	ta memory	address p	oointer					110x xxxx	lluu uuuu
05h	OSCCAL (PIC12C508/ PIC12C509)	CAL3	CAL2	CAL1	CAL0	_	_	_	_	0111	uuuu
05h	OSCCAL (PIC12C508A/ PIC12C509A/ PIC12CE518/ PIC12CE519/ PIC12CR509A)	CAL5	CAL4	CAL3	CAL2	CAL1	CALO	_	_	1000 00	uuuu uu
06h	GPIO (PIC12C508/ PIC12C509/ PIC12C508A/ PIC12C509A/ PIC12CR509A)	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
06h	GPIO (PIC12CE518/ PIC12CE519)	SCL	SDA	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu

Legend: Shaded boxes = unimplemented or unused, - = unimplemented, read as '0' (if applicable)

x = unknown, u = unchanged, q = see the tables in Section 8.7 for possible values.

Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.6 for an explanation of how to access these bits.

2: Other (non power-up) resets include external reset through MCLR, watchdog timer and wake-up on pin change reset.

3: If reset was due to wake-up on pin change then bit 7 = 1. All other resets will cause bit 7 = 0.

FIGURE 5-2: SUCCESSIVE I/O OPERATION

:	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 0	Q4 Q1 Q2 Q3 Q4	
Instruction	PC	PC + 1	X PC + 2	X PC + 3	This example shows a write to GPIO followed
fetched	MOVWF GPIO	MOVF GPIO,W	NOP	NOP	Data setup time = $(0.25 \text{ Tcy} - \text{TpD})$
GP5:GP0			X	ו ו עריייייייייייייייייייייייייייייייייייי	where: Tcy = instruction cycle.
		Port pin written here	Port pin sampled he	ere	TPD = propagation delay Therefore, at higher clock frequencies, a write followed by a read may be problematic.
Instruction executed		MOVWF GPIO (Write to GPIO)	MOVF GPIO,W (Read GPIO)	NOP	
				. ,	

7.3 WRITE OPERATIONS

7.3.1 BYTE WRITE

Following the start signal from the master, the device code (4 bits), the don't care bits (3 bits), and the R/Wbit (which is a logic low) are placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the address pointer. Only the lower four address bits are used by the device, and the upper four bits are don't cares. The address byte is acknowledgeable and the master device will then transmit the data word to be written into the addressed memory location. The memory acknowledges again and the master generates a stop condition. This initiates the internal write cycle, and during this time will not generate acknowledge signals (Figure 7-7). After a byte write command, the internal address counter will not be incremented and will point to the same address location that was just written. If a stop bit is transmitted to the device at any point in the write command sequence before the entire sequence is complete, then the command will abort and no data will be written. If more than 8 data bits are transmitted before the stop bit is sent, then the device will clear the previously loaded byte and begin loading the data buffer again. If more than one data byte is transmitted to the device and a stop bit is sent before a full eight data bits have been transmitted, then the write command will abort and no data will be written. The EEPROM memory employs a Vcc threshold detector circuit which disables the internal erase/write logic if the Vcc is below minimum VDD.

Byte write operations must be preceded and immediately followed by a bus not busy bus cycle where both SDA and SCL are held high.

7.4 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a start condition followed by the control byte for a write cycle, then no ACK will be returned. If no ACK is returned, then the start bit and control byte must be re-sent. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next read or write command. See Figure 7-6 for flow diagram.

FIGURE 7-6: ACKNOWLEDGE POLLING FLOW

FIGURE 7-7: BYTE WRITE

TABLE 8-3: RESET CONDITIONS FOR REGISTERS

Register	Address	Power-on Reset	MCLR Reset WDT time-out Wake-up on Pin Change
W (PIC12C508/509)	_	qqqq xxxx (1)	qqqq uuuu (1)
W (PIC12C508A/509A/ PIC12CE518/519/ PIC12CE509A)	_	qqqq qqxx (1)	qqqq qquu (1)
INDF	00h	xxxx xxxx	uuuu uuuu
TMR0	01h	xxxx xxxx	uuuu uuuu
PC	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	q00q quuu ^(2,3)
FSR (PIC12C508/ PIC12C508A/ PIC12CE518)	04h	111x xxxx	111u uuuu
FSR (PIC12C509/ PIC12C509A/ PIC12CE519/ PIC12CR509A)	04h	110x xxxx	lluu uuuu
OSCCAL (PIC12C508/509)	05h	0111	uuuu
OSCCAL (PIC12C508A/509A/ PIC12CE518/512/ PIC12CR509A)	05h	1000 00	uuuu uu
GPIO (PIC12C508/PIC12C509/ PIC12C508A/ PIC12C509A/ PIC12CR509A)	06h	xx xxxx	uu uuuu
GPIO (PIC12CE518/ PIC12CE519)	06h	llxx xxxx	lluu uuuu
OPTION	—	1111 1111	1111 1111
TRIS	—	11 1111	11 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: Bits <7:2> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.

Note 2: See Table 8-7 for reset value for specific conditions

Note 3: If reset was due to wake-up on pin change, then bit 7 = 1. All other resets will cause bit 7 = 0.

TABLE 8-4: RESET CONDITION FOR SPECIAL REGISTERS

	STATUS Addr: 03h	PCL Addr: 02h
Power on reset	0001 1xxx	1111 1111
MCLR reset during normal operation	000u uuuu	1111 1111
MCLR reset during SLEEP	0001 0uuu	1111 1111
WDT reset during SLEEP	0000 0uuu	1111 1111
WDT reset normal operation	0000 uuuu	1111 1111
Wake-up from SLEEP on pin change	1001 Ouuu	1111 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

8.7 <u>Time-Out Sequence, Power Down,</u> and Wake-up from SLEEP Status Bits (TO/PD/GPWUF)

The $\overline{\text{TO}}$, $\overline{\text{PD}}$, and GPWUF bits in the STATUS register can be tested to determine if a RESET condition has been caused by a power-up condition, a $\overline{\text{MCLR}}$ or Watchdog Timer (WDT) reset.

TABLE 8-7:	TO/PD/GPWUF STATUS
	AFTER RESET

GPWUF	то	PD	RESET caused by
0	0	0	WDT wake-up from
			SLEEP
0	0	u	WDT time-out (not from
			SLEEP)
0	1	0	MCLR wake-up from
			SLEEP
0	1	1	Power-up
0	u	u	MCLR not during SLEEP
1	1	0	Wake-up from SLEEP on
			pin change

Legend: u = unchanged

Note 1: The TO, PD, and GPWUF bits maintain their status (u) until a reset occurs. A lowpulse on the MCLR input does not change the TO, PD, and GPWUF status bits.

8.8 Reset on Brown-Out

A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC12C5XX devices when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 8-13 , Figure 8-14 and Figure 8-15

FIGURE 8-13: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 2

This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

*Refer to Figure 8-7 and Table 11-1 for internal weak pull-up on MCLR.

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX family of supervisors provide push-pull and open collector outputs with both high and low active reset pins. There are 7 different trip point selections to accomodate 5V and 3V systems.

OPTION	Load OF	TION Re	gister	
Syntax:	[label]	OPTION	l	
Operands:	None			
Operation:	$(W)\toO$	PTION		
Status Affected:	None			
Encoding:	0000	0000	0010	
Description:	The conte into the O	nt of the W PTION reg	/ register i jister.	s loaded
Words:	1			
Cycles:	1			
Example	OPTION			
Before Instru	ction			
W	= 0x07			
After Instruct OPTION	ion = 0x07			

RETLW	Return with	Literal in W
Syntax:	[label] RE	ETLW k
Operands:	$0 \le k \le 255$	
Operation:	$\begin{array}{l} k \rightarrow (W);\\ TOS \rightarrow PC \end{array}$	
Status Affected:	None	
Encoding:	1000 kł	kk kkkk
Description:	The W registe bit literal 'k'. T loaded from th return addres instruction.	er is loaded with the eight he program counter is ne top of the stack (the s). This is a two cycle
Words:	1	
Cycles:	2	
Example:	CALL TABLE	;W contains ;table offset ;value. ;W now has table ;value.
TABLE	ADDWF PC RETLW k1 RETLW k2 • • RETLW kn	;W = offset ;Begin table ; ; ; End of table
Before Instru W =	uction 0x07	
After Instruc W =	tion value of k8	

RLF	Rotate Left f through Carry
Syntax:	[label] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Encoding:	0011 01df ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	RLF REG1,0
Before Instru REG1 C After Instruc	uction = 1110 0110 = 0 tion
REG1 W	= 1110 0110 = 1100 1100
C	= 1
RRF	Rotate Right f through Carry
RRF Syntax:	Rotate Right f through Carry
RRF Syntax: Operands:	Rotate Right f through Carry[label]RRFf,d $0 \le f \le 31$ d $\in [0,1]$
RRF Syntax: Operands: Operation:	Rotate Right f through Carry[label]RRFf,d $0 \le f \le 31$ d ∈[0,1]See description below
RRF Syntax: Operands: Operation: Status Affected:	Rotate Right f through Carry $[label]$ RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC
RRF Syntax: Operands: Operation: Status Affected: Encoding:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC001100dfffff
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Rotate Right f through Carry [label] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 $00df$ ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC001100dffffThe contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.CCCregister 'f'
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ fffffffThe contents of register 'f' are rotatedone bit to the right through the CarryFlag. If 'd' is 0 the result is placed in theW register. If 'd' is 1 the result is placedback in register 'f'. c
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'I1
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed in the W register 'f' $f' = C$ $f' = $
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Description: Words: Cycles: Example: Before Instru REG1 C	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. $c \longrightarrow register 'f'$ 1111111111110

SLEEP	Enter SL		S			
Syntax:	[<i>label</i>]	SLEEP			S	
Operands:	None				C	
Operation:	$\begin{array}{l} 00h \rightarrow W \\ 0 \rightarrow WD \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$	VDT; T prescal	er;		C S	
Status Affected:	TO, PD,	TO, PD, GPWUF				
Encoding:	0000	0000	0011	Ī	L	
Description:	Time-out status bit (\overline{TO}) is set. The power down status bit (\overline{PD}) is cleared.					
	GPWUF i	s unaffecte	ed.		V	
	The WDT and its prescaler are cleared.					
	The processor is put into SLEEP mode with the oscillator stopped. See sec- tion on SLEEP for more details.					
Words:	1					
Cycles:	1					
Example:	SLEEP					

SUBWF	Subtract W from f					
Syntax:	[lai	bel]	SUBWF	f,d		
Operands:	0 ≤ d ∈	≦f≤3 [0,1]	1]			
Operation:	(f)	– (W)	\rightarrow (dest)			
Status Affected:	C,	DC, Z	2			
Encoding:	0	000	10df	ffff		
Description:	Sul W r res 1 th	otract registe ult is s ne res	(2's comple er from regis stored in the ult is stored	ement meth ster 'f'. If 'd e W registe I back in re	nod) the ' is 0 the r. If 'd' is gister 'f	
Words:	1					
Cycles:	1					
Example 1:	SUI	BWF	REG1, 1			
Before Instr	uctio	n				
REG1	=	3				
W	=	2				
Aftor Instruc	= tion	ł				
REG1	=	1				
W	=	2				
С	=	1	; result is	positive		
Example 2:						
Before Instr	uctio	n				
REG1	=	2				
W	=	2				
	=	ſ				
Arter Instruc		0				
W	_	2				
С	=	1	; result is	zero		
Example 3:						
Before Instr	uctio	n				
REG1	=	1				
W	=	2				
	=	?				
After Instruc	tion	EE				
W	=	2				
C	=	0	; result is	negative		

SWAPF	Swap Nibbles in f					
Syntax:	[label] SWAPF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$					
Operation:	$(f<3:0>) \rightarrow (dest<7:4>)$ $(f<7:4>) \rightarrow (dest<3:0>)$);)				
Status Affected:	None					
Encoding:	0011 10df fff	f				
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.					
Words:	1					
Cycles:	1					
Example	SWAPF REG1, 0					
Before Instru REG1	ction = 0xA5					
After Instruct REG1 W	ion = 0xA5 = 0X5A					

TRIS	Load TRIS Register					
Syntax:	[label] TRIS f					
Operands:	f = 6					
Operation:	$(W) \rightarrow TRIS$ register f					
Status Affected:	None					
Encoding:	0000 0000 0fff					
Description:	TRIS register 'f' (f = 6) is loaded with the contents of the W register					
Words:	1					
Cycles:	1					
Example	TRIS GPIO					
Before Instruction W = 0XA5						
After Instruction TRIS = 0XA5						
Note: f = 6 for	or PIC12C5XX only.					

XORLW	Exclusive OR literal with W					
Syntax:	[<i>label</i>]	XORLW	k			
Operands:	$0 \le k \le 2$	55				
Operation:	(W) .XOF	$R. k \to (W$	/)			
Status Affected:	Z					
Encoding:	1111	kkkk	kkkk			
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Example:	XORLW	0xAF				
Before Instru	iction					
W =	0xB5					
After Instruct	ion					
W =	0x1A					

XORWF	Exclusive OR W with f							
Syntax:	[label]	XORWF	f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1 \right] \end{array}$							
Operation:	(W) .XOR. (f) \rightarrow (dest)							
Status Affected:	Z							
Encoding:	0001	10df	ffff					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example	XORWF	REG,1						
Before Instru REG W	ction = 0xAl = 0xB	F						
After Instruct REG W	ion = 0x1A = 0xB	A 5						

10.10 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information
- · Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro[®] tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.11 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from MPLAB-ICE, Microchip's Universal Emulator System.

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PICmicro[®]. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

10.12 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PICmicro[®] series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C17 and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.13 MPLAB-C17 Compiler

The MPLAB-C17 Code Development System is a complete ANSI 'C' compiler and integrated development environment for Microchip's PIC17CXXX family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

10.14 <u>Fuzzy Logic Development System</u> (fuzzyTECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, Edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

10.15 <u>SEEVAL® Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in trade-off analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

NOTES:

11.2 DC CHARACTERISTICS:

PIC12C508/509 (Commercial, Industrial, Extended)

		Standa	rd Operati	ng Co	nditions	(unles:	s otherwise specified)
		ng tempera	ture	0°C ≤	$TA \leq +$	70°C (commercial)	
					$−40^{\circ}C ≤$	TA ≤ +8	35°C (industrial)
DC CII/	RACIERISTICS				−40°C ≤	TA ≤ +1	25°C (extended)
		Operati	ng voltage	Vdd ra	ange as de	escribe	d in DC spec Section 11.1 and
		Section	11.2.				
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions
No.							
	Input Low Voltage						
	I/O ports	VIL		-			
D030	with TTL buffer		Vss	-	0.8V	V	$4.5 < VDD \le 5.5V$
				-	0.15Vdd	V	otherwise
D031	with Schmitt Trigger buffer		Vss	-	0.15Vdd	V	
D032	MCLR, GP2/T0CKI (in EXTRC mode)		Vss	-	0.15Vdd	V	
D033	OSC1 (EXTRC) (1)		Vss	-	0.15Vdd		
D033	OSC1 (in XT and LP)		Vss	-	0.3Vpp	V	Note1
	Input High Voltage					-	
	I/O ports	Vін		-			
D040	with TTL buffer	Vss	2.01/	-	Voo	V	4 5 < Vod < 5 5V
D040A		100	0 25Vpp+	-	VDD	v	otherwise
2010/1			0.8V		100	•	
D041	with Schmitt Trigger buffer		0.85VDD	-	VDD	V	For entire VDD range
D042	MCLR/GP2/T0CKI		0.85VDD	-	Vdd	V	
D042A	OSC1 (XT and LP)		0.7VDD	-	VDD	V	Note1
D043	OSC1 (in EXTRC mode)		0.85VDD	-	Vdd	V	
D070	GPIO weak pull-up current	IPUR	50	250	400	μA	VDD = 5V, VPIN = VSS
	Input Leakage Current ^(2, 3)					•	For VDD ≤5.5V
D060	I/O ports	In	-1	0.5	+1	μА	Vss < VPIN < VDD
			-		<u> </u>	P	Pin at hi-impedance
D061	MCLR, GP2/T0CKI		20	130	250	μA	$V_{PIN} = V_{SS} + 0.25 V(2)$
				0.5	+5	μA	VPIN = VDD
D063	OSC1		-3	0.5	+3	uА	Vss < VPIN < VDD.
			-			P	XT and LP options
	Output Low Voltage						
D080	I/O ports/CLKOUT	Vol	-	-	0.6	V	IOL = 8.7 mA, VDD = 4.5V
	Output High Voltage						
D090	I/O ports/CLKOUT (3)	Voн	Vdd - 0.7	-	-	V	IOH = -5.4 mA, VDD = 4.5V
	Capacitive Loading Specs on						
	Output Pins						
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT and LP modes when
							external clock is used to drive
							OSC1.
D101	All I/O pins	Cio	-	-	50	pF	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

TABLE 13-1: PULL-UP RESISTOR RANGES* - PIC12C508A, PIC12C509A, PIC12CR509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCR509A, PIC12LCE518 and PIC12LCE519

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units
		GP0	/GP1		
2.5	-40	38K	42K	63K	Ω
	25	42K	48K	63K	Ω
	85	42K	49K	63K	Ω
	125	50K	55K	63K	Ω
5.5	-40	15K	17K	20K	Ω
	25	18K	20K	23K	Ω
	85	19K	22K	25K	Ω
	125	22K	24K	28K	Ω
		G	P3		
2.5	-40	285K	346K	417K	Ω
	25	343K	414K	532K	Ω
	85	368K	457K	532K	Ω
	125	431K	504K	593K	Ω
5.5	-40	247K	292K	360K	Ω
	25	288K	341K	437K	Ω
	85	306K	371K	448K	Ω
	125	351K	407K	500K	Ω

* These parameters are characterized but not tested.

FIGURE 14-9: IOL vs. VOL, VDD = 2.5 V

FIGURE 14-10: IOL vs. VOL, VDD = 3.5 V

FIGURE 14-12: IOL vs. VOL, VDD = 5.5 V

15.0 PACKAGING INFORMATION

15.1 Package Marking Information

8-Lead PDIP (300 mil)

8-Lead SOIC (150 mil)

8-Lead SOIC (208 mil)

xxxxxxx
XXXXXXX
AABBCDE
Э)

Example 12C508A 04I/PSAZ \$\$ 9825

Example

Example

8-Lead Windowed Ceramic Side Brazed (300 mil)

Example

Legend	: MMM	Microchip part number information				
Ū	XXX	Customer specific information*				
	AA	Year code (last 2 digits of calendar year)				
	BB	Week code (week of January 1 is week '01')				
	С	Facility code of the plant at which wafer is manufactured				
		O = Outside Vendor				
		C = 5" Line				
		S = 6" Line				
		H = 8" Line				
	D	Mask revision number				
	E	Assembly code of the plant or country of origin in which				
		part was assembled				
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will				
	be carried	l over to the next line thus limiting the number of available characters				
	for customer specific information.					

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Type: K04-057 8-Lead Plastic Small Outline (SN) - Narrow, 150 mil

Units			INCHES*		М	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Pitch	р		0.050			1.27		
Number of Pins	n		8			8		
Overall Pack. Height	А	0.054	0.061	0.069	1.37	1.56	1.75	
Shoulder Height	A1	0.027	0.035	0.044	0.69	0.90	1.11	
Standoff	A2	0.004	0.007	0.010	0.10	0.18	0.25	
Molded Package Length	D‡	0.189	0.193	0.196	4.80	4.89	4.98	
Molded Package Width	E‡	0.150	0.154	0.157	3.81	3.90	3.99	
Outside Dimension	E1	0.229	0.237	0.244	5.82	6.01	6.20	
Chamfer Distance	Х	0.010	0.015	0.020	0.25	0.38	0.51	
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25	
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25	
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53	
Foot Angle	φ	0	4	8	0	4	8	
Radius Centerline	L1	0.000	0.005	0.010	0.00	0.13	0.25	
Lead Thickness	С	0.008	0.009	0.010	0.19	0.22	0.25	
Lower Lead Width	Bţ	0.014	0.017	0.020	0.36	0.43	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter.

- [†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."
- [‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

Package Type: K04-056 8-Lead Plastic Small Outline (SM) - Medium, 208 mil

Units			INCHES*		М	ILLIMETER	S
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.050			1.27	
Number of Pins	n		8			8	
Overall Pack. Height	A	0.070	0.074	0.079	1.78	1.89	2.00
Shoulder Height	A1	0.037	0.042	0.048	0.94	1.08	1.21
Standoff	A2	0.002	0.005	0.009	0.05	0.14	0.22
Molded Package Length	D‡	0.200	0.205	0.210	5.08	5.21	5.33
Molded Package Width	E‡	0.203	0.208	0.213	5.16	5.28	5.41
Outside Dimension	E1	0.300	0.313	0.325	7.62	7.94	8.26
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53
Foot Angle	φ	0	4	8	0	4	8
Radius Centerline	L1	0.010	0.015	0.020	0.25	0.38	0.51
Lead Thickness	с	0.008	0.009	0.010	0.19	0.22	0.25
Lower Lead Width	B [†]	0.014	0.017	0.020	0.36	0.43	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."