

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	768B (512 x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12c508at-04i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		PIC12C508(A)	PIC12C509(A)	PIC12CR509A	PIC12CE518	PIC12CE519	PIC12C671	PIC12C672	PIC12CE673	PIC12CE674
Clock	Maximum Frequency of Operation (MHz)	4	4	4	4	4	10	10	10	10
Momony	EPROM Program Memory	512 x 12	1024 x 12	1024 x 12 (ROM)	512 x 12	1024 x 12	1024 x 14	2048 x 14	1024 x 14	2048 x 14
Memory	RAM Data Memory (bytes)	25	41	41	25	41	128	128	128	128
	EEPROM Data Memory (bytes)	_	_	_	16	16	_	—	16	16
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	A/D Con- verter (8-bit) Channels	_	_	_	_	_	4	4	4	4
	Wake-up from SLEEP on pin change	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	—	—	-			4	4	4	4
Features	I/O Pins	5	5	5	5	5	5	5	5	5
	Input Pins	1	1	1	1	1	1	1	1	1
	Internal Pull-ups	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	In-Circuit Serial Programming	Yes	Yes	_	Yes	Yes	Yes	Yes	Yes	Yes
	Number of Instructions	33	33	33	33	33	35	35	35	35
	Packages	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW, SOIC	8-pin DIP, JW	8-pin DIP, JW

TABLE 1-1: PIC12CXXX & PIC12CEXXX FAMILY OF DEVICES

All PIC12CXXX & PIC12CEXXX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

All PIC12CXXX & PIC12CEXXX devices use serial programming with data pin GP0 and clock pin GP1.

4.2 Data Memory Organization

Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: special function registers and general purpose registers.

The special function registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports), and the File Select Register (FSR). In addition, special purpose registers are used to control the I/O port configuration and prescaler options.

The general purpose registers are used for data and control information under command of the instructions.

For the PIC12C508, PIC12C508A and PIC12CE518, the register file is composed of 7 special function registers and 25 general purpose registers (Figure 4-2).

For the PIC12C509, PIC12C509A, PIC12CR509A, and PIC12CE519 the register file is composed of 7 special function registers, 25 general purpose registers, and 16 general purpose registers that may be addressed using a banking scheme (Figure 4-3).

4.2.1 GENERAL PURPOSE REGISTER FILE

The general purpose register file is accessed either directly or indirectly through the file select register FSR (Section 4.8).

FIGURE 4-2: PIC12C508, PIC12C508A AND PIC12CE518 REGISTER FILE MAP

FSR<6:5>		00	01
File Address			1
00h		INDF ⁽¹⁾	20h
🕈 01h		TMR0]
02h		PCL	
03h		STATUS	Addresses map
04h		FSR	addresses
05h		OSCCAL	in Bank 0.
06h		GPIO	
07h		General Purpose Registers	2Fh
UFII	10h	General Purpose Registers	30h General Purpose Registers
	1Fh		3Fh
		Bank 0	Bank 1
Note 1:	Not	a physical regis	ter. See Section 4.8

FIGURE 4-3: PIC12C509, PIC12C509A, PIC12CR509A AND PIC12CE519 REGISTER FILE MAP

5.0 I/O PORT

As with any other register, the I/O register can be written and read under program control. However, read instructions (e.g., MOVF GPIO, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers are all set. See Section 7.0 for SCL and SDA description for PIC12CE5XX.

5.1 <u>GPIO</u>

GPIO is an 8-bit I/O register. Only the low order 6 bits are used (GP5:GP0). Bits 7 and 6 are unimplemented and read as '0's. Please note that GP3 is an input only pin. The configuration word can set several I/O's to alternate functions. When acting as alternate functions the pins will read as '0' during port read. Pins GP0, GP1, and GP3 can be configured with weak pull-ups and also with wake-up on change. The wake-up on change and weak pull-up functions are not pin selectable. If pin 4 is configured as MCLR, weak pullup is always on and wake-up on change for this pin is not enabled.

5.2 TRIS Register

The output driver control register is loaded with the contents of the W register by executing the TRIS f instruction. A '1' from a TRIS register bit puts the corresponding output driver in a hi-impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are GP3 which is input only and GP2 which may be controlled by the option register, see Figure 4-5.

Note:	A read of the ports reads the pins, not the
	output data latches. That is, if an output
	driver on a pin is enabled and driven high,
	but the external system is holding it low, a
	read of the port will indicate that the pin is
	low.

The TRIS registers are "write-only" and are set (output drivers disabled) upon RESET.

5.3 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 5-1. All port pins, except GP3 which is input only, may be used for both input and output operations. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF GPIO, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.

FIGURE 5-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

6.2 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer (WDT), respectively (Section 8.6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a RESET, the prescaler contains all '0's.

6.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

1.CLRWDT		;Clear WDT
2.CLRF	TMR0	;Clear TMR0 & Prescaler
3.MOVLW	'00xx1111 <i>'</i> b	;These 3 lines (5, 6, 7)
4.OPTION		; are required only if
		; desired
5.CLRWDT		;PS<2:0> are 000 or 001
6.MOVLW	'00xx1xxx'b	;Set Postscaler to
7.OPTION		; desired WDT rate

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 6-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
MOVLW	'xxxx0xxx'	;Select TMR0, new
		<pre>;prescale value and</pre>
		;clock source
OPTION		

FIGURE 6-5: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

7.0 EEPROM PERIPHERAL OPERATION

This section applies to PIC12CE518 and PIC12CE519 only.

The PIC12CE518 and PIC12CE519 each have 16 bytes of EEPROM data memory. The EEPROM memory has an endurance of 1,000,000 erase/write cycles and a data retention of greater than 40 years. The EEPROM data memory supports a bi-directional 2-wire bus and data transmission protocol. These two-wires are serial data (SDA) and serial clock (SCL), that are mapped to bit6 and bit7, respectively, of the GPIO register (SFR 06h). Unlike the GP0-GP5 that are connected to the internal EEPROM peripheral. For most applications, all that is required is calls to the following functions:

; Byte_Write: Byte write routine Inputs: EEPROM Address EEADDR : ; EEPROM Data EEDATA Outputs: Return 01 in W if OK, else ; return 00 in W ; ; Read_Current: Read EEPROM at address currently held by EE device. Inputs: NONE ; Outputs: EEPROM Data EEDATA ; Return 01 in W if OK, else ; return 00 in W ; ; Read_Random: Read EEPROM byte at supplied address Inputs: EEPROM Address : FFADDR ; Outputs: EEPROM Data EEDATA Return 01 in W if OK, ; else return 00 in W

The code for these functions is available on our website www.microchip.com. The code will be accessed by either including the source code FL51XINC.ASM or by linking FLASH5IX.ASM.

It is very important to check the return codes when using these calls, and retry the operation if unsuccessful. Unsuccessful return codes occur when the EE data memory is busy with the previous write, which can take up to 4 mS.

7.0.1 SERIAL DATA

SDA is a bi-directional pin used to transfer addresses and data into and data out of the device.

For normal data transfer SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the START and STOP conditions.

The EEPROM interface is a 2-wire bus protocol consisting of data (SDA) and a clock (SCL). Although these lines are mapped into the GPIO register, they are not accessible as external pins; only to the internal EEPROM peripheral. SDA and SCL operation is also slightly different than GPO-GP5 as listed below. Namely, to avoid code overhead in modifying the TRIS register, both SDA and SCL are always outputs. To read data from the EEPROM peripheral requires outputting a '1' on SDA placing it in high-Z state, where only the internal 100K pull-up is active on the SDA line.

SDA:

Built-in 100K (typical) pull-up to VDD Open-drain (pull-down only) Always an output Outputs a '1' on reset

SCL: Full CMOS output Always an output Outputs a '1' on reset

The following example requires:

- · Code Space: 77 words
- RAM Space: 5 bytes (4 are overlayable)
- Stack Levels:1 (The call to the function itself. The functions do not call any lower level functions.)
- Timing:
 - WRITE_BYTE takes 328 cycles
 - READ_CURRENT takes 212 cycles
 - READ_RANDOM takes 416 cycles.
- IO Pins: 0 (No external IO pins are used)

This code must reside in the lower half of a page. The code achieves it's small size without additional calls through the use of a sequencing table. The table is a list of procedures that must be called in order. The table uses an ADDWF PCL,F instruction, effectively a computed goto, to sequence to the next procedure. However the ADDWF PCL,F instruction yields an 8 bit address, forcing the code to reside in the first 256 addresses of a page.

^{© 1999} Microchip Technology Inc.

7.0.2 SERIAL CLOCK

This SCL input is used to synchronize the data transfer from and to the device.

7.1 BUS CHARACTERISTICS

The following **bus protocol** is to be used with the EEPROM data memory.

• Data transfer may be initiated only when the bus is not busy.

During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as a START or STOP condition.

Accordingly, the following bus conditions have been defined (Figure 7-3).

7.1.1 BUS NOT BUSY (A)

Both data and clock lines remain HIGH.

7.1.2 START DATA TRANSFER (B)

A HIGH to LOW transition of the SDA line while the clock (SCL) is HIGH determines a START condition. All commands must be preceded by a START condition.

7.1.3 STOP DATA TRANSFER (C)

A LOW to HIGH transition of the SDA line while the clock (SCL) is HIGH determines a STOP condition. All operations must be ended with a STOP condition.

7.1.4 DATA VALID (D)

The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal.

The data on the line must be changed during the LOW period of the clock signal. There is one bit of data per clock pulse.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of the data bytes transferred between the START and STOP conditions is determined by the master device and is theoretically unlimited.

7.1.5 ACKNOWLEDGE

Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this acknowledge bit.

Note: Acknowledge bits are not generated if an internal programming cycle is in progress.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition (Figure 7-4).

8.2.5 INTERNAL 4 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and 25°C, see "Electrical Specifications" section for information on variation over voltage and temperature.

In addition, a calibration instruction is programmed into the top of memory which contains the calibration value for the internal RC oscillator. This location is never code protected regardless of the code protect settings. This value is programmed as a MOVLW XX instruction where XX is the calibration value, and is placed at the reset vector. This will load the W register with the calibration value upon reset and the PC will then roll over to the users program at address 0x000. The user then has the option of writing the value to the OSCCAL Register (05h) or ignoring it.

OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be read prior to erasing the part. so it can be reprogrammed correctly later.

For the PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, and PIC12CR509A, bits <7:2>, CAL5-CAL0 are used for calibration. Adjusting CAL5-0 from 000000 to 111111 yields a higher clock speed. Note that bits 1 and 0 of OSCCAL are unimplemented and should be written as 0 when modifying OSCCAL for compatibility with future devices.

For the PIC12C508 and PIC12C509, the upper 4 bits of the register are used. Writing a larger value in this location yields a higher clock speed.

8.3 <u>RESET</u>

The device differentiates between various kinds of reset:

- a) Power on reset (POR)
- b) MCLR reset during normal operation
- c) MCLR reset during SLEEP
- d) WDT time-out reset during normal operation
- e) WDT time-out reset during SLEEP
- f) Wake-up from SLEEP on pin change

Some registers are not reset in any way; they are unknown on POR and unchanged in any other reset. Most other registers are reset to "reset state" on poweron reset (POR), \overline{MCLR} , WDT or wake-up on pin change reset during normal operation. They are not affected by a WDT reset during SLEEP or \overline{MCLR} reset during SLEEP, since these resets are viewed as resumption of normal operation. The exceptions to this are \overline{TO} , \overline{PD} , and GPWUF bits. They are set or cleared differently in different reset situations. These bits are used in software to determine the nature of reset. See Table 8-3 for a full description of reset states of all registers.

TABLE 8-3: RESET CONDITIONS FOR REGISTERS

Register	Address	Power-on Reset	MCLR Reset WDT time-out Wake-up on Pin Change
W (PIC12C508/509)	_	qqqq xxxx (1)	qqqq uuuu (1)
W (PIC12C508A/509A/ PIC12CE518/519/ PIC12CE509A)	_	qqqq qqxx (1)	qqqq qquu (1)
INDF	00h	xxxx xxxx	uuuu uuuu
TMR0	01h	xxxx xxxx	uuuu uuuu
PC	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	q00q quuu ^(2,3)
FSR (PIC12C508/ PIC12C508A/ PIC12CE518)	04h	111x xxxx	111u uuuu
FSR (PIC12C509/ PIC12C509A/ PIC12CE519/ PIC12CR509A)	04h	110x xxxx	lluu uuuu
OSCCAL (PIC12C508/509)	05h	0111	uuuu
OSCCAL (PIC12C508A/509A/ PIC12CE518/512/ PIC12CR509A)	05h	1000 00	uuuu uu
GPIO (PIC12C508/PIC12C509/ PIC12C508A/ PIC12C509A/ PIC12CR509A)	06h	xx xxxx	uu uuuu
GPIO (PIC12CE518/ PIC12CE519)	06h	llxx xxxx	lluu uuuu
OPTION	—	1111 1111	1111 1111
TRIS	—	11 1111	11 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: Bits <7:2> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.

Note 2: See Table 8-7 for reset value for specific conditions

Note 3: If reset was due to wake-up on pin change, then bit 7 = 1. All other resets will cause bit 7 = 0.

TABLE 8-4: RESET CONDITION FOR SPECIAL REGISTERS

	STATUS Addr: 03h	PCL Addr: 02h
Power on reset	0001 1xxx	1111 1111
MCLR reset during normal operation	000u uuuu	1111 1111
MCLR reset during SLEEP	0001 0uuu	1111 1111
WDT reset during SLEEP	0000 0uuu	1111 1111
WDT reset normal operation	0000 uuuu	1111 1111
Wake-up from SLEEP on pin change	1001 Ouuu	1111 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

FIGURE 8-8: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

FIGURE 8-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR PULLED LOW)

FIGURE 8-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

8.5 Device Reset Timer (DRT)

In the PIC12C5XX, DRT runs from RESET and varies based on oscillator selection (see Table 8-5.)

The DRT operates on an internal RC oscillator. The processor is kept in RESET as long as the DRT is active. The DRT delay allows VDD to rise above VDD min., and for the oscillator to stabilize.

Oscillator circuits based on crystals or ceramic resonators require a certain time after power-up to establish a stable oscillation. The on-chip DRT keeps the device in a RESET condition for approximately 18 ms after MCLR has reached a logic high (VIHMCLR) level. Thus, programming GP3/MCLR/VPP as MCLR and using an external RC network connected to the MCLR input is not required in most cases, allowing for savings in cost-sensitive and/or space restricted applications, as well as allowing the use of the GP3/MCLR/VPP pin as a general purpose input.

The Device Reset time delay will vary from chip to chip due to VDD, temperature, and process variation. See AC parameters for details.

The DRT will also be triggered upon a Watchdog Timer time-out. This is particularly important for applications using the WDT to wake from SLEEP mode automatically.

8.6 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the external RC oscillator of the GP5/OSC1/CLKIN pin and the internal 4 MHz oscillator. That means that the WDT will run even if the main processor clock has been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT reset or wake-up reset generates a device RESET.

The \overline{TO} bit (STATUS<4>) will be cleared upon a Watchdog Timer reset.

The WDT can be permanently disabled by programming the configuration bit WDTE as a '0' (Section 8.1). Refer to the PIC12C5XX Programming Specifications to determine how to access the configuration word.

TABLE 8-5: DRT (DEVICE RESET TIMER PERIOD)

Oscillator Configuration	POR Reset	Subsequent Resets
IntRC & ExtRC	18 ms (typical)	300 µs (typical)
XT & LP	18 ms (typical)	18 ms (typical)

OPTION	Load OF	TION Re	gister	
Syntax:	[label]	OPTION	l	
Operands:	None			
Operation:	$(W)\toO$	PTION		
Status Affected:	None			
Encoding:	0000	0000	0010	
Description:	The conte into the O	nt of the W PTION reg	/ register i jister.	s loaded
Words:	1			
Cycles:	1			
Example	OPTION			
Before Instru	ction			
W	= 0x07			
After Instruct OPTION	ion = 0x07			

RETLW	Return with	Literal in W
Syntax:	[label] RE	ETLW k
Operands:	$0 \le k \le 255$	
Operation:	$\begin{array}{l} k \rightarrow (W);\\ TOS \rightarrow PC \end{array}$	
Status Affected:	None	
Encoding:	1000 kł	kk kkkk
Description:	The W registe bit literal 'k'. T loaded from th return addres instruction.	er is loaded with the eight he program counter is ne top of the stack (the s). This is a two cycle
Words:	1	
Cycles:	2	
Example:	CALL TABLE	;W contains ;table offset ;value. ;W now has table ;value.
TABLE	ADDWF PC RETLW k1 RETLW k2 • • RETLW kn	;W = offset ;Begin table ; ; ; End of table
Before Instru W =	uction 0x07	
After Instruc W =	tion value of k8	

RLF	Rotate Left f through Carry
Syntax:	[label] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Encoding:	0011 01df ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	RLF REG1,0
Before Instru REG1 C After Instruc	uction = 1110 0110 = 0 tion
REG1 W	= 1110 0110 = 1100 1100
C	= 1
RRF	Rotate Right f through Carry
RRF Syntax:	Rotate Right f through Carry
RRF Syntax: Operands:	Rotate Right f through Carry[label]RRFf,d $0 \le f \le 31$ d $\in [0,1]$
RRF Syntax: Operands: Operation:	Rotate Right f through Carry[label]RRFf,d $0 \le f \le 31$ d ∈[0,1]See description below
RRF Syntax: Operands: Operation: Status Affected:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ d $\in [0,1]$ See description belowC
RRF Syntax: Operands: Operation: Status Affected: Encoding:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC001100dfffff
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Rotate Right f through Carry [label] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 $00df$ ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC001100dffffffffThe contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. \Box
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ fffffffThe contents of register 'f' are rotatedone bit to the right through the CarryFlag. If 'd' is 0 the result is placed in theW register. If 'd' is 1 the result is placedback in register 'f'. c
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'I1
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed in the W register 'f' $f' = C$ $f' = $
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Description: Words: Cycles: Example: Before Instru REG1 C	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. $c \longrightarrow register 'f'$ 1111111111110

SLEEP	Enter SL		S				
Syntax:	[<i>label</i>]	SLEEP			S		
Operands:	None				C		
Operation:	$\begin{array}{l} \mbox{OOh} \rightarrow \mbox{WDT}; \\ \mbox{0} \rightarrow \mbox{WDT} \mbox{ prescaler}; \\ \mbox{1} \rightarrow \mbox{TO}; \\ \mbox{0} \rightarrow \mbox{PD} \end{array}$						
Status Affected:	TO, PD, GPWUF						
Encoding:	0000	0000	0011	Ī	L		
Description:	Time-out status bit $\overline{(TO)}$ is set. The power down status bit $\overline{(PD)}$ is cleared.						
	GPWUF i	s unaffecte	ed.		V		
	The WDT and its prescaler are cleared.						
	The processor is put into SLEEP mode with the oscillator stopped. See sec- tion on SLEEP for more details.						
Words:	1						
Cycles:	1						
Example:	SLEEP						

SUBWF	Subtract W from f							
Syntax:	[lab	oel]	SUBWF	f,d				
Operands:	0 ≤ d ∈	$0 \le f \le 31$ $d \in [0,1]$						
Operation:	(f) -	$(f) - (W) \rightarrow (dest)$						
Status Affected:	C, I	DC, Z	2					
Encoding:	00	000	10df	ffff				
Description:	Sub W rest 1 th	Subtract (2's complement method) the W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register. 'f						
Words:	1							
Cycles:	1							
Example 1:	SUE	BWF	REG1, 1					
Before Instru REG1 W C After Instruc REG1 W C Example 2: Before Instruc REG1 W C After Instruc REG1 W C	uction = = = = = = = = = = = = = = = = = = =	n 3 2 ? 1 2 1 2 2 ? 0 2 1	; result is ; result is	positive zero				
Example 3: Before Instru REG1 W C After Instruc REG1	uction = = tion =	n 1 2 ? FF						
vv C	=	0	; result is	negative				

HCS200 HCS300 HCS301 > > > > 24CXX 25CXX 93CXX > \mathbf{i} \mathbf{i} PIC17C7XX > \mathbf{i} \mathbf{i} > \mathbf{i} PIC17C4X \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} > PIC16C9XX \mathbf{i} > > > > > > PIC16C8X > > > > > > > PIC16C7XX \mathbf{i} > > > > \mathbf{i} > PIC16C6X \mathbf{i} \mathbf{i} > \mathbf{i} > \mathbf{i} > PIC16CXXX \mathbf{i} > > > > > > PIC16C5X > \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} > \mathbf{i} PIC14000 \mathbf{i} > > \mathbf{i} \mathbf{i} > PIC12C5XX \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{i} ICEPICTM Low-Cost In-Circuit Emulator Universal Dev. Kit Total Endurance™ fuzzyTECH[®]-MP Explorer/Edition **PICSTART[®]Plus** Software Model KEELoo Transponder Kit Integrated Development PRO MATE[®] II Evaluation Kit MPLABTM-ICE MPLABTM C17^{*} Fuzzy Logic Dev. Tool **Designers Kit** Environment PICDEM-14A Programmer Programmer KEELOQ® Universal SEEVAL® PICDEM-1 PICDEM-2 PICDEM-3 Compiler Low-Cost MPLABTM KEEL00[®] SIMICE Programmers Emulator Products Software Tools Demo Boards

TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP

11.0 ELECTRICAL CHARACTERISTICS - PIC12C508/PIC12C509

Absolute Maximum Ratings†

Ambient Temperature under bias	40°C to +125°C
Storage Temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.5 V
Voltage on MCLR with respect to Vss	0 to +14 V
Voltage on all other pins with respect to Vss	0.6 V to (VDD + 0.6 V)
Total Power Dissipation ⁽¹⁾	700 mW
Max. Current out of Vss pin	
Max. Current into Vod pin	
Input Clamp Current, Iוג (VI < 0 or VI > VD)	±20 mA
Output Clamp Current, loк (Vo < 0 or Vo > Voo)	±20 mA
Max. Output Current sunk by any I/O pin	
Max. Output Current sourced by any I/O pin	
Max. Output Current sourced by I/O port (GPIO)	100 mA
Max. Output Current sunk by I/O port (GPIO)	100 mA
Note 1: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - Σ IOH} + Σ {	$\{(VDD-VOH) \times IOH\} + \sum (VOL \times IOL)$

[†]NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 11-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC12C508/C509

AC Charac	teristics	Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial) $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended) Operating Voltage VDD range is described in Section 11.1					
Parameter No. Sym		Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000*	—	—	ns	VDD = 5 V
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9*	18*	30*	ms	VDD = 5 V (Commercial)
32	TDRT	Device Reset Timer Period ⁽²⁾	9*	18*	30*	ms	VDD = 5 V (Commercial)
34	Tioz	I/O Hi-impedance from MCLR Low		—	2000*	ns	

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 2: See Table 11-6.

TABLE 11-6: DRT (DEVICE RESET TIMER PERIOD - PIC12C508/C509)

Oscillator Configuration	POR Reset	Subsequent Resets	
IntRC & ExtRC	18 ms (typical)	300 µs (typical)	
XT & LP	18 ms (typical)	18 ms (typical)	

NOTES:

13.1 DC CHARACTERISTICS:

PIC12C508A/509A (Commercial, Industrial, Extended) PIC12CE518/519 (Commercial, Industrial, Extended) PIC12CR509A (Commercial, Industrial, Extended)

	DC Characteristics Power Supply Pins	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ (commercial)} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (industrial)} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (extended)} \end{array}$					
Parm No.	Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions
D001	Supply Voltage	Vdd	3.0		5.5	V	Fosc = DC to 4 MHz (Commercial/ Industrial, Extended)
D002	RAM Data Retention Voltage ⁽²⁾	Vdr		1.5*		V	Device in SLEEP mode
D003	VDD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details
D004	VDD Rise Rate to ensure Power-on Reset	SVDD	0.05*			V/ms	See section on Power-on Reset for details
D010	Supply Current ⁽³⁾	IDD		0.8	1.4	mA	XT and EXTRC options (Note 4) Fosc = 4 MHz, VDD = 5.5V
D010C			-	0.8	1.4	mA	INTRC Option FOSC = 4 MHz VDD = 5.5V
D010A			—	19	27	μA	LP OPTION, Commercial Temperature $E_{OSC} = 32 \text{ kHz}$ Vpp = 3 0V WDT disabled
			—	19	35	μA	LP OPTION, Industrial Temperature EOSC = 32 kHz , VDD = 3 OV WDT disabled
			_	30	55	μA	LP OPTION, Extended Temperature FOSC = 32 kHz , VDD = 3.0V , WDT disabled
D020	Power-Down Current ⁽⁵⁾	IPD	—	0.25	4	μA	VDD = 3.0V, Commercial WDT disabled
D021 D021B			_	2	5 12	μΑ μΑ	VDD = 3.0V, industrial WDT disabled VDD = 3.0V, Extended WDT disabled
D022	Power-Down Current	ΔIWDT	—	2.2	5	μA	VDD = 3.0V, Commercial
			_	4	ь 11	μΑ μΑ	VDD = 3.0V, industrial $VDD = 3.0V$, Extended
	Supply Current ⁽³⁾ During read/write to EEPROM peripheral	ΔIEE	—	0.1	0.2	mA	FOSC = 4 MHz, Vdd = 5.5V, SCL = 400kHz

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to
 - Vss, T0CKI = VDD, \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

Oscillator	Frequency	VDD =3.0V	VDD = 5.5V
External RC	4 MHz	240 µA*	800 µA*
Internal RC	4 MHz	320 µA	800 µA
ХТ	4 MHz	300 µA	800 µA
LP	32 KHz	19 µA	50 µA

TABLE 14-1: DYNAMIC IDD (TYPICAL) - WDT ENABLED, 25°C

*Does not include current through external R&C.

FIGURE 14-3: TYPICAL IDD VS. VDD (WDT DIS, 25°C, FREQUENCY

FIGURE 14-4: TYPICAL IDD VS. FREQUENCY (WDT DIS, 25°C, VDD = 5.5V)

FIGURE 14-15: VIL, VIH OF NMCLR, AND TOCKI VS. VDD

NOTES: