

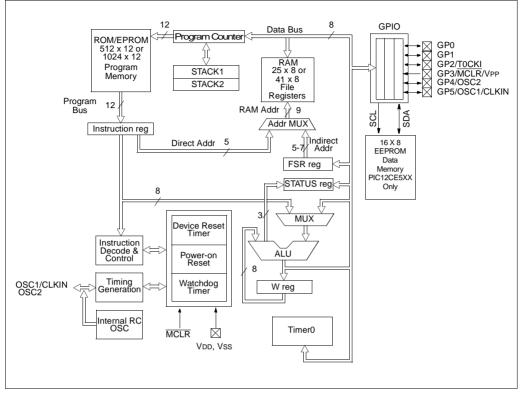
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


E·XFI

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	<u>.</u>
RAM Size	41 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIJ
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12c509a-04-sm

Email: info@E-XFL.COM

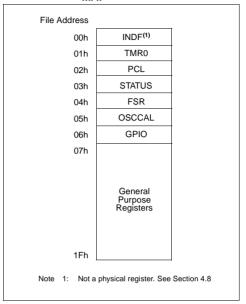
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Data Memory Organization

Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: special function registers and general purpose registers.

The special function registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports), and the File Select Register (FSR). In addition, special purpose registers are used to control the I/O port configuration and prescaler options.

The general purpose registers are used for data and control information under command of the instructions.


For the PIC12C508, PIC12C508A and PIC12CE518, the register file is composed of 7 special function registers and 25 general purpose registers (Figure 4-2).

For the PIC12C509, PIC12C509A, PIC12CR509A, and PIC12CE519 the register file is composed of 7 special function registers, 25 general purpose registers, and 16 general purpose registers that may be addressed using a banking scheme (Figure 4-3).

4.2.1 GENERAL PURPOSE REGISTER FILE

The general purpose register file is accessed either directly or indirectly through the file select register FSR (Section 4.8).

FIGURE 4-2: PIC12C508, PIC12C508A AND PIC12CE518 REGISTER FILE MAP

FSR<6:5>-	•	00	01
File Address	· ·		1
00h		INDF ⁽¹⁾	20h
∲ 01h		TMR0	
02h		PCL	_
03h		STATUS	Addresses map back to
04h		FSR	addresses
05h		OSCCAL	in Bank 0.
06h		GPIO	
07h			1
		General Purpose	
		Registers	
0Fh		0	2Fh
	10h		30h
		General	General
		Purpose	Purpose
		Registers	Registers
	1Fh		3Fh
		Bank 0	Bank 1
Note 1	: No	t a physical regi	ster. See Section 4.8

FIGURE 4-3: PIC12C509, PIC12C509A, PIC12CR509A AND PIC12CE519 REGISTER FILE MAP

4.8 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 4-1: INDIRECT ADDRESSING

- Register file 07 contains the value 10h
- · Register file 08 contains the value 0Ah
- · Load the value 07 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 08)
- A read of the INDR register now will return the value of 0Ah.

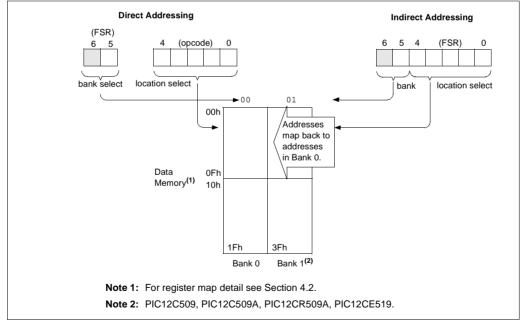
Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw	0x10	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	clear INDF register
	incf	FSR,F	;inc pointer
	btfsc	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE	9		-,
	:		;YES, continue

The FSR is a 5-bit wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.


The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC12C508/PIC12C508A/PIC12CE518: Does not use banking. FSR<7:5> are unimplemented and read as '1's.

PIC12C509/PIC12C509A/PIC12CR509A/

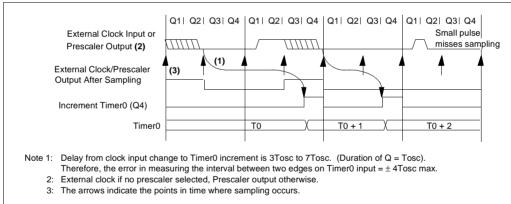
PIC12CE519: Uses FSR<5>. Selects between bank 0 and bank 1. FSR<7:6> is unimplemented, read as '1'.

FIGURE 4-9: DIRECT/INDIRECT ADDRESSING

6.1 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-4). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-4 shows the delay from the external clock edge to the timer incrementing.

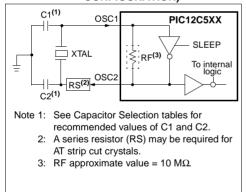
6.1.3 OPTION REGISTER EFFECT ON GP2 TRIS

If the option register is set to read TIMER0 from the pin, the port is forced to an input regardless of the TRIS register setting.

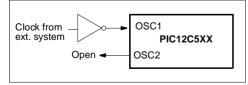
FIGURE 6-4: TIMER0 TIMING WITH EXTERNAL CLOCK

8.2 Oscillator Configurations

8.2.1 OSCILLATOR TYPES


The PIC12C5XX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:

- LP: Low Power Crystal
- XT: Crystal/Resonator
- INTRC: Internal 4 MHz Oscillator
- EXTRC: External Resistor/Capacitor


8.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT or LP modes, a crystal or ceramic resonator is connected to the GP5/OSC1/CLKIN and GP4/OSC2 pins to establish oscillation (Figure 8-2). The PIC12C5XX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT or LP modes, the device can have an external clock source drive the GP5/ OSC1/CLKIN pin (Figure 8-3).

FIGURE 8-2: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (XT OR LP OSC CONFIGURATION)

FIGURE 8-3: EXTERNAL CLOCK INPUT OPERATION (XT OR LP OSC CONFIGURATION)

TABLE 8-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS - PIC12C5XX

Osc	Resonator	Cap. Range	Cap. Range
Type	Freq	C1	C2
XT	4.0 MHz	30 pF	30 pF

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR -PIC12C5XX

Osc Type	Resonator Freq	Cap.Range C1	Cap. Range C2
LP	32 kHz ⁽¹⁾	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

FIGURE 8-8: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

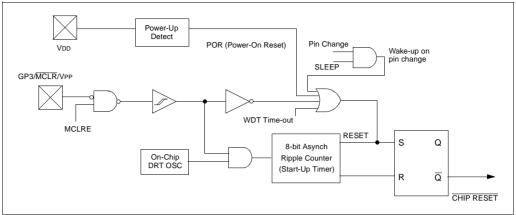
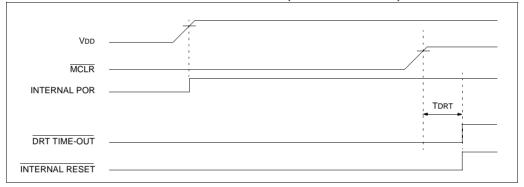
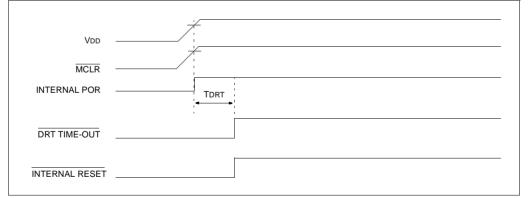




FIGURE 8-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR PULLED LOW)

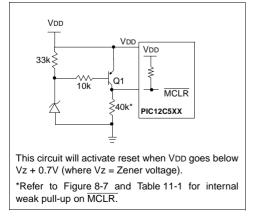
8.7 <u>Time-Out Sequence, Power Down,</u> and Wake-up from SLEEP Status Bits (TO/PD/GPWUF)

The $\overline{\text{TO}}$, $\overline{\text{PD}}$, and GPWUF bits in the STATUS register can be tested to determine if a RESET condition has been caused by a power-up condition, a $\overline{\text{MCLR}}$ or Watchdog Timer (WDT) reset.

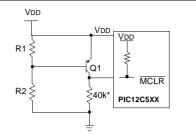
TABLE 8-7:	TO/PD/GPWUF STATUS
	AFTER RESET

GPWUF	то	PD	RESET caused by
0	0	0	WDT wake-up from SLEEP
0	0	u	WDT time-out (not from SLEEP)
0	1	0	MCLR wake-up from SLEEP
0	1	1	Power-up
0	u	u	MCLR not during SLEEP
1	1	0	Wake-up from SLEEP on pin change

Legend: u = unchanged


Note 1: The TO, PD, and GPWUF bits maintain their status (u) until a reset occurs. A lowpulse on the MCLR input does not change the TO, PD, and GPWUF status bits.

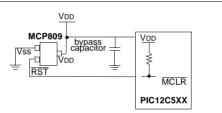
8.8 Reset on Brown-Out


A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC12C5XX devices when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 8-13 , Figure 8-14 and Figure 8-15

FIGURE 8-13: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 2



This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

*Refer to Figure 8-7 and Table 11-1 for internal weak pull-up on MCLR.

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX family of supervisors provide push-pull and open collector outputs with both high and low active reset pins. There are 7 different trip point selections to accomodate 5V and 3V systems.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z
Encoding:	0010 01df ffff
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	COMF REG1,0
Before Instru REG1	uction = 0x13
After Instruc REG1 W	xtion = 0x13 = 0xEC

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(f) - 1 \rightarrow (dest)$
Status Affected:	Z
Encoding:	0000 11df ffff
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	DECF CNT, 1
Before Instru CNT Z After Instruc CNT Z	= 0x01 = 0

DECFSZ	Decrement f, Skip if 0				
Syntax:	[label] DECFSZ f.d				
Operands:	$0 \le f \le 31$ $d \in [0,1]$				
Operation:	(f) $- 1 \rightarrow d$; skip if result = 0				
Status Affected:	None				
Encoding:	0010 11df ffff				
Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded and an NOP is executed instead mak- ing it a two cycle instruction.				
Words:	1				
Cycles:	1(2)				
Example:	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE •				
Before Instru	iction				
PC	= address (HERE)				
After Instruc CNT if CNT PC if CNT PC	tion = CNT - 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE+1)				
GOTO	Unconditional Branch				
Syntax:	[<i>label</i>] GOTO k				
-					

Syntax:	[label]	GOTO	k			
Operands:	$0 \le k \le 511$					
Operation:	$k \rightarrow$ PC<8:0>; STATUS<6:5> \rightarrow PC<10:9>					
Status Affected:	None					
Encoding:	101k	kkkk	kkkk			
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two cycle instruction.					
Words:	1					
Cycles:	2					
Example:	GOTO THERE					
After Instruct PC =	ion address	(THERE)				

OPTION	Load OPTION Register			
Syntax:	[label]	OPTION	l	
Operands:	None			
Operation:	$(W)\toO$	PTION		
Status Affected:	None			
Encoding:	0000	0000	0010	
Description:	The content of the W register is loaded into the OPTION register.			
Words:	1			
Cycles:	1			
Example	OPTION			
Before Instru W	ction = 0x07			
After Instruct OPTION				

RETLW	Return with	Liter	al in W
Syntax:	[label] RE	ETLW	k
Operands:	$0 \le k \le 255$		
Operation:	$\begin{array}{l} k \rightarrow (W);\\ TOS \rightarrow PC \end{array}$		
Status Affected:	None		
Encoding:	1000 kł	kk	kkkk
Description:	bit literal 'k'. T loaded from th	he pro ne top	aded with the eight gram counter is of the stack (the s is a two cycle
Words:	1		
Cycles:	2		
Example:	CALL TABLE	;tab ;val	le offset ue. ow has table
TABLE	ADDWF PC RETLW k1 RETLW k2	;Beg	offset in table d of table
Before Instru W =	ox07		
After Instruct W =	tion value of k8		

RLF	Rotate Left f through Carry
Syntax:	[label] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Encoding:	0011 01df ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	RLF REG1,0
Before Instru	iction
REG1 C	= 1110 0110 = 0
After Instruct	tion
REG1	= 1110 0110
W C	= 1100 1100 = 1
RRF	Rotate Right f through Carry
RRF Syntax:	Rotate Right f through Carry [label] RRF f,d
Syntax:	[<i>label</i>] RRF f,d 0 ≤ f ≤ 31
Syntax: Operands:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$
Syntax: Operands: Operation:	$ \begin{bmatrix} label \end{bmatrix} RRF f,d \\ 0 \le f \le 31 \\ d \in [0,1] \\ See description below $
Syntax: Operands: Operation: Status Affected:	$ [label] RRF f,d 0 \le f \le 31 d \in [0,1] See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.$
Syntax: Operands: Operation: Status Affected: Encoding:	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Syntax: Operands: Operation: Status Affected: Encoding:	$ [label] RRF f,d 0 \le f \le 31 d \in [0,1] See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. $c \rightarrow register 'f' \rightarrow 1$ 1
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' T
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\begin{bmatrix} label \end{bmatrix} RRF f,d$ $0 \le f \le 31$ $d \in [0,1]$ See description below C $\boxed{0011 00df ffff}$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. $\boxed{C} \leftarrow register 'f'}$ 1 1 RRF REG1,0
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example: Before Instru- REG1	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. C register 'f' 1 1 RRF REG1,0 interimed = 1110 0110 = 0
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example: Before Instruct REG1 C After Instruct REG1	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' 1 1 RRF REG1,0 intion = 1110 0110 = 0 tion = 1110 0110
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example: Before Instruct REG1 C After Instruct	[<i>label</i>] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 00df ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f' 1 1 RRF REGI, 0 interval 1 100110 = 0 tion

SLEEP	Enter SL	EEP Mo	de		S
Syntax:	[label]	SLEEP			S
Operands:	None				0
Operation:	$\begin{array}{l} 00h \rightarrow W\\ 0 \rightarrow WD\\ 1 \rightarrow \overline{TO};\\ 0 \rightarrow \overline{PD} \end{array}$	VDT; T prescal	er;		O Si
Status Affected:	TO, PD,	GPWUF			E
Encoding:	0000	0000	0011	Ī	D
Description:		status bit (wn status b	<i>.</i>		
	GPWUF is	s unaffecte	ed.		W
	The WDT cleared.	and its pre	escaler are	9	С
	The proce with the o	essor is put scillator sto EEP for m	opped. Se	e sec-	<u>E</u> :
Words:	1				
Cycles:	1				
Example:	SLEEP				

SUBWF	Su	btra	ct W from	f	
Syntax:	[la	bel]	SUBWF	f,d	
Operands:	0 ≤	≦f≤3	51		
	d∈	[0,1]		
Operation:	(f)	– (W	$) \rightarrow (dest)$		
Status Affected	С,	DC, Z	Z		
Encoding:	0	000	10df	ffff]
Description:	W ı res	egiste ult is :	(2's completer from register f	ster 'f'. If 'd W registe	' is 0 the er. If 'd' is
Words:	1				
Cycles:	1				
Example 1:	SUI	BWF	REG1, 1		
Before Inst	ructio	n			
REG1	=	3			
W	=	2 ?			
After Instru		f			
REG1	=	1			
W	=	2			
С	=	1	; result is	positive	
Example 2:					
Before Inst	ructio	n			
REG1	=	2			
W	=	2 ?			
After Instru	= otion	ſ			
REG1	=	0			
W	_	2			
С	=	1	; result is	zero	
Example 3:					
Before Inst	ructio	n			
REG1	=	1			
W	=	2 ?			
C	=	ſ			
After Instru REG1	ction	FF			
	_	2			
W					

10.6 <u>SIMICE Entry-Level Hardware</u> <u>Simulator</u>

SIMICE is an entry-level hardware development system designed to operate in a PC-based environment with Microchip's simulator MPLAB[™]-SIM. Both SIM-ICE and MPLAB-SIM run under Microchip Technology's MPLAB Integrated Development Environment (IDE) software. Specifically, SIMICE provides hardware simulation for Microchip's PIC12C5XX, PIC12CE5XX, and PIC16C5X families of PICmicro® 8-bit microcontrollers. SIMICE works in conjunction with MPLAB-SIM to provide non-real-time I/O port emulation. SIMICE enables a developer to run simulator code for driving the target system. In addition, the target system can provide input to the simulator code. This capability allows for simple and interactive debugging without having to manually generate MPLAB-SIM stimulus files. SIMICE is a valuable debugging tool for entrylevel system development.

10.7 <u>PICDEM-1 Low-Cost PICmicro®</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the MPLAB-ICE emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

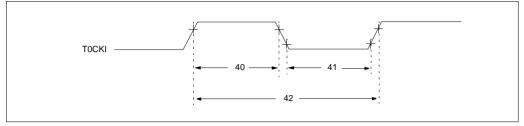
10.8 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

10.9 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 seqments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

10.16 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>


KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units	
GP0/GP1						
2.5	-40	38K	42K	63K	Ω	
	25	42K	48K	63K	Ω	
	85	42K	49K	63K	Ω	
	125	50K	55K	63K	Ω	
5.5	-40	15K	17K	20K	Ω	
	25	18K	20K	23K	Ω	
	85	19K	22K	25K	Ω	
	125	22K	24K	28K	Ω	
		G	P3			
2.5	-40	285K	346K	417K	Ω	
	25	343K	414K	532K	Ω	
	85	368K	457K	532K	Ω	
	125	431K	504K	593K	Ω	
5.5	-40	247K	292K	360K	Ω	
	25	288K	341K	437K	Ω	
	85	306K	371K	448K	Ω	
	125	351K	407K	500K	Ω	

TABLE 11-1: PULL-UP RESISTOR RANGES - PIC12C508/C509

* These parameters are characterized but not tested.

FIGURE 11-5: TIMER0 CLOCK TIMINGS - PIC12C508/C509

TABLE 11-7: TIMER0 CLOCK REQUIREMENTS - PIC12C508/C509

AC Characteristics		Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial) $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended) Operating Voltage VDD range is described in Section 11.1.						
Parameter No.	Sym	Characteristic	•	Min	Тур ⁽¹⁾	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width - No Prescaler		0.5 TCY + 20*	—		ns	
			- With Prescaler	10*	—		ns	
41	Tt0L	T0CKI Low Pulse W	/idth - No Prescaler	0.5 TCY + 20*	—		ns	
			- With Prescaler	10*	_		ns	
42	Tt0P	T0CKI Period		20 or <u>Tcy + 40</u> * N	_	-	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

13.3 DC CHARACTERISTICS:

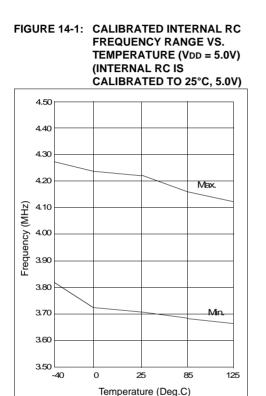
PIC12C508A/509A (Commercial, Industrial, Extended) PIC12C518/519 (Commercial, Industrial, Extended) PIC12CR509A (Commercial, Industrial, Extended)

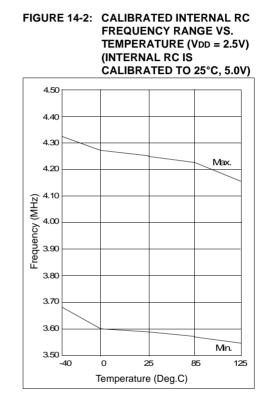
-40°C \leq TA \leq +85°C (industrial) -40°C \leq TA \leq +125°C (industrial) -40°C \leq TA \leq +125°C (extended) Operating voltage VDD range as described in DC spec Sec Section 13.2.Param No.CharacteristicSymMinTyp†MaxUnitsConditInput Low Voltage I/O portsVILVss-0.8VVFor 4.5V \leq VDD \leq 5D030with TTL bufferVILVss-0.8VVFor 4.5V \leq VDD \leq 5D031with Schmitt Trigger bufferVss-0.2VDDVD032MCLR, GP2/T0CKI (in EXTRC mode)Vss-0.2VDDVD033OSC1 (in XT and LP)Vss-0.2VDDVD040with Schmitt Trigger buffer0.25VDD +-VDDVD040with TTL buffer0.25VDD +-VDDVD040with TTL buffer0.25VDD +-VDDVD0404with Schmitt Trigger buffer0.8VDD-VDDVD041with Schmitt Trigger buffer0.8VDD-VDDVD042MCLR, GP2/T0CKI0.8VDD-VDDVD043OSC1 (in EXTRC mode)0.9VDD-VDDVD044MCLR, GP2/T0CKI0.8VDD-VDDVD043MCLR, GP2/T0CKI0.8VDD-VDDVD044MCLR, GP2/T0CKI0.8VDD-VDDVD045MCLR, GP2/T0CKI0.9VDD-VDDVD046MCLR,)
Operating voltage VDD range as described in DC spec Sector 13.2.Param No.CharacteristicSymMinTyp†MaxUnitsConditNo.Input Low Voltage I/O portsViLViLVss-0.8VVFor 4.5V \leq VDD \leq 5D030with TTL bufferViLVss-0.15VDDVVD031with Schmitt Trigger bufferVss-0.2VDDVVD032MCLR, GP2/T0CKI (in EXTRC mode)Vss-0.2VDDVNote 1D033OSC1 (in TA rad LP)Vss-0.3VDDVNote 1D040Input High Voltage with TTL bufferVIHD0404with Schmitt Trigger buffer0.8VDD-VDDV4.5V \leq VDD \leq 5.5VD0404with Schmitt Trigger buffer0.8VDD-VDDV4.5V \leq VDD \leq 5.5VD0404with Schmitt Trigger buffer0.8VDD-VDDVFor entire VDD ranD0404MCLR, GP2/T0CKI0.8VDD-VDDVVDD042OSC1 (in EXTRC mode)0.9VDD-VDDVVDVD042OSC1 (in EXTRC mode)0.9VDD-VDDVVDVD043OSC1 (in EXTRC mode)0.9VDD-VDDVVDVD044MCLR, GP2/T0CKI0.9VDD-VDDVVDVD045OSC1 (in EXTRC mode)0.9VDD-<	
No.Input Low Voltage I/O portsVILVILVILVILD030with TTL bufferVILVSS-0.8VVFor 4.5V \leq VDD \leq 5D031with Schmitt Trigger bufferVSS-0.15VDDVotherwiseD032MCLR, GP2/T0CKI (in EXTRC mode)VSS-0.2VDDVD033OSC1 (in EXTRC mode)VSS-0.2VDDVD033OSC1 (in XT and LP)VSS-0.2VDDVD040with TTL bufferVIHD040with Schmitt Trigger buffer0.8VD-VDDVD040with Schmitt Trigger buffer0.8VDD-VDDVD041with Schmitt Trigger buffer0.8VDD-VDDVD042AMCLR, GP2/T0CKI0.7VDD-VDDVD043OSC1 (XT and LP)0.7VDD-VDDVD043OSC1 (in EXTRC mode)IPUR30250400 μ AD043OSC1 (in EXTRC mode)IPUR30250400 μ AD043OSC1 (in EXTRC mode)IPUR30250400 μ AD044OportsIIL30 μ AD050I/O portsIIL+1 μ AVSS \leq VPIN \leq VDDD060I/O portsIIL+5 μ AVSS \leq VPIN \leq VDDD063OSC1+5 μ A <td< th=""><th>ion 13.1 and</th></td<>	ion 13.1 and
Input Low Voltage I/O portsVILVILVILVILVILVILVILD030with TTL bufferVILVSS- $0.8V$ VFor $4.5V \le VDD \le 5$ D031with Schmitt Trigger bufferVSS- $0.2VDD$ VotherwiseD032MCLR, GP2/T0CKI (in EXTRC mode)VSS- $0.2VDD$ VNote 1D033OSC1 (in XT and LP)VSS- $0.2VDD$ VNote 1D040with TTL bufferVIH0.3VDDVNote 1D040with TTL buffer0.25VDD +-VDDV $4.5V \le VDD \le 5.5V$ D040with TTL buffer0.25VDD +-VDDVFor entire VDD ranD041with Schmitt Trigger buffer0.8VDD-VDDVFor entire VDD ranD042MCLR, GP2/T0CKI0.8VDD-VDDVNote 1D043QSC1 (In EXTRC mode)0.9VDD-VDDVNote 1D043QSC1 (In EXTRC mode)0.9VDD-VDDVNote 1D043QSC1 (In EXTRC mode)IPUR30250400 μA VDD = 5V, VPIN = VD060I/O portsIIL ± 1 μA VSS $\le VPIN \le VDD,$ impedanceD061T0CKI ± 5 μA VSS $\le VPIN \le VDD,$ configurationD061IOCKI ± 5 μA VSS $\le VPIN \le VDD,$ configurationD080 <td< th=""><th>ons</th></td<>	ons
I/O portsVIL <th></th>	
D030with TTL bufferVss- $0.8V$ VFor $4.5V \le Vbo \le 5$ D031with Schmitt Trigger bufferVss- $0.15Vbd$ VotherwiseD032MCLR, GP2/T0CKI (in EXTRC mode)Vss- $0.2Vbd$ VD033OSC1 (in EXTRC mode)Vss- $0.2Vbd$ VD033OSC1 (in XT and LP)Vss- $0.2Vbd$ Note 1D040Input High VoltageVIHVN0404 $0.25Vbd + 1$ VDDV V $4.5V \le Vbd \le 5.5V$ D0404with Schmitt Trigger buffer $0.8Vbd + 2.0V$ VDDV V D0404With Schmitt Trigger buffer $0.8Vbd + 2.0V$ VDDVFor entire VbD ranD0405With Schmitt Trigger buffer $0.8Vbd + 2.0V$ VDDVFor entire VbD ranD042MCLR, GP2/T0CKI $0.8Vbd + 2.0V$ VDDVFor entire VbD ranD043OSC1 (XT and LP) $0.7Vbd + 2.0V$ VDDVVD043OSC1 (in EXTRC mode) $0.9Vbd + 2.0V$ VDDVD070GPIO weak pull-up current (Note 4)IPUR30250400 μA VDD = 5V, VPIN = VD060I/O portsIIL30 μA VDD = 5V, VPIN = VD060I/O portsIIL+5 μA Vss $\leq VPIN \leq Vdd$ D061TOCKI+5 μA Vss $\leq VPIN \leq Vdd$ D063OSC1Low Voltage-<	
D031with Schmitt Trigger bufferVSS-0.15VDDVotherwiseD032MCLR, GP2/T0CKI (in EXTRC mode)VSS-0.2VDDVVD033OSC1 (in EXTRC mode)VSS-0.2VDDVNote 1D033OSC1 (in XT and LP)VSS-0.3VDDVNote 1D040with TTL bufferVIHD040with TTL buffer0.25VDD +-VDDV4.5V ≤ VDD ≤ 5.5VD040AWith Schmitt Trigger buffer0.8VDD-VDDV4.5V ≤ VDD ≤ 5.5VD041with Schmitt Trigger buffer0.8VDD-VDDVFor entire VDD ranD042MCLR, GP2/T0CKI0.8VDD-VDDVNote 1D043OSC1 (in EXTRC mode)0.7VDD-VDDVNote 1D043OSC1 (in EXTRC mode)0.9VDD-VDDVNote 1D070GPIO weak pull-up current (Note 4)IPUR30250400 μ AVDD = 5V, VPIN = VD060I/O portsIIL30 μ AVDS ≤ VPIN ≤ VDD, configurationD061T0CKI+5 μ AVSS ≤ VPIN ≤ VDD, configurationD080I/O portsVOL0.6VIoL = 8.5 mA, VDD	
D031with Schmitt Trigger buffer MCLR, GP2/T0CKI (in EXTRC mode)Vss-0.2VDDVD033OSC1 (in EXTRC mode)Vss-0.2VDDVD033OSC1 (in XT and LP)Vss-0.2VDDVD040with TL bufferVIHD040with Schmitt Trigger buffer0.25VDD +-VDDVD040with Schmitt Trigger buffer0.8VDD-VDDVD041with Schmitt Trigger buffer0.8VDD-VDDVD042MCLR, GP2/T0CKI0.8VDD-VDDVD043OSC1 (in EXTRC mode)0.7VDD-VDDVD043OSC1 (in EXTRC mode)0.9VDD-VDDVD043OSC1 (in EXTRC mode)0.9VDD-VDDVD070GPIO weak pull-up current (Note 4)IPUR30250400 μ AVDD = 5V, VPIN = VD060I/O portsIIL30 μ AVDS \leq VDD, impedanceD061T0CKI ± 5 μ AVss \leq VPIN \leq VDD, configurationD080I/O portsVOL0.6V	.5V
D032 \overline{MCLR} , GP2/T0CKI (in EXTRC mode)Vss-0.2VDDVD033OSC1 (in EXTRC mode)Vss-0.2VDDNote 1D033OSC1 (in XT and LP)Vss-0.3VDDVNote 1Input High Voltage I/O portsVIHD040with TTL buffer0.25VDD +-VDDV4.5V \leq VDD \leq 5.5VD040with Schmitt Trigger buffer0.8VDD-VDDV4.5V \leq VDD \leq 5.5VD041with Schmitt Trigger buffer0.8VDD-VDDVFor entire VDD ranD042MCLR, GP2/T0CKI0.8VDD-VDDVFor entire VDD ranD043OSC1 (XT and LP)0.7VDD-VDDVNote 1D043OSC1 (in EXTRC mode)1PUR30250400 μ AVDD $=$ 5V, VPIN $=$ ND070GPIO weak pull-up current (Note 4)IPUR30250400 μ AVDD $=$ 5V, VPIN $=$ ND060I/O portsIIL \pm 1 μ AVss \leq VPIN \leq VDD, impedanceD061T0CKI \pm 5 μ AVss \leq VPIN \leq VDD, configurationD080I/O portsVolt \pm 5 μ AVss \leq VPIN \leq VDD, configuration	
D033OSC1 (in EXTRC mode)Viss-0.2VDDNote 1D033OSC1 (in XT and LP)Vss-0.3VDDVNote 1Input High Voltage I/O portsVIHVDDV4.5V \leq VDD \leq 5.5VD040with TTL buffer0.25VDD + 0.8V-VDDV4.5V \leq VDD \leq 5.5VD040with Schmitt Trigger buffer0.20V-VDDV4.5V \leq VDD \leq 5.5VD041with Schmitt Trigger buffer0.8VDD-VDDVFor entire VDD ranD042MCLR, GP2/TOCKI0.8VDD-VDDVFor entire VDD ranD043OSC1 (XT and LP)0.7VDD-VDDVNote 1D043OSC1 (in EXTRC mode)0.9VDD-VDDVNote 1D070GPIO weak pull-up current (Note 4)IPUR30250400 μ AVDE $=$ 5V, VPIN $=$ ND060I/O portsIIIL30 μ AVDE $=$ 5V, VPIN \leq NDDD060I/O portsIIIL \pm 5 μ AVss \leq VPIN \leq VDDD061TOCKI \pm 5 μ AVss \leq VPIN \leq VDDD063OSC1 \pm 5 μ AVss \leq VPIN \leq VDDD080I/O portsVOL0.6VIoL = 8.5 mA, VDD	
D033OSC1 (in XT and LP)Vss-0.3VDDVNote 1Input High Voltage I/O portsVIHD040with TTL buffer0.25VDD + 0.8V-VDDV4.5V \leq VDD \leq 5.5VD040with Schmitt Trigger buffer0.8VD-VDDVotherwiseD041with Schmitt Trigger buffer0.8VDD-VDDVFor entire VDD ranD042MCLR, GP2/T0CKI0.8VDD-VDDVFor entire VDD ranD043OSC1 (XT and LP)0.7VDD-VDDVNote 1D043OSC1 (in EXTRC mode)0.9VDD-VDDVVD070GPIO weak pull-up current (Note 4)IPUR30250400 μ AVDE = 5V, VPIN = ND060I/O portsIIIL30 μ AVDS \leq VPIN \leq VDDD061T0CKI \pm 5 μ AVss \leq VPIN \leq VDDconfigurationD063OSC1 \pm 5 μ AVss \leq VPIN \leq VDDD080I/O portsVOL \pm 5 μ AVss \leq VPIN \leq VDD	
Input High Voltage I/O portsVIHD040with TTL buffer $0.25VDD + -$ VDDVD040A $2.0V -$ VDDVD041with Schmitt Trigger buffer $0.8VDD -$ VDDVD042MCLR, GP2/T0CKI $0.8VDD -$ VDDVD043OSC1 (XT and LP) $0.7VDD -$ VDDVD043OSC1 (in EXTRC mode) $0.9VDD -$ VDDVD070GPIO weak pull-up current (Note 4)IPUR30250400 μA MCLR pull-up current30 μA VDD = 5V, VPIN = VD060I/O portsIIL ± 1 μA Vss \leq VPIN \leq VDD, impedanceD061T0CKI ± 5 μA Vss \leq VPIN \leq VDD, impedanceD063OSC1 ± 5 μA Vss \leq VPIN \leq VDD, impedanceD080I/O portsVOL 0.6 VIOL = 8.5 mA, VDD	
I/O portsVIHD040with TTL buffer0.25VDD +-VDDV4.5V \leq VDD \leq 5.5VD040A2.0V-VDDV0 otherwiseD041with Schmitt Trigger buffer0.8VDD-VDDVFor entire VDD ranD042MCLR, GP2/T0CKI0.8VDD-VDDVFor entire VDD ranD043OSC1 (XT and LP)0.7VDD-VDDVNote 1D043OSC1 (in EXTRC mode)0.9VDD-VDDVVD070GPIO weak pull-up current (Note 4)IPUR30250400 μA VDD = 5V, VPIN = VD060I/O portsIIL30 μA VDD = 5V, VPIN = VD061T0CKI ± 5 μA Vss \leq VPIN \leq VDD,impedanceD061T0CKI ± 5 μA Vss \leq VPIN \leq VDD,configurationD080I/O portsVOL 0.66 VIoL = 8.5 mA, VDD	
D040with TTL buffer $0.25VDD + 0.8V$ $ VDD$ V $4.5V \le VDD \le 5.5V$ D040A $2.0V$ $ VDD$ V otherwiseD041with Schmitt Trigger buffer $0.8VDD$ $ VDD$ V For entire VDD ranD042 $MCLR, GP2/TOCKI$ $0.8VDD$ $ VDD$ V For entire VDD ranD043OSC1 (XT and LP) $0.7VDD$ $ VDD$ V D043OSC1 (in EXTRC mode) $0.9VDD$ $ VDD$ V D070GPIO weak pull-up current (Note 4)IPUR 30 250 400 μA $VDD = 5V, VPIN = V$ D060I/O portsIIL $ 30$ μA $VDD = 5V, VPIN = V$ D061TOCKI $ \pm 5$ μA $Vss \le VPIN \le VDD,$ D063OSC1 $ \pm 5$ μA $Vss \le VPIN \le VDD,$ D080I/O ports VDL $ 0.6$ V D080I/O ports VOL $ 0.6$ V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	je
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
D070GPIO weak pull-up current (Note 4)IPUR30250400 μ AVDD = 5V, VPIN = VMCLR pull-up current30 μ AVDD = 5V, VPIN = VInput Leakage Current (Notes 2, 3)IIL30 μ AVDD = 5V, VPIN = VD060I/O portsIIL+1 μ AVss < VPIN < VDD, impedance	
MCLR pull-up current30 μ AVDD = 5V, VPIN = VInput Leakage Current (Notes 2, 3)IIL $\frac{1}{21}$ μ AVss < VPIN VDD, impedanceD060I/O portsIIL $\frac{1}{21}$ μ AVss < VPIN	
Input Leakage Current (Notes 2, 3) I/O portsIII ± 1 μA Vss \leq VPIN \leq VDD, impedanceD061TOCKI ± 5 μA Vss \leq VPIN \leq VDDD063OSC1 ± 5 μA Vss \leq VPIN \leq VDD, configurationD080I/O portsVol ± 5 μA D080I/O portsVol0.6V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SS
D061 D063TOCKI-+ $\frac{1}{\pm 5}$ μA Vss < VPIN <VDDD063OSC1+ $\frac{1}{\pm 5}$ μA Vss <	
D063OSC1 ± 5 μA Vss \leq VPIN \leq VDD, configurationD080I/O portsVol0.6VIoL = 8.5 mA, VDD	Pin at hi-
Output Low Voltage configuration D080 I/O ports Vol - - 0.6 V IoL = 8.5 mA, Vod	
D080 I/O ports VOL - - 0.6 V IOL = 8.5 mA, VDD	XT and LP osc
–40°C to +85°C	= 4.5V,
D080A 0.6 V IOL = 7.0 mA, VDD -40°C to +125°C	= 4.5V,
Output High Voltage	
D090 I/O ports (Note 3) VOH VDD - 0.7 - V IOH = -3.0 mA, VDI -40°C to +85°C) = 4.5V,
D090A VDD - 0.7 - V IOH = -2.5 mA, VD -40°C to +125°C) = 4.5V,
Capacitive Loading Specs on	
Output Pins	
D100 OSC2 pin COSC2 15 PF In XT and LP mod nal clock is used to	
D101 All I/O pins CIO 50 pF	

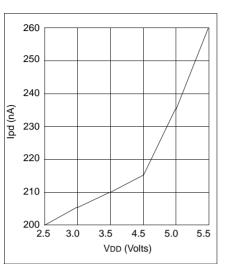
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C5XX be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as coming out of the pin.


4: This spec. applies when GP3/MCLR is configured as MCLR. The leakage current of the MCLR circuit is higher than the standard I/O logic.


14.0 DC AND AC CHARACTERISTICS - PIC12C508A/PIC12C509A/ PIC12LC508A/PIC12LC509A, PIC12CE518/PIC12CE519/PIC12CR509A/ PIC12LCE518/PIC12LCE519/ PIC12LCR509A

The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables the data presented are outside specified operating range (e.g., outside specified VDD range). This is for information only and devices will operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively, where σ is standard deviation.

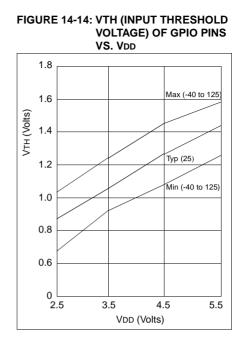


FIGURE 14-13: TYPICAL IPD VS. VDD, WATCHDOG DISABLED (25°C)

INDEX
Α
ALU
Applications
Architectural Overview
Assembler
MPASM Assembler
В
Block Diagram
On-Chip Reset Circuit 41
Timer025
TMR0/WDT Prescaler28
Watchdog Timer43
Brown-Out Protection Circuit
С
CAL0 bit
CAL0 bit
CAL1 bit
CAL2 bit
CALS DIT
CALFS1 bit
CALSEW DIT
Clocking Scheme
Code Protection
Configuration Bits
Configuration Word
D
DC and AC Characteristics
Development Support
Development Tools
Device Varieties
Digit Carry9
E
-
EEPROM Peripheral Operation
Errata
F
Family of Devices5
Features1
FSR
Fuzzy Logic Dev. System (fuzzyTECH®-MP)61
NO hate de alter
I/O Interfacing
I/O Ports
I/O Programming Considerations
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator
ID Locations
INDF
Indirect Data Addressing
Instruction Cycle
Instruction Flow/Pipelining
Instruction Set Summary
К
KeeLoq® Evaluation and Programming Tools
I
-
Loading of PC 19
Μ
Momony Organization 12

M
Memory Organization
Data Memory14
Program Memory13
MPLAB Integrated Development Environment Software 61

0
OPTION Register 17
OSC selection
OSCCAL Register
Oscillator Configurations
Oscillator Types HS
HS
RC
XT
P
-
Package Marking Information
Packaging Information
PICDEM-2 Low-Cost PIC16CXX Demo Board
PICDEM-3 Low-Cost PIC16CXXX Demo Board
PICSTART® Plus Entry Level Development System
POR
Device Reset Timer (DRT)
PD
Power-On Reset (POR)
TO
PORTA 21
Power-Down Mode 45
Prescaler
PRO MATE® II Universal Programmer 59
Program Counter 19
Q
Q cycles
R
RC Oscillator
Read Modify Write
Register File Map
Registers
Special Function
Reset
Reset on Brown-Out 44
S
SEEVAL® Evaluation and Programming System
SLEEP
Software Simulator (MPLAB-SIM)
Special Features of the CPU
Special Function Registers
Stack
STATUS
STATUS Register 16
т
Timer0
Switching Prescaler Assignment
Timer0
Timer0 (TMR0) Module
TMR0 with External Clock 27
Timing Diagrams and Specifications 70, 86
Timing Parameter Symbology and Load Conditions 69, 85
TRIS Registers
W
Wake-up from SLEEP 45
Watchdog Timer (WDT)
Period
Programming Considerations 43
WWW, On-Line Support 3
Z
Zero bit9

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager Total Pages Sent
RE:	Reader Response
Fron	n: Name
	Company
	Address
	City / State / ZIP / Country
	Telephone: () FAX: ()
	lication (optional):
Wou	Id you like a reply?YN
Devi	ce: PIC12C5XX Literature Number: DS40139E
Que	stions:
1.	What are the best features of this document?
2.	How does this document meet your hardware and software development needs?
3	Do you find the organization of this data sheet easy to follow? If not, why?
0.	
4.	What additions to the data sheet do you think would enhance the structure and subject?
-	
5	What deletions from the data sheet could be made without affecting the overall usefulness?
5.	
-	
6.	Is there any incorrect or misleading information (what and where)?
-	
7.	How would you improve this document?
-	
8.	How would you improve our software, systems, and silicon products?

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02