

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	·
RAM Size	41 × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	·
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIJ
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12c509at-04e-sm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram - PIC12C508/509

Pin Diagram - PIC12C508A/509A, PIC12CE518/519

Pin Diagram - PIC12CR509A

Device Differences

Device	Voltage Range	Oscillator	Oscillator Calibration ² (Bits)	Process Technology (Microns)
PIC12C508A	3.0-5.5	See Note 1	6	0.7
PIC12LC508A	2.5-5.5	See Note 1	6	0.7
PIC12C508	2.5-5.5	See Note 1	4	0.9
PIC12C509A	3.0-5.5	See Note 1	6	0.7
PIC12LC509A	2.5-5.5	See Note 1	6	0.7
PIC12C509	2.5-5.5	See Note 1	4	0.9
PIC12CR509A	2.5-5.5	See Note 1	6	0.7
PIC12CE518	3.0-5.5	-	6	0.7
PIC12LCE518	2.5-5.5	-	6	0.7
PIC12CE519	3.0-5.5	-	6	0.7
PIC12LCE519	2.5-5.5	-	6	0.7

Note 1: If you change from the PIC12C50X to the PIC12C50XA or to the PIC12CR50XA, please verify oscillator characteristics in your application.

Note 2: See Section 7.2.5 for OSCCAL implementation differences.

6.1 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-4). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4ToSC (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-4 shows the delay from the external clock edge to the timer incrementing.

6.1.3 OPTION REGISTER EFFECT ON GP2 TRIS

If the option register is set to read TIMER0 from the pin, the port is forced to an input regardless of the TRIS register setting.

FIGURE 6-4: TIMER0 TIMING WITH EXTERNAL CLOCK

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 8-4 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 8-4: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 8-5 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-5: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 8-6 shows how the R/C combination is connected to the PIC12C5XX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g., 1 M Ω) the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The Electrical Specifications sections show RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

Also, see the Electrical Specifications sections for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

FIGURE 8-6: EXTERNAL RC OSCILLATOR MODE

8.6.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, a time-out period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see DC specs).

Under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

8.6.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the postscaler, if assigned to the WDT, and prevents it from timing out and generating a device RESET.

The SLEEP instruction resets the WDT and the postscaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT wake-up reset.

FIGURE 8-12: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 8-6: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	OPTION	GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: Shaded boxes = Not used by Watchdog Timer, - = unimplemented, read as '0', u = unchanged

TABLE 9-2:	INSTRUCTION SET	SUMMARY
------------	-----------------	---------

Mnemo	nic			12-	Bit Opc	ode	Status	
Operar	nds	Description	Cycles	MSb		LSb	Affected	Notes
ADDWF	f,d	Add W and f	1	0001	11df	ffff	C,DC,Z	1,2,4
ANDWF	f,d	AND W with f	1	0001	01df	ffff	Z	2,4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	-	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2,4
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	0010	11df	ffff	None	2,4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2,4
INCFSZ	f, d	Increment f, Skip if 0	1(2)	0011	11df	ffff	None	2,4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2,4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2,4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1,4
NOP	-	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2,4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1,2,4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2,4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2,4
BIT-ORIEN	TED FIL	E REGISTER OPERATIONS	1	1			I	
BCF	f. b	Bit Clear f	1	0100	bbbf	ffff	None	2,4
BSF	f. b	Bit Set f	1	0101	bbbf	ffff	None	2,4
BTFSC	f. b	Bit Test f. Skip if Clear	1 (2)	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	0111	bbbf	ffff	None	
LITERAL A		NTROL OPERATIONS					I	
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	k	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
OPTION	_	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
SLEEP	_	Go into standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	

Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO. (Section 4.6)

2: When an I/O register is modified as a function of itself (e.g. MOVF GPIO, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 6 causes the contents of the W register to be written to the tristate latches of GPIO. A '1' forces the pin to a hi-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

OPTION	Load OF	TION Re	gister		
Syntax:	[label]	OPTION	l		
Operands:	None				
Operation:	$(W) \to OPTION$				
Status Affected:	None				
Encoding:	0000	0000	0010		
Description:	The conte into the O	nt of the W PTION reg	/ register i jister.	s loaded	
Words:	1				
Cycles:	1				
Example	OPTION				
Before Instru	ction				
W	= 0x07				
After Instruct OPTION	ion = 0x07				

RETLW	Return with Literal in W				
Syntax:	[label] RE	ETLW k			
Operands:	$0 \le k \le 255$				
Operation:	$\begin{array}{l} k \rightarrow (W);\\ TOS \rightarrow PC \end{array}$				
Status Affected:	None				
Encoding:	1000 kł	kk kkkk			
Description:	The W registe bit literal 'k'. T loaded from th return addres instruction.	er is loaded with the eight he program counter is ne top of the stack (the s). This is a two cycle			
Words:	1				
Cycles:	2				
Example:	CALL TABLE	;W contains ;table offset ;value. ;W now has table ;value.			
TABLE	ADDWF PC RETLW k1 RETLW k2 • • RETLW kn	;W = offset ;Begin table ; ; ; End of table			
Before Instru W =	uction 0x07				
After Instruc W =	tion value of k8				

RLF	Rotate Left f through Carry
Syntax:	[label] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Encoding:	0011 01df ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	RLF REG1,0
Before Instru REG1 C After Instruc	uction = 1110 0110 = 0 tion
REG1 W	= 1110 0110 = 1100 1100
C	= 1
RRF	Rotate Right f through Carry
RRF Syntax:	Rotate Right f through Carry
RRF Syntax: Operands:	Rotate Right f through Carry[label]RRFf,d $0 \le f \le 31$ d $\in [0,1]$
RRF Syntax: Operands: Operation:	Rotate Right f through Carry[label]RRFf,d $0 \le f \le 31$ d ∈[0,1]See description below
RRF Syntax: Operands: Operation: Status Affected:	Rotate Right f through Carry $[label]$ RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC
RRF Syntax: Operands: Operation: Status Affected: Encoding:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC001100dfffff
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Rotate Right f through Carry [label] RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 $00df$ ffff The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC001100dffffThe contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.CC
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ fffffffThe contents of register 'f' are rotatedone bit to the right through the CarryFlag. If 'd' is 0 the result is placed in theW register. If 'd' is 1 the result is placedback in register 'f'. c
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'I1
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example:	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description belowC 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed in the W register 'f' $f' = C$ $f' = $
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Description: Words: Cycles: Example: Before Instru REG1 C	Rotate Right f through Carry[label]RRF f,d $0 \le f \le 31$ $d \in [0,1]$ See description below C 0011 $00df$ $ffff$ The contents of register 'f' are rotated one bit to the right through the CarryFlag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. $c \longrightarrow register 'f'$ 1111111111110

SWAPF	Swap Nibbles in f				
Syntax:	[label] SWAPF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$				
Operation:	$(f < 3:0 >) \rightarrow (dest < 7:4 >);$ $(f < 7:4 >) \rightarrow (dest < 3:0 >)$				
Status Affected:	None				
Encoding:	0011 10df fff	f			
Description:	The upper and lower nibbl 'f' are exchanged. If 'd' is placed in W register. If 'd' is placed in register 'f'.	les of register 0 the result is is 1 the result			
Words:	1				
Cycles:	1				
Example	SWAPF REG1, 0				
Before Instru REG1	ction = 0xA5				
After Instruct REG1 W	ion = 0xA5 = 0X5A				

TRIS	Load TRIS Register				
Syntax:	[label] TRIS f				
Operands:	f = 6				
Operation:	(W) \rightarrow TRIS register f				
Status Affected:	None				
Encoding:	0000 0000 0fff				
Description:	TRIS register 'f' (f = 6) is loaded with the contents of the W register				
Words:	1				
Cycles:	1				
Example	TRIS GPIO				
Before Instru W	ction = 0XA5				
After Instruct TRIS	ion = 0XA5				
Note: f = 6 for	or PIC12C5XX only.				

XORLW	Exclusiv	e OR lite	ral with	w
Syntax:	[<i>label</i>]	XORLW	k	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) .XOR. $k \rightarrow (W)$			
Status Affected:	Z			
Encoding:	1111	kkkk	kkkk	
Description:	The conte XOR'ed w result is pl	nts of the rith the eigl aced in the	W register ht bit litera e W regist	are I 'k'. The er.
Words:	1			
Cycles:	1			
Example:	XORLW	0xAF		
Before Instru	iction			
W =	0xB5			
After Instruct	ion			
W =	0x1A			

XORWF	Exclusiv	ve OR W \	with f		
Syntax:	[label]	XORWF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$				
Operation:	(W) .XOR. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	0001	10df	ffff		
Description:	Exclusive register w result is s 1 the resu	OR the con vith register tored in the ult is stored	ntents of t 'f'. If 'd' is W registe back in re	he W 0 the r. If 'd' is gister 'f'.	
Words:	1				
Cycles:	1				
Example	XORWF	REG,1			
Before Instru REG W	ction = 0xAl = 0xB	F			
After Instruct REG W	ion = 0x1A = 0xB	A 5			

NOTES:

10.6 <u>SIMICE Entry-Level Hardware</u> <u>Simulator</u>

SIMICE is an entry-level hardware development system designed to operate in a PC-based environment with Microchip's simulator MPLAB[™]-SIM. Both SIM-ICE and MPLAB-SIM run under Microchip Technology's MPLAB Integrated Development Environment (IDE) software. Specifically, SIMICE provides hardware simulation for Microchip's PIC12C5XX, PIC12CE5XX, and PIC16C5X families of PICmicro® 8-bit microcontrollers. SIMICE works in conjunction with MPLAB-SIM to provide non-real-time I/O port emulation. SIMICE enables a developer to run simulator code for driving the target system. In addition, the target system can provide input to the simulator code. This capability allows for simple and interactive debugging without having to manually generate MPLAB-SIM stimulus files. SIMICE is a valuable debugging tool for entrylevel system development.

10.7 <u>PICDEM-1 Low-Cost PICmicro®</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the MPLAB-ICE emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

10.8 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

10.9 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 seqments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

TABLE 11-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC12C508/C509

AC Characteristics		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
		Operating Voltage VDD range is described in Section 10.1							
Parameter No.	Sym	Characteristic Min [*] Typ ⁽¹⁾ Max [*] Units Conditions							
		Internal Calibrated RC Frequency	3.58	4.00	4.32	MHz	VDD = 5.0V		
		Internal Calibrated RC Frequency	3.50	—	4.26	MHz	VDD = 2.5V		

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 11-3: I/O TIMING - PIC12C508/C509

NOTES:

13.1 DC CHARACTERISTICS:

PIC12C508A/509A (Commercial, Industrial, Extended) PIC12CE518/519 (Commercial, Industrial, Extended) PIC12CR509A (Commercial, Industrial, Extended)

DC Characteristics Power Supply Pins				Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)			
Parm No.	Characteristic	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions
D001	Supply Voltage	Vdd	3.0		5.5	V	Fosc = DC to 4 MHz (Commercial/ Industrial, Extended)
D002	RAM Data Retention Voltage ⁽²⁾	Vdr		1.5*		V	Device in SLEEP mode
D003	VDD Start Voltage to ensure Power-on Reset	VPOR		Vss		V	See section on Power-on Reset for details
D004	VDD Rise Rate to ensure Power-on Reset	SVDD	0.05*			V/ms	See section on Power-on Reset for details
D010	Supply Current ⁽³⁾	IDD		0.8	1.4	mA	XT and EXTRC options (Note 4) Fosc = 4 MHz, VDD = 5.5V
D010C			-	0.8	1.4	mA	INTRC Option FOSC = 4 MHz VDD = 5.5V
D010A			—	19	27	μA	LP OPTION, Commercial Temperature $E_{OSC} = 32 \text{ kHz}$ Vpp = 3 0V WDT disabled
			—	19	35	μA	LP OPTION, Industrial Temperature EOSC = 32 kHz , VDD = 3 OV WDT disabled
			_	30	55	μA	LP OPTION, Extended Temperature FOSC = 32 kHz , VDD = 3.0V , WDT disabled
D020	Power-Down Current ⁽⁵⁾	IPD	—	0.25	4	μA	VDD = 3.0V, Commercial WDT disabled
D021 D021B			_	2	5 12	μΑ μΑ	VDD = 3.0V, industrial WDT disabled VDD = 3.0V, Extended WDT disabled
D022	Power-Down Current	ΔIWDT	—	2.2	5	μA	VDD = 3.0V, Commercial
			_	4	ь 11	μΑ μΑ	VDD = 3.0V, industrial $VDD = 3.0V$, Extended
	Supply Current ⁽³⁾ During read/write to EEPROM peripheral	ΔIEE	—	0.1	0.2	mA	FOSC = 4 MHz, Vdd = 5.5V, SCL = 400kHz

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to
 - Vss, T0CKI = VDD, \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
- 4: Does not include current through Rext. The current through the resistor can be estimated by the formula: IR = VDD/2Rext (mA) with Rext in kOhm.
- 5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

TABLE 13-1: PULL-UP RESISTOR RANGES* - PIC12C508A, PIC12C509A, PIC12CR509A, PIC12CE518, PIC12CE519, PIC12LC508A, PIC12LC509A, PIC12LCR509A, PIC12LCE518 and PIC12LCE519

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units			
	GP0/GP1							
2.5	-40	38K	42K	63K	Ω			
	25	42K	48K	63K	Ω			
	85	42K	49K	63K	Ω			
	125	50K	55K	63K	Ω			
5.5	-40	15K	17K	20K	Ω			
	25	18K	20K	23K	Ω			
	85	19K	22K	25K	Ω			
	125	22K	24K	28K	Ω			
	GP3							
2.5	-40	285K	346K	417K	Ω			
	25	343K	414K	532K	Ω			
	85	368K	457K	532K	Ω			
	125	431K	504K	593K	Ω			
5.5	-40	247K	292K	360K	Ω			
	25	288K	341K	437K	Ω			
	85	306K	371K	448K	Ω			
	125	351K	407K	500K	Ω			

* These parameters are characterized but not tested.

TABLE 13-8: EEPROM MEMORY BUS TIMING REQUIREMENTS - PIC12CE5XX ONLY.

AC Characteristics	$ \begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C, \ Vcc = 3.0V \ to \ 5.5V \ (commercial) \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C, \ Vcc = 3.0V \ to \ 5.5V \ (industrial) \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C, \ Vcc = 4.5V \ to \ 5.5V \ (extended) \\ \mbox{Operating Voltage VDD range is described in Section 13.1} \end{array} $					
Parameter	Symbol	Min	Max	Units	Conditions	
Clock frequency	FCLK		100 100 400	kHz	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V	
Clock high time	Тнібн	4000 4000 600		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$	
Clock low time	TLOW	4700 4700 1300		ns		
SDA and SCL rise time (Note 1)	TR		1000 1000 300	ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V	
SDA and SCL fall time	TF	_	300	ns	(Note 1)	
START condition hold time	THD:STA	4000 4000 600		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V	
START condition setup time	TSU:STA	4700 4700 600		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V	
Data input hold time	THD:DAT	0	—	ns	(Note 2)	
Data input setup time	TSU:DAT	250 250 100		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V	
STOP condition setup time	TSU:STO	4000 4000 600		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V	
Output valid from clock (Note 2)	ΤΑΑ		3500 3500 900	ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V	
Bus free time: Time the bus must be free before a new transmis- sion can start	TBUF	4700 4700 1300		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 3.0V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V	
Output fall time from VIH minimum to VI∟ maximum	TOF	20+0.1 CB	250	ns	(Note 1), CB ≤ 100 pF	
Input filter spike suppression (SDA and SCL pins)	TSP	—	50	ns	(Notes 1, 3)	
Write cycle time	Twc	—	4	ms		
Endurance		1M	—	cycles	25°C, VCC = 5.0V, Block Mode (Note 4)	

Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

3: The combined TSP and VHYS specifications are due to new Schmitt trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.

4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on Microchip's website.

NOTES:

Oscillator	Frequency	VDD =3.0V	VDD = 5.5V
External RC	4 MHz	240 µA*	800 µA*
Internal RC	4 MHz	320 µA	800 µA
ХТ	4 MHz	300 µA	800 µA
LP	32 KHz	19 µA	50 µA

TABLE 14-1: DYNAMIC IDD (TYPICAL) - WDT ENABLED, 25°C

*Does not include current through external R&C.

FIGURE 14-3: TYPICAL IDD VS. VDD (WDT DIS, 25°C, FREQUENCY

FIGURE 14-4: TYPICAL IDD VS. FREQUENCY (WDT DIS, 25°C, VDD = 5.5V)

FIGURE 14-13: TYPICAL IPD VS. VDD, WATCHDOG DISABLED (25°C)

15.0 PACKAGING INFORMATION

15.1 Package Marking Information

8-Lead PDIP (300 mil)

8-Lead SOIC (150 mil)

8-Lead SOIC (208 mil)

xxxxxxx
XXXXXXX
AABBCDE
Э)

Example 12C508A 04I/PSAZ \$\$ 9825

Example

Example

8-Lead Windowed Ceramic Side Brazed (300 mil)

Example

Legend	: MMM	Microchip part number information			
Ū	XXX	Customer specific information*			
	AA	Year code (last 2 digits of calendar year)			
	BB	Week code (week of January 1 is week '01')			
	С	Facility code of the plant at which wafer is manufactured			
		O = Outside Vendor			
		C = 5" Line			
		S = 6" Line			
		H = 8" Line			
	D	Mask revision number			
	E	Assembly code of the plant or country of origin in which			
		part was assembled			
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will			
	be carried over to the next line thus limiting the number of available characters				
	for customer specific information.				

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

PIC12C5XX Product Identification System

Please contact your local sales office for exact ordering procedures.

Sales and Support:

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.